BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin HR, Wu YH, Yen WC, Yang CM, Chiu DT. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016;11:e0153462. [PMID: 27097228 DOI: 10.1371/journal.pone.0153462] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
Number Citing Articles
1 Yang HC, Ma TH, Tjong WY, Stern A, Chiu DT. G6PD deficiency, redox homeostasis, and viral infections: implications for SARS-CoV-2 (COVID-19). Free Radic Res 2021;:1-11. [PMID: 33401987 DOI: 10.1080/10715762.2020.1866757] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Qiu Y, Cong N, Liang M, Wang Y, Wang J. Systems Pharmacology Dissection of the Protective Effect of Myricetin Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovasc Toxicol 2017;17:277-86. [DOI: 10.1007/s12012-016-9382-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
3 Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxidants & Redox Signaling 2018;28:1238-61. [DOI: 10.1089/ars.2017.7282] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
4 Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DT. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019;8:E1055. [PMID: 31500396 DOI: 10.3390/cells8091055] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
5 Zhang Q, Han Q, Yang Z, Ni Y, Agbana YL, Bai H, Yi Z, Yi X, Kuang Y, Zhu Y. G6PD facilitates clear cell renal cell carcinoma invasion by enhancing MMP2 expression through ROS‑MAPK axis pathway. Int J Oncol 2020;57:197-212. [PMID: 32319593 DOI: 10.3892/ijo.2020.5041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Wu YH, Lin HR, Lee YH, Huang PH, Wei HC, Stern A, Chiu DT. A novel fine tuning scheme of miR-200c in modulating lung cell redox homeostasis. Free Radic Res 2017;51:591-603. [PMID: 28675952 DOI: 10.1080/10715762.2017.1339871] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
7 Zhang Q, Yang Z, Han Q, Bai H, Wang Y, Yi X, Yi Z, Yang L, Jiang L, Song X, Kuang Y, Zhu Y. G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3. Oncotarget 2017;8:109043-60. [PMID: 29312589 DOI: 10.18632/oncotarget.22566] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
8 Bradshaw PC, Seeds WA, Miller AC, Mahajan VR, Curtis WM. COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. Oxid Med Cell Longev 2020;2020:6401341. [PMID: 33014275 DOI: 10.1155/2020/6401341] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
9 Yen WC, Wu YH, Wu CC, Lin HR, Stern A, Chen SH, Shu JC, Tsun-Yee Chiu D. Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling. Redox Biol 2020;28:101363. [PMID: 31707353 DOI: 10.1016/j.redox.2019.101363] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
10 Nabavi SF, Habtemariam S, Sureda A, Banach M, Berindan-Neagoe I, Cismaru CA, Bagheri M, Bagheri MS, Nabavi SM. Glucose-6-phosphate dehydrogenase deficiency and SARS-CoV-2 mortality: Is there a link and what should we do? Clin Biochem 2020;86:31-3. [PMID: 32950470 DOI: 10.1016/j.clinbiochem.2020.09.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hao W, Shen Y, Feng M, Wang H, Lin M, Fang Y, Tan L. Aspirin acts in esophageal cancer: a brief review. J Thorac Dis 2018;10:2490-7. [PMID: 29850157 DOI: 10.21037/jtd.2018.03.110] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
12 Ma J, Cai Z, Wei H, Liu X, Zhao Q, Zhang T. The anti-tumor effect of aspirin: What we know and what we expect. Biomedicine & Pharmacotherapy 2017;95:656-61. [DOI: 10.1016/j.biopha.2017.08.085] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
13 Wu YH, Lee YH, Shih HY, Chen SH, Cheng YC, Tsun-Yee Chiu D. Glucose-6-phosphate dehydrogenase is indispensable in embryonic development by modulation of epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis. Cell Death Dis 2018;9:10. [PMID: 29317613 DOI: 10.1038/s41419-017-0005-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
14 Cabbab ILN, Manalo RVM. Anti-inflammatory drugs and the renin-angiotensin-aldosterone system: Current knowledge and potential effects on early SARS-CoV-2 infection. Virus Res 2021;291:198190. [PMID: 33039544 DOI: 10.1016/j.virusres.2020.198190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]