BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Takayama T, Okamoto S, Hisamatsu T, Naganuma M, Matsuoka K, Mizuno S, Bessho R, Hibi T, Kanai T. Computer-Aided Prediction of Long-Term Prognosis of Patients with Ulcerative Colitis after Cytoapheresis Therapy. PLoS One 2015;10:e0131197. [PMID: 26111148 DOI: 10.1371/journal.pone.0131197] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Yu S, Li H, Li Y, Xu H, Tan B, Tian B, Dai Y, Tian F, Qian J. Development and validation of novel models for the prediction of intravenous corticosteroid resistance in acute severe ulcerative colitis using logistic regression and machine learning. Gastroenterology Report 2022;10. [DOI: 10.1093/gastro/goac053] [Reference Citation Analysis]
2 Bezerra AT, Pinto LA, Rodrigues DS, Bittencourt GN, Mancera PFA, Miranda JRA. Classification of gastric emptying and orocaecal transit through artificial neural networks. Math Biosci Eng 2021;18:9511-24. [PMID: 34814356 DOI: 10.3934/mbe.2021467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27(37): 6191-6223 [PMID: 34712027 DOI: 10.3748/wjg.v27.i37.6191] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
4 Almomani A, Hitawala A, Abureesh M, Qapaja T, Alshaikh D, Zmaili M, Saleh MA, Alkhayyat M. Implications of artificial intelligence in inflammatory bowel disease: Diagnosis, prognosis and treatment follow up. Artif Intell Gastroenterol 2021; 2(3): 85-93 [DOI: 10.35712/aig.v2.i3.85] [Reference Citation Analysis]
5 Cao B, Zhang KC, Wei B, Chen L. Status quo and future prospects of artificial neural network from the perspective of gastroenterologists. World J Gastroenterol 2021; 27(21): 2681-2709 [PMID: 34135549 DOI: 10.3748/wjg.v27.i21.2681] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mohapatra S, Swarnkar T, Mishra M, Al-dabass D, Mascella R. Deep learning in gastroenterology. Handbook of Computational Intelligence in Biomedical Engineering and Healthcare 2021. [DOI: 10.1016/b978-0-12-822260-7.00001-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
7 Lindholm CR, Siegel CA. Are We Ready to Include Prognostic Factors in Inflammatory Bowel Disease Trials? Curr Pharm Des 2019;25:64-8. [PMID: 30864506 DOI: 10.2174/1381612825666190312113935] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Novelli S, Pretagostini R, Piemonte V. Membrane devices for blood separation and purification. Current Trends and Future Developments on (Bio-) Membranes 2020. [DOI: 10.1016/b978-0-12-814225-7.00005-x] [Reference Citation Analysis]
9 Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-Biroulet L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020;158:76-94.e2. [PMID: 31593701 DOI: 10.1053/j.gastro.2019.08.058] [Cited by in Crossref: 211] [Cited by in F6Publishing: 215] [Article Influence: 105.5] [Reference Citation Analysis]
10 Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 2019; 25(14): 1666-1683 [PMID: 31011253 DOI: 10.3748/wjg.v25.i14.1666] [Cited by in CrossRef: 134] [Cited by in F6Publishing: 127] [Article Influence: 44.7] [Reference Citation Analysis]
11 Al-shamma N, Jwaid A. Intelligent systems and inflammatory bowel disease: Exploring the potential for outpatient support. 2017 Computing Conference 2017. [DOI: 10.1109/sai.2017.8252091] [Reference Citation Analysis]