BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raja WK, Mungenast AE, Lin YT, Ko T, Abdurrob F, Seo J, Tsai LH. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes. PLoS One. 2016;11:e0161969. [PMID: 27622770 DOI: 10.1371/journal.pone.0161969] [Cited by in Crossref: 223] [Cited by in F6Publishing: 199] [Article Influence: 37.2] [Reference Citation Analysis]
Number Citing Articles
1 Zhao J, Fu Y, Yamazaki Y, Ren Y, Davis MD, Liu CC, Lu W, Wang X, Chen K, Cherukuri Y, Jia L, Martens YA, Job L, Shue F, Nguyen TT, Younkin SG, Graff-Radford NR, Wszolek ZK, Brafman DA, Asmann YW, Ertekin-Taner N, Kanekiyo T, Bu G. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat Commun 2020;11:5540. [PMID: 33139712 DOI: 10.1038/s41467-020-19264-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
2 Tian A, Muffat J, Li Y. Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids. J Neurosci 2020;40:1186-93. [PMID: 32024767 DOI: 10.1523/JNEUROSCI.0519-19.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
3 Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 2018;23:2363-74. [PMID: 30171212 DOI: 10.1038/s41380-018-0229-8] [Cited by in Crossref: 110] [Cited by in F6Publishing: 100] [Article Influence: 27.5] [Reference Citation Analysis]
4 Bi FC, Yang XH, Cheng XY, Deng WB, Guo XL, Yang H, Wang Y, Li J, Yao Y. Optimization of cerebral organoids: a more qualified model for Alzheimer's disease research. Transl Neurodegener 2021;10:27. [PMID: 34372927 DOI: 10.1186/s40035-021-00252-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019;13:129. [PMID: 31024259 DOI: 10.3389/fncel.2019.00129] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
6 Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020;1471:18-56. [PMID: 30875083 DOI: 10.1111/nyas.14012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
7 Atkinson-Dell R, Mohamet L. Induced Pluripotent Stem Cell-Derived Astroglia: A New Tool for Research Towards the Treatment of Alzheimer's Disease. Adv Exp Med Biol 2019;1175:383-405. [PMID: 31583596 DOI: 10.1007/978-981-13-9913-8_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lengner CJ, Lee YK, Kim J. Modeling G2019S-LRRK2 Sporadic Parkinson's Disease in 3D Midbrain Organoids. Stem Cell Reports. 2019;12:518-531. [PMID: 30799274 DOI: 10.1016/j.stemcr.2019.01.020] [Cited by in Crossref: 96] [Cited by in F6Publishing: 88] [Article Influence: 32.0] [Reference Citation Analysis]
9 Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021. [PMID: 34633316 DOI: 10.3233/JAD-200863] [Reference Citation Analysis]
10 Garcia-leon JA, Vitorica J, Gutierrez A. Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Medicinal Chemistry 2019;11:1305-22. [DOI: 10.4155/fmc-2018-0520] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
11 Chhibber T, Bagchi S, Lahooti B, Verma A, Al-Ahmad A, Paul MK, Pendyala G, Jayant RD. CNS organoids: an innovative tool for neurological disease modeling and drug neurotoxicity screening. Drug Discov Today 2020;25:456-65. [PMID: 31783130 DOI: 10.1016/j.drudis.2019.11.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
12 Esmail S, Danter WR. NEUBOrg: Artificially Induced Pluripotent Stem Cell-Derived Brain Organoid to Model and Study Genetics of Alzheimer's Disease Progression. Front Aging Neurosci 2021;13:643889. [PMID: 33708104 DOI: 10.3389/fnagi.2021.643889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ferrari E, Cardinale A, Picconi B, Gardoni F. From cell lines to pluripotent stem cells for modelling Parkinson's Disease. J Neurosci Methods 2020;340:108741. [PMID: 32311374 DOI: 10.1016/j.jneumeth.2020.108741] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
14 Young JE, Fong LK, Frankowski H, Petsko GA, Small SA, Goldstein LSB. Stabilizing the Retromer Complex in a Human Stem Cell Model of Alzheimer's Disease Reduces TAU Phosphorylation Independently of Amyloid Precursor Protein. Stem Cell Reports 2018;10:1046-58. [PMID: 29503090 DOI: 10.1016/j.stemcr.2018.01.031] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
15 Hasselmann J, Blurton-Jones M. Human iPSC-derived microglia: A growing toolset to study the brain's innate immune cells. Glia 2020;68:721-39. [PMID: 31926038 DOI: 10.1002/glia.23781] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
16 Chen X, Sun G, Tian E, Zhang M, Davtyan H, Beach TG, Reiman EM, Blurton-Jones M, Holtzman DM, Shi Y. Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. Adv Sci (Weinh) 2021;:e2101462. [PMID: 34337898 DOI: 10.1002/advs.202101462] [Reference Citation Analysis]
17 Penney J, Ralvenius WT, Tsai LH. Modeling Alzheimer's disease with iPSC-derived brain cells. Mol Psychiatry 2020;25:148-67. [PMID: 31391546 DOI: 10.1038/s41380-019-0468-3] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 26.7] [Reference Citation Analysis]
18 Scuto M, Modafferi S, Rampulla F, Zimbone V, Tomasello M, Spano’ S, Ontario M, Palmeri A, Trovato Salinaro A, Siracusa R, Di Paola R, Cuzzocrea S, Calabrese E, Wenzel U, Calabrese V. Redox modulation of stress resilience by Crocus Sativus L. for potential neuroprotective and anti-neuroinflammatory applications in brain disorders: From molecular basis to therapy. Mechanisms of Ageing and Development 2022. [DOI: 10.1016/j.mad.2022.111686] [Reference Citation Analysis]
19 Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron 2018;98:1141-1154.e7. [PMID: 29861287 DOI: 10.1016/j.neuron.2018.05.008] [Cited by in Crossref: 249] [Cited by in F6Publishing: 227] [Article Influence: 62.3] [Reference Citation Analysis]
20 Cenini G, Hebisch M, Iefremova V, Flitsch LJ, Breitkreuz Y, Tanzi RE, Kim DY, Peitz M, Brüstle O. Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Molecular and Cellular Neuroscience 2021;110:103568. [DOI: 10.1016/j.mcn.2020.103568] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
21 Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018;42:1572-90. [PMID: 29897633 DOI: 10.1111/acer.13811] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
22 Albert K, Niskanen J, Kälvälä S, Lehtonen Š. Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. Int J Mol Sci 2021;22:4334. [PMID: 33919317 DOI: 10.3390/ijms22094334] [Reference Citation Analysis]
23 Tcw J. Human iPSC application in Alzheimer’s disease and Tau-related neurodegenerative diseases. Neuroscience Letters 2019;699:31-40. [DOI: 10.1016/j.neulet.2019.01.043] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
24 Galet B, Cheval H, Ravassard P. Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease. Front Neurol 2020;11:1005. [PMID: 33013664 DOI: 10.3389/fneur.2020.01005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
25 Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol 2020;319:C151-65. [PMID: 32459504 DOI: 10.1152/ajpcell.00120.2020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
26 de Leeuw S, Tackenberg C. Alzheimer's in a dish - induced pluripotent stem cell-based disease modeling. Transl Neurodegener 2019;8:21. [PMID: 31338163 DOI: 10.1186/s40035-019-0161-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
27 Jalink P, Caiazzo M. Brain Organoids: Filling the Need for a Human Model of Neurological Disorder. Biology (Basel) 2021;10:740. [PMID: 34439972 DOI: 10.3390/biology10080740] [Reference Citation Analysis]
28 J Siney E, Kurbatskaya K, Chatterjee S, Prasannan P, Mudher A, Willaime-morawek S; 1 WISH laboratories, University Hospital Southampton, Southampton, UK, 2 Centre for Biological Sciences, University of Southampton, Southampton, UK, 3 Clinical Neurosciences, Faculty of Medicine and Centre for Human Development, Stem Cells and regenerative Medicine, University of Southampton, Southampton, UK. in vitro: Recent advances in 3D iPSC technologies]]>. AIMS Cell and Tissue Engineering 2018;2:1-23. [DOI: 10.3934/celltissue.2018.1.1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018;41:1103-16. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Reference Citation Analysis]
30 Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020;143:3181-213. [PMID: 33020798 DOI: 10.1093/brain/awaa268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
31 Ferrari C, Sorbi S. The complexity of Alzheimer's disease: an evolving puzzle. Physiol Rev 2021;101:1047-81. [PMID: 33475022 DOI: 10.1152/physrev.00015.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chen M, Lee HK, Moo L, Hanlon E, Stein T, Xia W. Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J Proteomics 2018;182:21-33. [PMID: 29709615 DOI: 10.1016/j.jprot.2018.04.032] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
33 Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017;18:573-584. [PMID: 28878372 DOI: 10.1038/nrn.2017.107] [Cited by in Crossref: 269] [Cited by in F6Publishing: 239] [Article Influence: 53.8] [Reference Citation Analysis]
34 Karch CM, Hernández D, Wang JC, Marsh J, Hewitt AW, Hsu S, Norton J, Levitch D, Donahue T, Sigurdson W, Ghetti B, Farlow M, Chhatwal J, Berman S, Cruchaga C, Morris JC, Bateman RJ, Pébay A, Goate AM; Dominantly Inherited Alzheimer Network (DIAN). Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimers Res Ther 2018;10:69. [PMID: 30045758 DOI: 10.1186/s13195-018-0400-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
35 Rouleau N, Murugan NJ, Kaplan DL. Toward Studying Cognition in a Dish. Trends Cogn Sci 2021;25:294-304. [PMID: 33546973 DOI: 10.1016/j.tics.2021.01.005] [Reference Citation Analysis]
36 Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurrob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022;29:116-130.e7. [PMID: 34995493 DOI: 10.1016/j.stem.2021.12.002] [Reference Citation Analysis]
37 Murphy AR, Ghobrial I, Jamshidi P, Laslett A, O'brien CM, Cameron NR. Tailored emulsion-templated porous polymer scaffolds for iPSC-derived human neural precursor cell culture. Polym Chem 2017;8:6617-27. [DOI: 10.1039/c7py01375b] [Cited by in Crossref: 18] [Article Influence: 3.6] [Reference Citation Analysis]
38 Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2018;299:270-80. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
39 Arber C, Alatza A, Leckey CA, Paterson RW, Zetterberg H, Wray S. Mass spectrometry analysis of tau and amyloid-beta in iPSC-derived models of Alzheimer's disease and dementia. J Neurochem 2021. [PMID: 33539581 DOI: 10.1111/jnc.15315] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019;9:565-611. [PMID: 30873582 DOI: 10.1002/cphy.c180025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
41 Faravelli I, Costamagna G, Tamanini S, Corti S. Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Res 2020;1727:146561. [PMID: 31758922 DOI: 10.1016/j.brainres.2019.146561] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
42 von Maydell D, Jorfi M. A Synergistic Engineering Approach to Build Human Brain Spheroids. Methods Mol Biol 2021;2258:151-69. [PMID: 33340360 DOI: 10.1007/978-1-0716-1174-6_11] [Reference Citation Analysis]
43 Hwang JJ, Choi J, Rim YA, Nam Y, Ju JH. Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells 2021;10:3032. [PMID: 34831254 DOI: 10.3390/cells10113032] [Reference Citation Analysis]
44 Seiti M, Ginestra PS, Ceretti E, Ferraris E, Ranga A. Emerging Three‐Dimensional Integrated Systems for Biomimetic Neural In Vitro Cultures. Adv Materials Inter. [DOI: 10.1002/admi.202101297] [Reference Citation Analysis]
45 Hawkins KE, Duchen M. Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells. World J Stem Cells 2019; 11(5): 236-253 [PMID: 31171953 DOI: 10.4252/wjsc.v11.i5.236] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
46 Tate KM, Munson JM. Assessing drug response in engineered brain microenvironments. Brain Res Bull 2019;150:21-34. [PMID: 31054318 DOI: 10.1016/j.brainresbull.2019.04.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
47 Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021;12:2041731420985299. [PMID: 33738089 DOI: 10.1177/2041731420985299] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Qian L, Tcw J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021;22:1203. [PMID: 33530458 DOI: 10.3390/ijms22031203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
49 Tan HY, Cho H, Lee LP. Human mini-brain models. Nat Biomed Eng 2021;5:11-25. [PMID: 33318650 DOI: 10.1038/s41551-020-00643-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
50 Costamagna G, Andreoli L, Corti S, Faravelli I. iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells 2019;8:E1438. [PMID: 31739555 DOI: 10.3390/cells8111438] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
51 Fanizza F, Campanile M, Forloni G, Giordano C, Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J Tissue Eng 2022;13:204173142210953. [DOI: 10.1177/20417314221095339] [Reference Citation Analysis]
52 Pardieck J, Sakiyama-Elbert S. Genome engineering for CNS injury and disease. Curr Opin Biotechnol 2018;52:89-94. [PMID: 29597076 DOI: 10.1016/j.copbio.2018.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
53 Erb U, Schwerk C, Schroten H, Karremann M. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. J Neurosci Methods 2020;329:108478. [PMID: 31669338 DOI: 10.1016/j.jneumeth.2019.108478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
54 Botté A, Potier MC. Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. Prog Brain Res 2020;251:209-43. [PMID: 32057308 DOI: 10.1016/bs.pbr.2019.10.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
55 Jung YJ, Kim YH, Bhalla M, Lee SB, Seo J. Genomics: New Light on Alzheimer's Disease Research. Int J Mol Sci 2018;19:E3771. [PMID: 30486438 DOI: 10.3390/ijms19123771] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
56 Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021;22:7667. [PMID: 34299287 DOI: 10.3390/ijms22147667] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Choi SH, Kim YH, Quinti L, Tanzi RE, Kim DY. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish". Mol Neurodegener. 2016;11:75. [PMID: 27938410 DOI: 10.1186/s13024-016-0139-7] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 11.2] [Reference Citation Analysis]
58 Kyrousi C, Cappello S. Using brain organoids to study human neurodevelopment, evolution and disease. Wiley Interdiscip Rev Dev Biol 2020;9:e347. [PMID: 31071759 DOI: 10.1002/wdev.347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
59 Ghaffari LT, Starr A, Nelson AT, Sattler R. Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Front Neurosci 2018;12:56. [PMID: 29479303 DOI: 10.3389/fnins.2018.00056] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
60 Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol 2017;133:155-75. [PMID: 28025715 DOI: 10.1007/s00401-016-1662-x] [Cited by in Crossref: 220] [Cited by in F6Publishing: 192] [Article Influence: 36.7] [Reference Citation Analysis]
61 Binda A, Murano C, Rivolta I. Innovative Therapies and Nanomedicine Applications for the Treatment of Alzheimer's Disease: A State-of-the-Art (2017-2020). Int J Nanomedicine 2020;15:6113-35. [PMID: 32884267 DOI: 10.2147/IJN.S231480] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
62 Ranjan VD, Qiu L, Lee JW, Chen X, Jang SE, Chai C, Lim KL, Tan EK, Zhang Y, Huang WM, Zeng L. A microfiber scaffold-based 3D in vitro human neuronal culture model of Alzheimer's disease. Biomater Sci 2020;8:4861-74. [PMID: 32789337 DOI: 10.1039/d0bm00833h] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Vaez Ghaemi R, Co IL, McFee MC, Yadav VG. Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. Adv Biosyst 2019;3:e1800174. [PMID: 32627343 DOI: 10.1002/adbi.201800174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Small SA, Simoes-Spassov S, Mayeux R, Petsko GA. Endosomal Traffic Jams Represent a Pathogenic Hub and Therapeutic Target in Alzheimer's Disease. Trends Neurosci 2017;40:592-602. [PMID: 28962801 DOI: 10.1016/j.tins.2017.08.003] [Cited by in Crossref: 62] [Cited by in F6Publishing: 46] [Article Influence: 15.5] [Reference Citation Analysis]
65 Xu S, Zhang H, Pao PC, Lee A, Wang J, Suen Chan Y, Manno Iii FAM, Wan Chan S, Han Cheng S, Chen X. Exposure to phthalates impaired neurodevelopment through estrogenic effects and induced DNA damage in neurons. Aquat Toxicol 2020;222:105469. [PMID: 32179334 DOI: 10.1016/j.aquatox.2020.105469] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
66 Zhang X, Hu D, Shang Y, Qi X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020;1866:165431. [PMID: 30898538 DOI: 10.1016/j.bbadis.2019.03.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
67 Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W. Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 2019;24:992-9. [PMID: 30664937 DOI: 10.1016/j.drudis.2019.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
68 de Leeuw SM, Davaz S, Wanner D, Milleret V, Ehrbar M, Gietl A, Tackenberg C. Increased maturation of iPSC-derived neurons in a hydrogel-based 3D culture. J Neurosci Methods 2021;360:109254. [PMID: 34126141 DOI: 10.1016/j.jneumeth.2021.109254] [Reference Citation Analysis]
69 Shankaran A, Prasad K, Chaudhari S, Brand A, Satyamoorthy K. Advances in development and application of human organoids. 3 Biotech 2021;11:257. [PMID: 33977021 DOI: 10.1007/s13205-021-02815-7] [Reference Citation Analysis]
70 Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018;43:2179-98. [PMID: 30387070 DOI: 10.1007/s11064-018-2663-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
71 Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater 2021;:1-19. [PMID: 33623712 DOI: 10.1038/s41578-021-00279-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 26.0] [Reference Citation Analysis]
72 Agboola OS, Hu X, Shan Z, Wu Y, Lei L. Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Res Ther 2021;12:430. [PMID: 34332630 DOI: 10.1186/s13287-021-02369-8] [Reference Citation Analysis]
73 Hernández D, Rooney LA, Daniszewski M, Gulluyan L, Liang HH, Cook AL, Hewitt AW, Pébay A. Culture Variabilities of Human iPSC-Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed in Alzheimer's Disease. Stem Cell Rev Rep 2021. [PMID: 33725267 DOI: 10.1007/s12015-021-10147-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Chang Y, Kim J, Park H, Choi H, Kim J. Modelling neurodegenerative diseases with 3D brain organoids. Biol Rev Camb Philos Soc 2020;95:1497-509. [PMID: 32568450 DOI: 10.1111/brv.12626] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
75 Klimmt J, Dannert A, Paquet D. Neurodegeneration in a dish: advancing human stem-cell-based models of Alzheimer's disease. Curr Opin Neurobiol 2020;61:96-104. [PMID: 32112992 DOI: 10.1016/j.conb.2020.01.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021;32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021;9:640212. [PMID: 34041235 DOI: 10.3389/fcell.2021.640212] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Harris AR, McGivern P, Ooi L. Modeling Emergent Properties in the Brain Using Tissue Models to Investigate Neurodegenerative Disease. Neuroscientist 2020;26:224-30. [PMID: 31517587 DOI: 10.1177/1073858419870446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Venkataraman L, Fair SR, McElroy CA, Hester ME, Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Rev Rep 2020. [PMID: 33180261 DOI: 10.1007/s12015-020-10068-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
80 Picollet-D'hahan N, Dolega ME, Freida D, Martin DK, Gidrol X. Deciphering Cell Intrinsic Properties: A Key Issue for Robust Organoid Production. Trends Biotechnol 2017;35:1035-48. [PMID: 28927991 DOI: 10.1016/j.tibtech.2017.08.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
81 Ubina T, Magallanes M, Srivastava S, Warden CD, Yee JK, Salvaterra PM. A Human Embryonic Stem Cell Model of Aβ-Dependent Chronic Progressive Neurodegeneration. Front Neurosci 2019;13:1007. [PMID: 31616241 DOI: 10.3389/fnins.2019.01007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
82 Mohamed N, Mathur M, da Silva RV, Thomas RA, Lepine P, Beitel LK, Fon EA, Durcan TM. Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Res 2019;3:1. [DOI: 10.12688/mniopenres.12816.2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
83 Hou PS, Kuo HC. Central nervous system organoids for modeling neurodegenerative diseases. IUBMB Life 2022. [PMID: 35102668 DOI: 10.1002/iub.2595] [Reference Citation Analysis]
84 Seo J, Kritskiy O, Watson LA, Barker SJ, Dey D, Raja WK, Lin YT, Ko T, Cho S, Penney J, Silva MC, Sheridan SD, Lucente D, Gusella JF, Dickerson BC, Haggarty SJ, Tsai LH. Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia. J Neurosci 2017;37:9917-24. [PMID: 28912154 DOI: 10.1523/JNEUROSCI.0621-17.2017] [Cited by in Crossref: 76] [Cited by in F6Publishing: 50] [Article Influence: 15.2] [Reference Citation Analysis]
85 Fan W, Sun Y, Shi Z, Wang H, Deng J. Mouse induced pluripotent stem cells-derived Alzheimer's disease cerebral organoid culture and neural differentiation disorders. Neurosci Lett 2019;711:134433. [PMID: 31421155 DOI: 10.1016/j.neulet.2019.134433] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
86 Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022. [PMID: 35107767 DOI: 10.1007/s12015-021-10254-3] [Reference Citation Analysis]
87 Walters RO, Haigh CL. Organoids for modeling prion diseases. Cell Tissue Res 2022. [PMID: 35088182 DOI: 10.1007/s00441-022-03589-x] [Reference Citation Analysis]
88 Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol 2021;:1-19. [PMID: 34187261 DOI: 10.1080/07388551.2021.1932716] [Reference Citation Analysis]
89 Kaindl J, Winner B. Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. In: Binder EB, Klengel T, editors. Behavioral Neurogenomics. Cham: Springer International Publishing; 2019. pp. 159-83. [DOI: 10.1007/7854_2019_111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
90 Udayar V, Chen Y, Sidransky E, Jagasia R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 2022:S0166-2236(21)00252-6. [PMID: 35034773 DOI: 10.1016/j.tins.2021.12.004] [Reference Citation Analysis]
91 Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends Mol Med 2021;27:263-79. [PMID: 33121873 DOI: 10.1016/j.molmed.2020.09.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
92 Yefroyev DA, Jin S. Induced Pluripotent Stem Cells for Treatment of Alzheimer’s and Parkinson’s Diseases. Biomedicines 2022;10:208. [DOI: 10.3390/biomedicines10020208] [Reference Citation Analysis]
93 Mall EM, Herrmann D, Niemann H. Murine pluripotent stem cells with a homozygous knockout of Foxg1 show reduced differentiation towards cortical progenitors in vitro. Stem Cell Res 2017;25:50-60. [PMID: 29080444 DOI: 10.1016/j.scr.2017.10.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
94 Nascimento JM, Saia-Cereda VM, Sartore RC, da Costa RM, Schitine CS, Freitas HR, Murgu M, de Melo Reis RA, Rehen SK, Martins-de-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front Cell Dev Biol 2019;7:303. [PMID: 31850342 DOI: 10.3389/fcell.2019.00303] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
95 Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022;74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Reference Citation Analysis]
96 Shou Y, Liang F, Xu S, Li X. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020;8:579659. [PMID: 33195219 DOI: 10.3389/fcell.2020.579659] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
97 Jorfi M, D'Avanzo C, Tanzi RE, Kim DY, Irimia D. Human Neurospheroid Arrays for In Vitro Studies of Alzheimer's Disease. Sci Rep. 2018;8:2450. [PMID: 29402979 DOI: 10.1038/s41598-018-20436-8] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 13.3] [Reference Citation Analysis]
98 Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Harn HJ, Lin SZ, Ho TJ. Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplant 2021;30:9636897211017829. [PMID: 34665040 DOI: 10.1177/09636897211017829] [Reference Citation Analysis]
99 Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Harn HJ, Lin SZ. Induced Pluripotent Stem Cells: A Powerful Neurodegenerative Disease Modeling Tool for Mechanism Study and Drug Discovery. Cell Transplant 2018;27:1588-602. [PMID: 29890847 DOI: 10.1177/0963689718775406] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
100 Koo B, Choi B, Park H, Yoon KJ. Past, Present, and Future of Brain Organoid Technology. Mol Cells 2019;42:617-27. [PMID: 31564073 DOI: 10.14348/molcells.2019.0162] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
101 Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021;:1-28. [PMID: 34395032 DOI: 10.1007/s42242-021-00150-7] [Reference Citation Analysis]
102 Arber C, Toombs J, Lovejoy C, Ryan NS, Paterson RW, Willumsen N, Gkanatsiou E, Portelius E, Blennow K, Heslegrave A, Schott JM, Hardy J, Lashley T, Fox NC, Zetterberg H, Wray S. Familial Alzheimer's disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry. 2019;. [PMID: 30980041 DOI: 10.1038/s41380-019-0410-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
103 Csobonyeiova M, Polak S, Danisovic L. Recent Overview of the Use of iPSCs Huntington's Disease Modeling and Therapy. Int J Mol Sci 2020;21:E2239. [PMID: 32213859 DOI: 10.3390/ijms21062239] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
104 Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021;2021:5902824. [PMID: 34539790 DOI: 10.1155/2021/5902824] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Appelt-Menzel A, Oerter S, Mathew S, Haferkamp U, Hartmann C, Jung M, Neuhaus W, Pless O. Human iPSC-Derived Blood-Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development? Curr Protoc Stem Cell Biol 2020;55:e122. [PMID: 32956578 DOI: 10.1002/cpsc.122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
106 Sun J, Ma X, Chu HT, Feng B, Tuan RS, Jiang Y. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling. Front Bioeng Biotechnol 2019;7:373. [PMID: 31850331 DOI: 10.3389/fbioe.2019.00373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
107 Lovett ML, Nieland TJF, Dingle YL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. Adv Funct Mater 2020;30:1909146. [PMID: 34211358 DOI: 10.1002/adfm.201909146] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
108 Sukhinich KK, Aleksandrova MA. Cerebral Organoids: A Model of Brain Development. Russ J Dev Biol 2020;51:231-45. [DOI: 10.1134/s1062360420040074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
109 Goldstein LSB, Das U. The cellular machinery of post-endocytic APP trafficking in Alzheimer's disease: A future target for therapeutic intervention? Prog Mol Biol Transl Sci 2021;177:109-22. [PMID: 33453937 DOI: 10.1016/bs.pmbts.2020.08.001] [Reference Citation Analysis]
110 Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021;13:59. [PMID: 33853652 DOI: 10.1186/s13073-021-00878-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
111 Kim H, Yoo J, Shin J, Chang Y, Jung J, Jo D, Kim J, Jang W, Lengner CJ, Kim B, Kim J. Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer’s disease in an induced neuron. Brain 2017;140:2193-209. [DOI: 10.1093/brain/awx144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
112 Rathore RS, R Ayyannan S, Mahto SK. Emerging three-dimensional neuronal culture assays for neurotherapeutics drug discovery. Expert Opinion on Drug Discovery. [DOI: 10.1080/17460441.2022.2061458] [Reference Citation Analysis]
113 Kwart D, Gregg A, Scheckel C, Murphy EA, Paquet D, Duffield M, Fak J, Olsen O, Darnell RB, Tessier-Lavigne M. A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP β-CTFs, Not Aβ. Neuron 2019;104:256-270.e5. [PMID: 31416668 DOI: 10.1016/j.neuron.2019.07.010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 51] [Article Influence: 22.3] [Reference Citation Analysis]
114 Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021;15:674563. [PMID: 34483818 DOI: 10.3389/fnins.2021.674563] [Reference Citation Analysis]
115 Korhonen P, Malm T, White AR. 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int. 2018;120:191-199. [PMID: 30176269 DOI: 10.1016/j.neuint.2018.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
116 Garcia-Leon JA, Caceres-Palomo L, Sanchez-Mejias E, Mejias-Ortega M, Nuñez-Diaz C, Fernandez-Valenzuela JJ, Sanchez-Varo R, Davila JC, Vitorica J, Gutierrez A. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Int J Mol Sci 2020;21:E6867. [PMID: 32962164 DOI: 10.3390/ijms21186867] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
117 Baden P, Yu C, Deleidi M. Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease 2019;127:1-12. [DOI: 10.1016/j.nbd.2019.01.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
118 Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12(8): 787-802 [PMID: 32952859 DOI: 10.4252/wjsc.v12.i8.787] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
119 Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018;39:754-69. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
120 Rees E, Owen MJ. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med 2020;12:43. [PMID: 32349784 DOI: 10.1186/s13073-020-00734-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
121 Hawkins J, Miao X, Cui W, Sun Y. Surface functionalization of poly(dimethylsiloxane) substrates facilitates culture of pre-implantation mouse embryos by blocking non-selective adsorption. J R Soc Interface 2022;19:20210929. [PMID: 35382579 DOI: 10.1098/rsif.2021.0929] [Reference Citation Analysis]
122 Smits LM, Schwamborn JC. Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Front Cell Dev Biol 2020;8:359. [PMID: 32509785 DOI: 10.3389/fcell.2020.00359] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
123 Lim JY, Lee JE, Park SA, Park SI, Yon J, Park J, Jeun S, Kim SJ, Lee HJ, Kim SW, Yang SH. Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer’s Disease. Cells 2022;11:1029. [DOI: 10.3390/cells11061029] [Reference Citation Analysis]
124 Fei K, Zhang J, Yuan J, Xiao P. Present Application and Perspectives of Organoid Imaging Technology. Bioengineering 2022;9:121. [DOI: 10.3390/bioengineering9030121] [Reference Citation Analysis]
125 Xu L, Huo H, Lu K, Tang X, Hong Y, Han X, Fu Z, Fang K, Xu M, Guo X, Liu Y. Abnormal mitochondria in Down syndrome iPSC-derived GABAergic interneurons and organoids. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2022. [DOI: 10.1016/j.bbadis.2022.166388] [Reference Citation Analysis]
126 Chuye LB, Dimitri A, Desai A, Handelmann C, Bae Y, Johari P, Jornet JM, Klejbor I, Stachowiak MK, Stachowiak EK. Brain Organoids: Expanding Our Understanding of Human Development and Disease. Results Probl Cell Differ 2018;66:183-206. [PMID: 30209660 DOI: 10.1007/978-3-319-93485-3_8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
127 Stukel JM, Willits RK. The interplay of peptide affinity and scaffold stiffness on neuronal differentiation of neural stem cells. Biomed Mater 2018;13:024102. [PMID: 29133625 DOI: 10.1088/1748-605X/aa9a4b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
128 Seo Y, Bang S, Son J, Kim D, Jeong Y, Kim P, Yang J, Eom J, Choi N, Kim HN. Brain physiome: A concept bridging in vitro 3D brain models and in silico models for predicting drug toxicity in the brain. Bioactive Materials 2022;13:135-48. [DOI: 10.1016/j.bioactmat.2021.11.009] [Reference Citation Analysis]
129 Ho BX, Pek NMQ, Soh BS. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci. 2018;19. [PMID: 29561796 DOI: 10.3390/ijms19040936] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 14.8] [Reference Citation Analysis]
130 Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. J Parkinsons Dis 2019;9:265-81. [PMID: 30741685 DOI: 10.3233/JPD-181515] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
131 Hernández-Sapiéns MA, Reza-Zaldívar EE, Cevallos RR, Márquez-Aguirre AL, Gazarian K, Canales-Aguirre AA. A Three-Dimensional Alzheimer's Disease Cell Culture Model Using iPSC-Derived Neurons Carrying A246E Mutation in PSEN1. Front Cell Neurosci 2020;14:151. [PMID: 32655369 DOI: 10.3389/fncel.2020.00151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
132 Hasan MF, Trushina E. Advances in Recapitulating Alzheimer’s Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sciences 2022;12:552. [DOI: 10.3390/brainsci12050552] [Reference Citation Analysis]
133 Jeong HJ, Jimenez Z, Mukhambetiyar K, Seo M, Choi JW, Park TE. Engineering Human Brain Organoids: From Basic Research to Tissue Regeneration. Tissue Eng Regen Med. 2020;17:747-757. [PMID: 32329023 DOI: 10.1007/s13770-020-00250-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
134 Brown J, Quadrato G, Arlotta P. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr Top Dev Biol 2018;129:99-122. [PMID: 29801532 DOI: 10.1016/bs.ctdb.2018.03.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
135 Ryu WI, Cohen BM, Sonntag KC. Hypothesis and Theory: Characterizing Abnormalities of Energy Metabolism Using a Cellular Platform as a Personalized Medicine Approach for Alzheimer's Disease. Front Cell Dev Biol 2021;9:697578. [PMID: 34395428 DOI: 10.3389/fcell.2021.697578] [Reference Citation Analysis]
136 Wu YY, Chiu FL, Yeh CS, Kuo HC. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol 2019;9:180177. [PMID: 30958120 DOI: 10.1098/rsob.180177] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 17.0] [Reference Citation Analysis]
137 Shiri Z, Simorgh S, Naderi S, Baharvand H. Optogenetics in the Era of Cerebral Organoids. Trends Biotechnol 2019;37:1282-94. [PMID: 31227305 DOI: 10.1016/j.tibtech.2019.05.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
138 Shaker MR, Aguado J, Chaggar HK, Wolvetang EJ. Klotho inhibits neuronal senescence in human brain organoids. NPJ Aging Mech Dis 2021;7:18. [PMID: 34341344 DOI: 10.1038/s41514-021-00070-x] [Reference Citation Analysis]
139 Akbaba TH, Bekircan-Kurt CE, Balci-Peynircioglu B, Balci-Hayta B. Biologia Futura: the importance of 3D organoids-a new approach for research on neurological and rare diseases. Biol Futur 2021;72:281-90. [PMID: 34554549 DOI: 10.1007/s42977-021-00070-8] [Reference Citation Analysis]
140 Watson PMD, Kavanagh E, Allenby G, Vassey M. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS Discov 2017;22:583-601. [PMID: 28346104 DOI: 10.1177/2472555217691450] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
141 Kim SJ, Li J, Mahairaki V. Stem cell-derived three-dimensional (organoid) models of Alzheimer's disease: a precision medicine approach. Neural Regen Res 2021;16:1546-7. [PMID: 33433475 DOI: 10.4103/1673-5374.303019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
142 Papaspyropoulos A, Tsolaki M, Foroglou N, Pantazaki AA. Modeling and Targeting Alzheimer's Disease With Organoids. Front Pharmacol 2020;11:396. [PMID: 32300301 DOI: 10.3389/fphar.2020.00396] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
143 Josephine Boder E, Banerjee IA. Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling. Bioengineering (Basel) 2021;8:211. [PMID: 34940364 DOI: 10.3390/bioengineering8120211] [Reference Citation Analysis]
144 Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicol Environ Saf 2022;235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Reference Citation Analysis]
145 Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019;13:582. [PMID: 31293366 DOI: 10.3389/fnins.2019.00582] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
146 Qian X, Song H, Ming GL. Brain organoids: advances, applications and challenges. Development 2019;146:dev166074. [PMID: 30992274 DOI: 10.1242/dev.166074] [Cited by in Crossref: 148] [Cited by in F6Publishing: 126] [Article Influence: 49.3] [Reference Citation Analysis]
147 Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, Kim HJ, Han SH, Seo J, Choi M, Lee DY, Byun MS, Yi D, Cho KH, Mook-Jung I. A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nat Commun 2021;12:280. [PMID: 33436582 DOI: 10.1038/s41467-020-20440-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
148 Fang Y, Gao T, Zhang B, Pu J. Recent Advances: Decoding Alzheimer's Disease With Stem Cells. Front Aging Neurosci 2018;10:77. [PMID: 29623038 DOI: 10.3389/fnagi.2018.00077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
149 Ha J, Kang JS, Lee M, Baek A, Kim S, Chung SK, Lee MO, Kim J. Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease. Front Cell Dev Biol 2020;8:594090. [PMID: 33195269 DOI: 10.3389/fcell.2020.594090] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
150 Ooi L, Dottori M, Cook AL, Engel M, Gautam V, Grubman A, Hernández D, King AE, Maksour S, Targa Dias Anastacio H, Balez R, Pébay A, Pouton C, Valenzuela M, White A, Williamson R. If Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions? Neuroscientist 2020;26:438-54. [PMID: 32281909 DOI: 10.1177/1073858420912404] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
151 Makrygianni EA, Chrousos GP. From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Stress Medicine. Front Physiol 2021;12:621970. [PMID: 34177605 DOI: 10.3389/fphys.2021.621970] [Reference Citation Analysis]
152 Gough G, O'Brien NL, Alic I, Goh PA, Yeap YJ, Groet J, Nizetic D, Murray A. Modeling Down syndrome in cells: From stem cells to organoids. Prog Brain Res 2020;251:55-90. [PMID: 32057312 DOI: 10.1016/bs.pbr.2019.10.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
153 Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res 2018;59:550-63. [PMID: 29358305 DOI: 10.1194/jlr.M081323] [Cited by in Crossref: 55] [Cited by in F6Publishing: 38] [Article Influence: 13.8] [Reference Citation Analysis]
154 Liszewska E, Jaworski J. Neural Stem Cell Dysfunction in Human Brain Disorders. In: Buzanska L, editor. Human Neural Stem Cells. Cham: Springer International Publishing; 2018. pp. 283-305. [DOI: 10.1007/978-3-319-93485-3_13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
155 Quadrato G, Arlotta P. Present and future of modeling human brain development in 3D organoids. Curr Opin Cell Biol 2017;49:47-52. [PMID: 29227864 DOI: 10.1016/j.ceb.2017.11.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 10.2] [Reference Citation Analysis]
156 Soldner F, Jaenisch R. Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell 2018;175:615-32. [PMID: 30340033 DOI: 10.1016/j.cell.2018.09.010] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 20.3] [Reference Citation Analysis]
157 Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2021;27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
158 Wray S. Modeling tau pathology in human stem cell derived neurons. Brain Pathol 2017;27:525-9. [PMID: 28585382 DOI: 10.1111/bpa.12521] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
159 Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro Models of Neurodegenerative Diseases. Front Cell Dev Biol 2020;8:328. [PMID: 32528949 DOI: 10.3389/fcell.2020.00328] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 14.5] [Reference Citation Analysis]
160 Kuehner JN, Chen J, Bruggeman EC, Wang F, Li Y, Xu C, McEachin ZT, Li Z, Chen L, Hales CM, Wen Z, Yang J, Yao B. 5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer's disease. Cell Rep 2021;35:109042. [PMID: 33910000 DOI: 10.1016/j.celrep.2021.109042] [Reference Citation Analysis]
161 Bubnys A, Tsai LH. Harnessing cerebral organoids for Alzheimer's disease research. Curr Opin Neurobiol 2021;72:120-30. [PMID: 34818608 DOI: 10.1016/j.conb.2021.10.003] [Reference Citation Analysis]
162 Vieira de Sá R, Cañizares Luna M, Pasterkamp RJ. Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Tissue Eng Part C Methods 2021;27:213-24. [PMID: 33446055 DOI: 10.1089/ten.TEC.2020.0337] [Reference Citation Analysis]
163 Mohamed NV, Lépine P, Lacalle-Aurioles M, Sirois J, Mathur M, Reintsch W, Beitel LK, Fon EA, Durcan TM. Microfabricated disk technology: rapid scale up in midbrain organoid generation. Methods 2021:S1046-2023(21)00195-X. [PMID: 34314827 DOI: 10.1016/j.ymeth.2021.07.008] [Reference Citation Analysis]
164 Yakoub AM, Sadek M. Analysis of Synapses in Cerebral Organoids. Cell Transplant 2019;28:1173-82. [PMID: 31161783 DOI: 10.1177/0963689718822811] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
165 Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021;22:8769. [PMID: 34445475 DOI: 10.3390/ijms22168769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
166 Nassor F, Jarray R, Biard DSF, Maïza A, Papy-Garcia D, Pavoni S, Deslys JP, Yates F. Long Term Gene Expression in Human Induced Pluripotent Stem Cells and Cerebral Organoids to Model a Neurodegenerative Disease. Front Cell Neurosci 2020;14:14. [PMID: 32116560 DOI: 10.3389/fncel.2020.00014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
167 Lee J, Kim JH, Hong SH, Yang SR. Organoid Model in Idiopathic Pulmonary Fibrosis. Int J Stem Cells 2021;14:1-8. [PMID: 33122472 DOI: 10.15283/ijsc20093] [Reference Citation Analysis]
168 Passaro AP, Stice SL. Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Front Neurosci 2020;14:622137. [PMID: 33510616 DOI: 10.3389/fnins.2020.622137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
169 Yan Y, Bejoy J, Marzano M, Li Y. The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells 2019;8:E242. [PMID: 30875781 DOI: 10.3390/cells8030242] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
170 Pavoni S, Jarray R, Nassor F, Guyot AC, Cottin S, Rontard J, Mikol J, Mabondzo A, Deslys JP, Yates F. Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes. PLoS One 2018;13:e0209150. [PMID: 30557391 DOI: 10.1371/journal.pone.0209150] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
171 Sun AX, Ng HH, Tan EK. Translational potential of human brain organoids. Ann Clin Transl Neurol 2018;5:226-35. [PMID: 29468184 DOI: 10.1002/acn3.505] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
172 Wu PC, Fann MJ, Tran TT, Chen SC, Devina T, Cheng IH, Lien CC, Kao LS, Wang SJ, Fuh JL, Tzeng TT, Huang CY, Shiao YJ, Wong YH. Assessing the therapeutic potential of Graptopetalum paraguayense on Alzheimer's disease using patient iPSC-derived neurons. Sci Rep 2019;9:19301. [PMID: 31848379 DOI: 10.1038/s41598-019-55614-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
173 Carter SD, Liu X, Yue Z, Wallace GG. Three-dimensional neuronal cell culture: in pursuit of novel treatments for neurodegenerative disease. MRS Communications 2017;7:320-31. [DOI: 10.1557/mrc.2017.96] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
174 Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 2021;28:52-67. [PMID: 32483384 DOI: 10.1038/s41418-020-0566-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
175 Knupp A, Mishra S, Martinez R, Braggin JE, Szabo M, Kinoshita C, Hailey DW, Small SA, Jayadev S, Young JE. Depletion of the AD Risk Gene SORL1 Selectively Impairs Neuronal Endosomal Traffic Independent of Amyloidogenic APP Processing. Cell Rep 2020;31:107719. [PMID: 32492427 DOI: 10.1016/j.celrep.2020.107719] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 28.0] [Reference Citation Analysis]
176 Mohamed N, Mathur M, da Silva RV, Beitel LK, Fon EA, Durcan TM. Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Res 2019;3:1. [DOI: 10.12688/mniopenres.12816.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
177 Costa MD, Maciel P. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Cell Mol Life Sci 2022;79:274. [PMID: 35503478 DOI: 10.1007/s00018-022-04280-8] [Reference Citation Analysis]
178 Bordoni M, Rey F, Fantini V, Pansarasa O, Di Giulio AM, Carelli S, Cereda C. From Neuronal Differentiation of iPSCs to 3D Neuro-Organoids: Modelling and Therapy of Neurodegenerative Diseases. Int J Mol Sci 2018;19:E3972. [PMID: 30544711 DOI: 10.3390/ijms19123972] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
179 Foveau B, Correia AS, Hébert SS, Rainone S, Potvin O, Kergoat M, Belleville S, Duchesne S, Leblanc AC; and the CIMA-Q Consortium for the early identification of Alzheimer’s disease-Québec. Stem Cell-Derived Neurons as Cellular Models of Sporadic Alzheimer’s Disease. JAD 2019;67:893-910. [DOI: 10.3233/jad-180833] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
180 Lines G, Casey JM, Preza E, Wray S. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2020;109:103553. [PMID: 32956830 DOI: 10.1016/j.mcn.2020.103553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
181 Schulz JM. The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells Int 2021;2021:5511630. [PMID: 34122554 DOI: 10.1155/2021/5511630] [Reference Citation Analysis]
182 Yin J, VanDongen AM. Enhanced Neuronal Activity and Asynchronous Calcium Transients Revealed in a 3D Organoid Model of Alzheimer's Disease. ACS Biomater Sci Eng 2021;7:254-64. [PMID: 33347288 DOI: 10.1021/acsbiomaterials.0c01583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
183 Salmina AB, Kapkaeva MR, Vetchinova AS, Illarioshkin SN. Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021;22:9608. [PMID: 34502516 DOI: 10.3390/ijms22179608] [Reference Citation Analysis]
184 Essayan-Perez S, Zhou B, Nabet AM, Wernig M, Huang YA. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiol Dis 2019;130:104503. [PMID: 31202913 DOI: 10.1016/j.nbd.2019.104503] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
185 Lo CH, Lim CK, Ding Z, Wickramasinghe SP, Braun AR, Ashe KH, Rhoades E, Thomas DD, Sachs JN. Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement 2019;15:1489-502. [PMID: 31653529 DOI: 10.1016/j.jalz.2019.06.4954] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
186 Nogueira GO, Garcez PP, Bardy C, Cunningham MO, Sebollela A. Modeling the Human Brain With ex vivo Slices and in vitro Organoids for Translational Neuroscience. Front Neurosci 2022;16:838594. [DOI: 10.3389/fnins.2022.838594] [Reference Citation Analysis]
187 Ramirez S, Mukherjee A, Sepulveda S, Becerra-Calixto A, Bravo-Vasquez N, Gherardelli C, Chavez M, Soto C. Modeling Traumatic Brain Injury in Human Cerebral Organoids. Cells 2021;10:2683. [PMID: 34685663 DOI: 10.3390/cells10102683] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021;15:629067. [PMID: 34276279 DOI: 10.3389/fnins.2021.629067] [Reference Citation Analysis]
189 Simsa R, Rothenbücher T, Gürbüz H, Ghosheh N, Emneus J, Jenndahl L, Kaplan DL, Bergh N, Serrano AM, Fogelstrand P. Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS One 2021;16:e0245685. [PMID: 33507989 DOI: 10.1371/journal.pone.0245685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
190 Bejoy J, Song L, Wang Z, Sang QX, Zhou Y, Li Y. Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomater Sci Eng 2018;4:2922-33. [PMID: 30533518 DOI: 10.1021/acsbiomaterials.8b00021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
191 Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2018;8:180138. [PMID: 30185603 DOI: 10.1098/rsob.180138] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
192 Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci 2017;24:59. [PMID: 28822354 DOI: 10.1186/s12929-017-0362-8] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 13.4] [Reference Citation Analysis]
193 Naseri NN, Wang H, Guo J, Sharma M, Luo W. The complexity of tau in Alzheimer's disease. Neurosci Lett 2019;705:183-94. [PMID: 31028844 DOI: 10.1016/j.neulet.2019.04.022] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 15.7] [Reference Citation Analysis]
194 Cole KLH, Early JJ, Lyons DA. Drug discovery for remyelination and treatment of MS. Glia 2017;65:1565-89. [PMID: 28618073 DOI: 10.1002/glia.23166] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
195 Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021;142:477-530. [PMID: 33706925 DOI: 10.1016/bs.ctdb.2020.12.011] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
196 Carter JL, Halmai JANM, Fink KD. The iNs and Outs of Direct Reprogramming to Induced Neurons. Front Genome Ed 2020;2:7. [PMID: 34713216 DOI: 10.3389/fgeed.2020.00007] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
197 Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018;2:041501. [PMID: 31069322 DOI: 10.1063/1.5045124] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
198 Gerakis Y, Hetz C. Brain organoids: a next step for humanized Alzheimer's disease models? Mol Psychiatry 2019;24:474-8. [PMID: 30617271 DOI: 10.1038/s41380-018-0343-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
199 Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018;13:27. [PMID: 29788997 DOI: 10.1186/s13024-018-0258-4] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 21.3] [Reference Citation Analysis]
200 Blue R, Miranda SP, Gu BJ, Chen HI. A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery 2020;87:620-9. [PMID: 32421821 DOI: 10.1093/neuros/nyaa171] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
201 Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry 2020;25:254-74. [PMID: 31444473 DOI: 10.1038/s41380-019-0500-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
202 Brighi C, Cordella F, Chiriatti L, Soloperto A, Di Angelantonio S. Retinal and Brain Organoids: Bridging the Gap Between in vivo Physiology and in vitro Micro-Physiology for the Study of Alzheimer's Diseases. Front Neurosci 2020;14:655. [PMID: 32625060 DOI: 10.3389/fnins.2020.00655] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
203 Bourque K, Jones-Tabah J, Mnasri N, Martin RD, Hébert TE. Combining Optical Approaches with Human Inducible Pluripotent Stem Cells in G Protein-Coupled Receptor Drug Screening and Development. Biomolecules 2018;8:E180. [PMID: 30567417 DOI: 10.3390/biom8040180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
204 Wray S. Modelling neurodegenerative disease using brain organoids. Semin Cell Dev Biol 2021;111:60-6. [PMID: 32513498 DOI: 10.1016/j.semcdb.2020.05.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
205 Ranjan VD, Qiu L, Tan EK, Zeng L, Zhang Y. Modelling Alzheimer's disease: Insights from in vivo to in vitro three-dimensional culture platforms. J Tissue Eng Regen Med 2018;12:1944-58. [PMID: 30011422 DOI: 10.1002/term.2728] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
206 Zhou C, Ni W, Zhu T, Dong S, Sun P, Hua F. Cellular Reprogramming and Its Potential Application in Alzheimer’s Disease. Front Neurosci 2022;16:884667. [DOI: 10.3389/fnins.2022.884667] [Reference Citation Analysis]
207 Argentati C, Tortorella I, Bazzucchi M, Morena F, Martino S. Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. J Pers Med. 2020;10. [PMID: 32041088 DOI: 10.3390/jpm10010008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
208 Simoes S, Neufeld JL, Triana-Baltzer G, Moughadam S, Chen EI, Kothiya M, Qureshi YH, Patel V, Honig LS, Kolb H, Small SA. Tau and other proteins found in Alzheimer's disease spinal fluid are linked to retromer-mediated endosomal traffic in mice and humans. Sci Transl Med 2020;12:eaba6334. [PMID: 33239387 DOI: 10.1126/scitranslmed.aba6334] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
209 Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, Li Z, Liu S, Feng H, Huang W, Duan R, Xu T, Raj N, Zhang F, Dou J, Xu C, Wu H, Bassell GJ, Warren ST, Allen EG, Jin P, Wen Z. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021;24:1377-91. [PMID: 34413513 DOI: 10.1038/s41593-021-00913-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
210 Hong YJ, Do JT. Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Front Bioeng Biotechnol 2019;7:400. [PMID: 31867324 DOI: 10.3389/fbioe.2019.00400] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
211 Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, Harn HJ, Ho TJ. Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules 2020;25:E2000. [PMID: 32344649 DOI: 10.3390/molecules25082000] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
212 D'Souza GX, Rose SE, Knupp A, Nicholson DA, Keene CD, Young JE. The application of in vitro-derived human neurons in neurodegenerative disease modeling. J Neurosci Res 2021;99:124-40. [PMID: 32170790 DOI: 10.1002/jnr.24615] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
213 Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 2021;111:4-14. [PMID: 32561297 DOI: 10.1016/j.semcdb.2020.05.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
214 P Rothenbücher TS, Martínez-serrano A. Human cerebral organoids and neural 3D tissues in basic research, and their application to study neurological diseases. Future Neurology 2019;14:FNL3. [DOI: 10.2217/fnl-2018-0043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
215 Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. Adv Mater. 2018;30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
216 Bauersachs HG, Bengtson CP, Weiss U, Hellwig A, García-vilela C, Zaremba B, Kaessmann H, Pruunsild P, Bading H. N-methyl-d-aspartate Receptor-mediated Preconditioning Mitigates Excitotoxicity in Human induced Pluripotent Stem Cell-derived Brain Organoids. Neuroscience 2021. [DOI: 10.1016/j.neuroscience.2021.12.026] [Reference Citation Analysis]
217 Herron LA, Hansen CS, Abaci HE. Engineering tissue-specific blood vessels. Bioeng Transl Med 2019;4:e10139. [PMID: 31572797 DOI: 10.1002/btm2.10139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
218 Arber C, Lovejoy C, Wray S. Stem cell models of Alzheimer's disease: progress and challenges. Alzheimers Res Ther 2017;9:42. [PMID: 28610595 DOI: 10.1186/s13195-017-0268-4] [Cited by in Crossref: 75] [Cited by in F6Publishing: 61] [Article Influence: 15.0] [Reference Citation Analysis]
219 Khaspekov LG. Modeling of Alzheimer’s Disease and Outlooks for its Therapy Using Induced Pluripotent Stem Cells. Neurochem J 2019;13:215-28. [DOI: 10.1134/s181971241902003x] [Reference Citation Analysis]
220 Li H, Zhang Y, Lan X, Yu J, Yang C, Sun Z, Kang P, Han Y, Yu D. Halofuginone Sensitizes Lung Cancer Organoids to Cisplatin via Suppressing PI3K/AKT and MAPK Signaling Pathways. Front Cell Dev Biol 2021;9:773048. [PMID: 34901018 DOI: 10.3389/fcell.2021.773048] [Reference Citation Analysis]
221 Yan Y, Song L, Bejoy J, Zhao J, Kanekiyo T, Bu G, Zhou Y, Li Y. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Eng Part A 2018;24:1125-37. [PMID: 29361890 DOI: 10.1089/ten.TEA.2017.0423] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
222 Blanchard JW, Victor MB, Tsai LH. Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nat Rev Neurol 2021. [PMID: 34750588 DOI: 10.1038/s41582-021-00578-6] [Reference Citation Analysis]
223 Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol 2018;217:39-50. [PMID: 29263081 DOI: 10.1083/jcb.201709054] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
224 Oksdath Mansilla M, Salazar-Hernandez C, Perrin SL, Scheer KG, Cildir G, Toubia J, Sedivakova K, Tea MN, Lenin S, Ponthier E, Yeo ECF, Tergaonkar V, Poonnoose S, Ormsby RJ, Pitson SM, Brown MP, Ebert LM, Gomez GA. 3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomed Eng 2021;3:6. [PMID: 33789767 DOI: 10.1186/s42490-021-00049-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
225 Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021;10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Reference Citation Analysis]
226 Poon A, Zhang Y, Chandrasekaran A, Phanthong P, Schmid B, Nielsen TT, Freude KK. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges. N Biotechnol 2017;39:190-8. [PMID: 28579476 DOI: 10.1016/j.nbt.2017.05.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
227 Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci. 2018;10:15. [PMID: 29937727 DOI: 10.3389/fnsyn.2018.00015] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 14.5] [Reference Citation Analysis]
228 Egawa N, Suzuki H, Takahashi R, Hayakawa K, Li W, Lo EH, Arai K, Inoue H. From in vitro to in vivo reprogramming for neural transdifferentiation: An approach for CNS tissue remodeling using stem cell technology. J Cereb Blood Flow Metab 2020;40:1739-51. [PMID: 32423328 DOI: 10.1177/0271678X20910324] [Reference Citation Analysis]
229 Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations. Curr Stem Cell Res Ther 2020;15:102-10. [PMID: 31441732 DOI: 10.2174/1574888X14666190823142911] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
230 Khakipoor S, Crouch EE, Mayer S. Human organoids to model the developing human neocortex in health and disease. Brain Res 2020;1742:146803. [PMID: 32240655 DOI: 10.1016/j.brainres.2020.146803] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
231 Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022;17:1033-47. [PMID: 35487213 DOI: 10.1016/j.stemcr.2022.03.019] [Reference Citation Analysis]
232 Lee SE, Shin N, Kook MG, Kong D, Kim NG, Choi SW, Kang KS. Human iNSC-derived brain organoid model of lysosomal storage disorder in Niemann-Pick disease type C. Cell Death Dis 2020;11:1059. [PMID: 33311479 DOI: 10.1038/s41419-020-03262-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]