BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kovalenko I, Glasauer A, Schöckel L, Sauter DR, Ehrmann A, Sohler F, Hägebarth A, Novak I, Christian S. Identification of KCa3.1 Channel as a Novel Regulator of Oxidative Phosphorylation in a Subset of Pancreatic Carcinoma Cell Lines. PLoS One 2016;11:e0160658. [PMID: 27494181 DOI: 10.1371/journal.pone.0160658] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Fan J, Tian R, Yang X, Wang H, Shi Y, Fan X, Zhang J, Chen Y, Zhang K, Chen Z, Li L. KCNN4 Promotes the Stemness Potentials of Liver Cancer Stem Cells by Enhancing Glucose Metabolism. IJMS 2022;23:6958. [DOI: 10.3390/ijms23136958] [Reference Citation Analysis]
2 Kulawiak B, Szewczyk A. Current Challenges of Mitochondrial Potassium Channel Research. Front Physiol 2022;13:907015. [PMID: 35711307 DOI: 10.3389/fphys.2022.907015] [Reference Citation Analysis]
3 Klumpp L, Sezgin EC, Skardelly M, Eckert F, Huber SM. KCa3.1 Channels and Glioblastoma: In Vitro Studies. Curr Neuropharmacol 2018;16:627-35. [PMID: 28786347 DOI: 10.2174/1570159X15666170808115821] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
4 Han J, Liu S, Sun Z, Zhang Y, Zhang F, Zhang C, Shang D, Yang H, Su F, Xu Y, Li C, Ren H, Li X. LncRNAs2Pathways: Identifying the pathways influenced by a set of lncRNAs of interest based on a global network propagation method. Sci Rep 2017;7:46566. [PMID: 28425476 DOI: 10.1038/srep46566] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
5 Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020;8:E270. [PMID: 32756381 DOI: 10.3390/biomedicines8080270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
6 Tawfik D, Zaccagnino A, Bernt A, Szczepanowski M, Klapper W, Schwab A, Kalthoff H, Trauzold A. The A818-6 system as an in-vitro model for studying the role of the transportome in pancreatic cancer. BMC Cancer 2020;20:264. [PMID: 32228510 DOI: 10.1186/s12885-020-06773-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Peruzzo R, Szabo I. Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019;11:E761. [PMID: 31159324 DOI: 10.3390/cancers11060761] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
8 Ling Q, Kalthoff H. Transportome Malfunctions and the Hallmarks of Pancreatic Cancer. Rev Physiol Biochem Pharmacol 2020. [PMID: 32770395 DOI: 10.1007/112_2020_20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
9 Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019;176:4258-83. [PMID: 30440086 DOI: 10.1111/bph.14544] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
10 Cocozza G, Garofalo S, Morotti M, Chece G, Grimaldi A, Lecce M, Scavizzi F, Menghini R, Casagrande V, Federici M, Raspa M, Wulff H, Limatola C. The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca2+ -activated KCa 3.1 channels. Br J Pharmacol 2021;178:4891-906. [PMID: 34411281 DOI: 10.1111/bph.15665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020;11:568993. [PMID: 33178018 DOI: 10.3389/fphar.2020.568993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 2021;297:101140. [PMID: 34461088 DOI: 10.1016/j.jbc.2021.101140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018;19:E2060. [PMID: 30011966 DOI: 10.3390/ijms19072060] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
15 Rotko D, Kunz WS, Szewczyk A, Kulawiak B. Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020;125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
16 Bonito B, Sauter DRP, Schwab A, Djamgoz MBA, Novak I. KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. Pflugers Arch - Eur J Physiol 2016;468:1865-75. [DOI: 10.1007/s00424-016-1891-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
17 Huang C, Yi H, Shi Y, Cao Q, Shi Y, Cheng D, Braet F, Chen XM, Pollock CA. KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. Front Cell Dev Biol 2021;9:573814. [PMID: 33681190 DOI: 10.3389/fcell.2021.573814] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Huang C, Chen XM, Pollock CA. KCa3.1 in diabetic kidney disease. Curr Opin Nephrol Hypertens 2022;31:129-34. [PMID: 34710887 DOI: 10.1097/MNH.0000000000000751] [Reference Citation Analysis]
19 Webb BA, Aloisio FM, Charafeddine RA, Cook J, Wittmann T, Barber DL. pHLARE: a new biosensor reveals decreased lysosome pH in cancer cells. Mol Biol Cell 2021;32:131-42. [PMID: 33237838 DOI: 10.1091/mbc.E20-06-0383] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
20 Janssen JJE, Lagerwaard B, Bunschoten A, Savelkoul HFJ, van Neerven RJJ, Keijer J, de Boer VCJ. Novel standardized method for extracellular flux analysis of oxidative and glycolytic metabolism in peripheral blood mononuclear cells. Sci Rep 2021;11:1662. [PMID: 33462298 DOI: 10.1038/s41598-021-81217-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Tozzi M, Sørensen CE, Magni L, Christensen NM, Bouazzi R, Buch CM, Stefanini M, Duranti C, Arcangeli A, Novak I. Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H+, K+-ATPases in Pancreatic Cancer and Stellate Cells. Cancers (Basel) 2020;12:E640. [PMID: 32164284 DOI: 10.3390/cancers12030640] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
22 Ferrera L, Barbieri R, Picco C, Zuccolini P, Remigante A, Bertelli S, Fumagalli MR, Zifarelli G, La Porta CAM, Gavazzo P, Pusch M. TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase. IJMS 2021;22:8359. [DOI: 10.3390/ijms22168359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Jiang S, Zhu L, Yang J, Hu L, Gu J, Xing X, Sun Y, Zhang Z. Integrated expression profiling of potassium channels identifys KCNN4 as a prognostic biomarker of pancreatic cancer. Biochemical and Biophysical Research Communications 2017;494:113-9. [DOI: 10.1016/j.bbrc.2017.10.072] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
24 Little AC, Kovalenko I, Goo LE, Hong HS, Kerk SA, Yates JA, Purohit V, Lombard DB, Merajver SD, Lyssiotis CA. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun Biol 2020;3:271. [PMID: 32472013 DOI: 10.1038/s42003-020-0988-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27(39): 6527-6550 [PMID: 34754151 DOI: 10.3748/wjg.v27.i39.6527] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
26 Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium 2018;69:101-11. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
27 Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K+ channels and their implications for disease mechanisms. Pharmacol Ther 2021;227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Manoli SS, Kisor K, Webb BA, Barber DL. Ethyl isopropyl amiloride decreases oxidative phosphorylation and increases mitochondrial fusion in clonal untransformed and cancer cells. Am J Physiol Cell Physiol 2021;321:C147-57. [PMID: 34038242 DOI: 10.1152/ajpcell.00001.2021] [Reference Citation Analysis]
29 Masoud R, Reyes-Castellanos G, Lac S, Garcia J, Dou S, Shintu L, Abdel Hadi N, Gicquel T, El Kaoutari A, Diémé B, Tranchida F, Cormareche L, Borge L, Gayet O, Pasquier E, Dusetti N, Iovanna J, Carrier A. Targeting Mitochondrial Complex I Overcomes Chemoresistance in High OXPHOS Pancreatic Cancer. Cell Rep Med 2020;1:100143. [PMID: 33294863 DOI: 10.1016/j.xcrm.2020.100143] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
30 Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022;27:299. [PMID: 35011530 DOI: 10.3390/molecules27010299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021;42:101846. [PMID: 33419703 DOI: 10.1016/j.redox.2020.101846] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
32 Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2020;11:586599. [PMID: 33841132 DOI: 10.3389/fphar.2020.586599] [Cited by in F6Publishing: 1] [Reference Citation Analysis]