BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu W, Ye L, Zhang J, Yu P, Wang H, Ye Z, Tian J. PFK15, a Small Molecule Inhibitor of PFKFB3, Induces Cell Cycle Arrest, Apoptosis and Inhibits Invasion in Gastric Cancer. PLoS One 2016;11:e0163768. [PMID: 27669567 DOI: 10.1371/journal.pone.0163768] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Sun X, Peng Y, Zhao J, Xie Z, Lei X, Tang G. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors. Bioorg Chem 2021;112:104891. [PMID: 33940446 DOI: 10.1016/j.bioorg.2021.104891] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Aye JM, Stafman LL, Williams AP, Garner EF, Stewart JE, Anderson JC, Mruthyunjayappa S, Waldrop MG, Goolsby CD, Markert HR, Quinn C, Marayati R, Mroczek-Musulman E, Willey CD, Yoon KJ, Whelan KF, Beierle EA. The effects of focal adhesion kinase and platelet-derived growth factor receptor beta inhibition in a patient-derived xenograft model of primary and metastatic Wilms tumor. Oncotarget 2019;10:5534-48. [PMID: 31565187 DOI: 10.18632/oncotarget.27165] [Reference Citation Analysis]
3 Zhang J, Zhang Y, Wang J, Zhang S, Zhao Y, Ren H, Chu Y, Feng L, Wang C. Protein kinase D3 promotes gastric cancer development through p65/6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 activation of glycolysis. Exp Cell Res 2019;380:188-97. [PMID: 31026442 DOI: 10.1016/j.yexcr.2019.04.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yan S, Li Q, Li S, Ai Z, Yuan D. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep 2022. [PMID: 35553342 DOI: 10.1007/s11033-022-07513-y] [Reference Citation Analysis]
5 Olszewski K, Barsotti A, Feng XJ, Momcilovic M, Liu KG, Kim JI, Morris K, Lamarque C, Gaffney J, Yu X, Patel JP, Rabinowitz JD, Shackelford DB, Poyurovsky MV. Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors. Cell Chem Biol 2021:S2451-9456(21)00441-4. [PMID: 34715056 DOI: 10.1016/j.chembiol.2021.10.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ferns GA, Shahini Shams Abadi M, Raeisi A, Arjmand MH. The Potential Role of Changes in the Glucose and Lipid Metabolic Pathways in Gastrointestinal Cancer Progression: Strategy in Cancer Therapy. Gastrointest Tumors 2021;8:169-76. [PMID: 34722470 DOI: 10.1159/000517771] [Reference Citation Analysis]
7 Boscaro C, Trenti A, Baggio C, Scapin C, Trevisi L, Cignarella A, Bolego C. Sex Differences in the Pro-Angiogenic Response of Human Endothelial Cells: Focus on PFKFB3 and FAK Activation. Front Pharmacol 2020;11:587221. [PMID: 33390959 DOI: 10.3389/fphar.2020.587221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li X, Liu J, Qian L, Ke H, Yao C, Tian W, Liu Y, Zhang J. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy. Mol Cell Biochem 2018;445:123-34. [PMID: 29327288 DOI: 10.1007/s11010-017-3258-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
9 Ryan TE, Schmidt CA, Tarpey MD, Amorese AJ, Yamaguchi DJ, Goldberg EJ, Iñigo MM, Karnekar R, O'Rourke A, Ervasti JM, Brophy P, Green TD, Neufer PD, Fisher-Wellman K, Spangenburg EE, McClung JM. PFKFB3-mediated glycolysis rescues myopathic outcomes in the ischemic limb. JCI Insight 2020;5:139628. [PMID: 32841216 DOI: 10.1172/jci.insight.139628] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
10 Yi M, Ban Y, Tan Y, Xiong W, Li G, Xiang B. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab 2019;20:1-13. [PMID: 30553771 DOI: 10.1016/j.molmet.2018.11.013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 12.0] [Reference Citation Analysis]
11 Davanzo GG, Castro G, Moraes-Vieira PMM. Immunometabolic regulation of adipose tissue resident immune cells. Curr Opin Pharmacol 2021;58:44-51. [PMID: 33878567 DOI: 10.1016/j.coph.2021.03.004] [Reference Citation Analysis]
12 De Oliveira T, Goldhardt T, Edelmann M, Rogge T, Rauch K, Kyuchukov ND, Menck K, Bleckman A, Kalucka J, Khan S, Gaedcke J, Haubrock M, Beissbarth T, Bohnenberger H, Planque M, Fendt SM, Ackermann L, Ghadimi M, Conradi LC. Effects of the Novel PFKFB3 Inhibitor KAN0438757 on Colorectal Cancer Cells and Its Systemic Toxicity Evaluation In Vivo. Cancers (Basel) 2021;13:1011. [PMID: 33671096 DOI: 10.3390/cancers13051011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Jia Z, Wang Y, Sun X, Zhao X, Zhang Y, Xu S, Wang Y, Li Y. Effect of lncRNA XLOC_005950 knockout by CRISPR/Cas9 gene editing on energy metabolism and proliferation in osteosarcoma MG63 cells mediated by hsa-miR-542-3p. Oncol Lett 2021;22:669. [PMID: 34386091 DOI: 10.3892/ol.2021.12930] [Reference Citation Analysis]
14 Mabate B, Daub CD, Malgas S, Edkins AL, Pletschke BI. Fucoidan Structure and Its Impact on Glucose Metabolism: Implications for Diabetes and Cancer Therapy. Mar Drugs 2021;19:30. [PMID: 33440853 DOI: 10.3390/md19010030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
15 Jones BC, Pohlmann PR, Clarke R, Sengupta S. Treatment against glucose-dependent cancers through metabolic PFKFB3 targeting of glycolytic flux. Cancer Metastasis Rev 2022. [PMID: 35419769 DOI: 10.1007/s10555-022-10027-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu Y, Xu R, Gu H, Zhang E, Qu J, Cao W, Huang X, Yan H, He J, Cai Z. Metabolic reprogramming in macrophage responses. Biomark Res 2021;9:1. [PMID: 33407885 DOI: 10.1186/s40364-020-00251-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
17 Bao Y, Zhou L, Dai D, Zhu X, Hu Y, Qiu Y. Discover potential inhibitors for PFKFB3 using 3D-QSAR, virtual screening, molecular docking and molecular dynamics simulation. J Recept Signal Transduct Res 2018;38:413-31. [PMID: 30822195 DOI: 10.1080/10799893.2018.1564150] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
18 Horváthová J, Moravčík R, Matúšková M, Šišovský V, Boháč A, Zeman M. Inhibition of Glycolysis Suppresses Cell Proliferation and Tumor Progression In Vivo: Perspectives for Chronotherapy. Int J Mol Sci 2021;22:4390. [PMID: 33922320 DOI: 10.3390/ijms22094390] [Reference Citation Analysis]
19 Liu M, Liu W, Qin Y, Xu X, Yu X, Zhuo Q, Ji S. Regulation of metabolic reprogramming by tumor suppressor genes in pancreatic cancer. Exp Hematol Oncol 2020;9. [DOI: 10.1186/s40164-020-00179-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct Target Ther 2017;2:17044. [PMID: 29263928 DOI: 10.1038/sigtrans.2017.44] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 13.8] [Reference Citation Analysis]
21 Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021;10:2913. [PMID: 34831136 DOI: 10.3390/cells10112913] [Reference Citation Analysis]
22 Abdali A, Baci D, Damiani I, Belloni F, De Dominicis C, Gelmi ML, Corsini A, Bellosta S. In vitro angiogenesis inhibition with selective compounds targeting the key glycolytic enzyme PFKFB3. Pharmacol Res 2021;168:105592. [PMID: 33813027 DOI: 10.1016/j.phrs.2021.105592] [Reference Citation Analysis]
23 Yan S, Yuan D, Li Q, Li S, Zhang F. AICAR enhances the cytotoxicity of PFKFB3 inhibitor in an AMPK signaling-independent manner in colorectal cancer cells. Med Oncol 2021;39:10. [PMID: 34761330 DOI: 10.1007/s12032-021-01601-y] [Reference Citation Analysis]
24 Afonso J, Santos LL, Longatto-Filho A, Baltazar F. Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 2020;17:77-106. [PMID: 31953517 DOI: 10.1038/s41585-019-0263-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
25 Wang Y, Qu C, Liu T, Wang C. PFKFB3 inhibitors as potential anticancer agents: Mechanisms of action, current developments, and structure-activity relationships. Eur J Med Chem 2020;203:112612. [PMID: 32679452 DOI: 10.1016/j.ejmech.2020.112612] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Boscaro C, Baggio C, Carotti M, Sandonà D, Trevisi L, Cignarella A, Bolego C. Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J 2022;36:e22140. [PMID: 35107852 DOI: 10.1096/fj.202101222R] [Reference Citation Analysis]
27 Zheng JB, Wong CW, Liu J, Luo X, Zhou W, Chen Y, Luo H, Zeng Z, Ren C, Xie X, Wang D. Glucose metabolism inhibitor PFK-015 combined with immune checkpoint inhibitor is an effective treatment regimen in cancer. OncoImmunology 2022;11:2079182. [DOI: 10.1080/2162402x.2022.2079182] [Reference Citation Analysis]
28 Meng Y, Xu X, Luan H, Li L, Dai W, Li Z, Bian J. The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med Chem 2019;11:2333-52. [PMID: 31581916 DOI: 10.4155/fmc-2019-0052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
29 Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets 2018;22:659-74. [PMID: 29985086 DOI: 10.1080/14728222.2018.1498082] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
30 Martins CP, New LA, O'Connor EC, Previte DM, Cargill KR, Tse IL, Sims-Lucas S, Piganelli JD. Glycolysis Inhibition Induces Functional and Metabolic Exhaustion of CD4+ T Cells in Type 1 Diabetes. Front Immunol 2021;12:669456. [PMID: 34163475 DOI: 10.3389/fimmu.2021.669456] [Reference Citation Analysis]
31 Yalcin A, Solakoglu TH, Ozcan SC, Guzel S, Peker S, Celikler S, Balaban BD, Sevinc E, Gurpinar Y, Chesney JA. 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for transforming growth factor β1-enhanced invasion of Panc1 cells in vitro. Biochemical and Biophysical Research Communications 2017;484:687-93. [DOI: 10.1016/j.bbrc.2017.01.178] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
32 Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacology & Therapeutics 2018;191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
33 Wang C, Qu J, Yan S, Gao Q, Hao S, Zhou D. PFK15, a PFKFB3 antagonist, inhibits autophagy and proliferation in rhabdomyosarcoma cells. Int J Mol Med 2018;42:359-67. [PMID: 29620138 DOI: 10.3892/ijmm.2018.3599] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
34 Alves de Souza CE, Pires ADRA, Cardoso CR, Carlos RM, Cadena SMSC, Acco A. Antineoplastic activity of a novel ruthenium complex against human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells. Heliyon 2020;6:e03862. [PMID: 32405548 DOI: 10.1016/j.heliyon.2020.e03862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Teuwen LA, Draoui N, Dubois C, Carmeliet P. Endothelial cell metabolism: an update anno 2017. Curr Opin Hematol. 2017;24:240-247. [PMID: 28212191 DOI: 10.1097/moh.0000000000000335] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 4.4] [Reference Citation Analysis]
36 Robinson AJ, Hopkins GL, Rastogi N, Hodges M, Doyle M, Davies S, Hole PS, Omidvar N, Darley RL, Tonks A. Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3. Cancer Res 2020;80:937-49. [PMID: 31862780 DOI: 10.1158/0008-5472.CAN-19-1920] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
37 Gupta S, Roy A, Dwarakanath BS. Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy. Front Oncol 2017;7:68. [PMID: 28447025 DOI: 10.3389/fonc.2017.00068] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 13.8] [Reference Citation Analysis]
38 Richardson DA, Sritangos P, James AD, Sultan A, Bruce JIE. Metabolic regulation of calcium pumps in pancreatic cancer: role of phosphofructokinase-fructose-bisphosphatase-3 (PFKFB3). Cancer Metab 2020;8:2. [PMID: 32266066 DOI: 10.1186/s40170-020-0210-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
39 Feng Y, Wu L. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. Biochem Biophys Res Commun 2017;483:897-903. [PMID: 28082200 DOI: 10.1016/j.bbrc.2017.01.031] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
40 Lu L, Chen Y, Zhu Y. The molecular basis of targeting PFKFB3 as a therapeutic strategy against cancer. Oncotarget 2017;8:62793-802. [PMID: 28977989 DOI: 10.18632/oncotarget.19513] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
41 Sun Y, Ji B, Feng Y, Zhang Y, Ji D, Zhu C, Wang S, Zhang C, Zhang D, Sun Y. TRIM59 facilitates the proliferation of colorectal cancer and promotes metastasis via the PI3K/AKT pathway. Oncol Rep 2017;38:43-52. [PMID: 28534983 DOI: 10.3892/or.2017.5654] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
42 Wang W, Zhang YW, Hu SJ, Niu WP, Zhang GN, Zhu M, Wang MH, Zhang F, Li XM, Wang JX. Design, synthesis, and antibacterial evaluation of PFK-158 derivatives as potent agents against drug-resistant bacteria. Bioorg Med Chem Lett 2021;41:127980. [PMID: 33766773 DOI: 10.1016/j.bmcl.2021.127980] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Chauhan KS, Das A, Jaiswal H, Saha I, Kaushik M, Patel VK, Tailor P. IRF8 and BATF3 interaction enhances the cDC1 specific Pfkfb3 gene expression. Cell Immunol 2021;371:104468. [PMID: 34968772 DOI: 10.1016/j.cellimm.2021.104468] [Reference Citation Analysis]
44 Xia Y, Yan Z, Wan Y, Wei S, Bi Y, Zhao J, Liu J, Liao DJ, Huang H. Knockdown of long noncoding RNA GHET1 inhibits cell‑cycle progression and invasion of gastric cancer cells. Mol Med Rep 2018;18:3375-81. [PMID: 30066922 DOI: 10.3892/mmr.2018.9332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.3] [Reference Citation Analysis]
45 He X, Cheng X, Ding J, Xiong M, Chen B, Cao G. Hyperglycemia induces miR-26-5p down-regulation to overexpress PFKFB3 and accelerate epithelial–mesenchymal transition in gastric cancer. Bioengineered 2022;13:2902-17. [DOI: 10.1080/21655979.2022.2026730] [Reference Citation Analysis]
46 Jin X, Qiao L, Fan H, Liao C, Zheng J, Wang W, Ma X, Yang M, Sun X, Zhao W. Long non-coding RNA MSC-AS1 facilitates the proliferation and glycolysis of gastric cancer cells by regulating PFKFB3 expression. Int J Med Sci 2021;18:546-54. [PMID: 33390824 DOI: 10.7150/ijms.51947] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Giannopoulou AF, Velentzas AD, Anagnostopoulos AK, Agalou A, Papandreou NC, Katarachia SA, Koumoundourou DG, Konstantakou EG, Pantazopoulou VI, Delis A, Michailidi MT, Valakos D, Chatzopoulos D, Syntichaki P, Iconomidou VA, Tsitsilonis OE, Papassideri IS, Voutsinas GE, Hatzopoulos P, Thanos D, Beis D, Anastasiadou E, Tsangaris GT, Stravopodis DJ. From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers (Basel) 2021;13:2024. [PMID: 33922182 DOI: 10.3390/cancers13092024] [Reference Citation Analysis]
48 Zhu W, Lv J, Xie X, Tian C, Liu J, Zhou H, Sun C, Li J, Hu Z, Li X. The oncolytic virus VT09X optimizes immune checkpoint therapy in low immunogenic melanoma. Immunol Lett 2021;241:15-22. [PMID: 34774916 DOI: 10.1016/j.imlet.2021.11.002] [Reference Citation Analysis]
49 Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S, Dzięgiel P. Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets. Cancers (Basel) 2021;13:909. [PMID: 33671514 DOI: 10.3390/cancers13040909] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol 2020;42:1010428320965284. [PMID: 33028168 DOI: 10.1177/1010428320965284] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
51 Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021;178:113971. [PMID: 34530013 DOI: 10.1016/j.addr.2021.113971] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
52 Zhao Q, Li J, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Nie X. Smart Biomimetic Nanocomposites Mediate Mitochondrial Outcome through Aerobic Glycolysis Reprogramming: A Promising Treatment for Lymphoma. ACS Appl Mater Interfaces 2020;12:22687-701. [PMID: 32330381 DOI: 10.1021/acsami.0c05763] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
53 Gupta S, Dwarakanath BS. Modulation of Immuno-biome during Radio-sensitization of Tumors by Glycolytic Inhibitors. Curr Med Chem 2020;27:4002-15. [PMID: 29852858 DOI: 10.2174/0929867325666180601101145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Lin J, Chen Z, Huang Z, Chen F, Ye Z, Lin S, Wang W. Upregulation of T-cadherin suppresses cell proliferation, migration and invasion of gastric cancer in vitro. Exp Ther Med 2017;14:4194-200. [PMID: 29104635 DOI: 10.3892/etm.2017.5090] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
55 Shen H, Zhang J, Zhang Y, Feng Q, Wang H, Li G, Jiang W, Li X. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway. Gene 2019;698:50-60. [PMID: 30822475 DOI: 10.1016/j.gene.2019.02.044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
56 Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019;171:343-63. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
57 Lan H, Luo L, Chen Y, Wang M, Yu Z, Gong Y. MIF signaling blocking alleviates airway inflammation and airway epithelial barrier disruption in a HDM-induced asthma model. Cell Immunol 2020;347:103965. [PMID: 31708110 DOI: 10.1016/j.cellimm.2019.103965] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
58 Matsumoto K, Noda T, Kobayashi S, Sakano Y, Yokota Y, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Takeda Y, Tanemura M, Umeshita K, Doki Y, Eguchi H. Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma. Cancer Lett 2021;500:29-40. [PMID: 33307155 DOI: 10.1016/j.canlet.2020.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]