BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Darvekar SR, Elvenes J, Brenne HB, Johansen T, Sjøttem E. SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1. PLoS One 2014;9:e85262. [PMID: 24416372 DOI: 10.1371/journal.pone.0085262] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Fan X, Huang T, Tong Y, Fan Z, Yang Z, Yang D, Mao X, Yang M. p62 works as a hub modulation in the ageing process. Ageing Res Rev 2022;73:101538. [PMID: 34890823 DOI: 10.1016/j.arr.2021.101538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Grabacka MM, Gawin M, Pierzchalska M. Phytochemical modulators of mitochondria: the search for chemopreventive agents and supportive therapeutics. Pharmaceuticals (Basel) 2014;7:913-42. [PMID: 25192192 DOI: 10.3390/ph7090913] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
3 Yano S, Wang J, Hara T. Autophagy in Health and Food Science. Curr Pharmacol Rep 2020;6:335-45. [DOI: 10.1007/s40495-020-00237-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Islam MA, Sooro MA, Zhang P. Autophagic Regulation of p62 is Critical for Cancer Therapy. Int J Mol Sci. 2018;19. [PMID: 29738493 DOI: 10.3390/ijms19051405] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 17.8] [Reference Citation Analysis]
5 Goldring C, Weaver R, Kramer B, Klingmueller U, Oppelt A, Van der Water B, Commandeur J, Guillouzo A, Naisbitt D, French N, Kitteringham N, Pridgeon C, Knolle P, Sidaway J, Sison-young R, Kamalian L, Mercer A, Faulkner L, Pieters R, Ingelman-sundberg M, Kevin Park B. Drug-Induced Liver Injury: Mechanism-Informed Prediction in Drug Development. Comprehensive Medicinal Chemistry III. Elsevier; 2017. pp. 217-38. [DOI: 10.1016/b978-0-12-409547-2.12384-4] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
6 Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev 2021;68:101338. [PMID: 33838320 DOI: 10.1016/j.arr.2021.101338] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
7 Zhang P, Zheng Z, Ling L, Yang X, Zhang N, Wang X, Hu M, Xia Y, Ma Y, Yang H, Wang Y, Liu H. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway. Autophagy 2017;13:1093-112. [PMID: 28513279 DOI: 10.1080/15548627.2017.1319039] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
8 Tang J, Li Y, Xia S, Li J, Yang Q, Ding K, Zhang H. Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). Int J Oncol 2021;59:77. [PMID: 34414460 DOI: 10.3892/ijo.2021.5257] [Reference Citation Analysis]
9 Strom J, Xu B, Tian X, Chen QM. Nrf2 protects mitochondrial decay by oxidative stress. FASEB J 2016;30:66-80. [PMID: 26340923 DOI: 10.1096/fj.14-268904] [Cited by in Crossref: 65] [Cited by in F6Publishing: 63] [Article Influence: 9.3] [Reference Citation Analysis]
10 Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021;469:175-90. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Reference Citation Analysis]
11 Ipson BR, Green RA, Wilson JT, Watson JN, Faull KF, Fisher AL. Tyrosine aminotransferase is involved in the oxidative stress response by metabolizing meta-tyrosine in Caenorhabditis elegans. J Biol Chem 2019;294:9536-54. [PMID: 31043480 DOI: 10.1074/jbc.RA118.004426] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019;20:E5800. [PMID: 31752195 DOI: 10.3390/ijms20225800] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
13 Tao S, Rojo de la Vega M, Quijada H, Wondrak GT, Wang T, Garcia JG, Zhang DD. Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner. Sci Rep 2016;6:18760. [PMID: 26729554 DOI: 10.1038/srep18760] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.8] [Reference Citation Analysis]
14 Vivarini AC, Lopes UG. The Potential Role of Nrf2 Signaling in Leishmania Infection Outcomes. Front Cell Infect Microbiol 2019;9:453. [PMID: 31998662 DOI: 10.3389/fcimb.2019.00453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Gao Y, Chu S, Shao Q, Zhang M, Xia C, Wang Y, Li Y, Lou Y, Huang H, Chen N. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice. Free Radic Res 2017;51:1-13. [PMID: 27931128 DOI: 10.1080/10715762.2016.1234710] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
16 Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B. p62/SQSTM1 and Selective Autophagy in Cardiometabolic Diseases. Antioxid Redox Signal 2019;31:458-71. [PMID: 30588824 DOI: 10.1089/ars.2018.7649] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
17 Ji L, Sheng Y, Zheng Z, Shi L, Wang Z. The involvement of p62–Keap1–Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radical Biology and Medicine 2015;85:12-23. [DOI: 10.1016/j.freeradbiomed.2015.03.035] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 13.7] [Reference Citation Analysis]
18 Zhou J, Hamdan H, Yalamanchili HK, Pang K, Pohodich AE, Lopez J, Shao Y, Oses-Prieto JA, Li L, Kim W, Durham MA, Bajikar SS, Palmer DJ, Ng P, Thompson ML, Bebin EM, Müller AJ, Kuechler A, Kampmeier A, Haack TB, Burlingame AL, Liu Z, Rasband MN, Zoghbi HY. Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders. Proc Natl Acad Sci U S A 2022;119:e2119078119. [PMID: 35074918 DOI: 10.1073/pnas.2119078119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014;39:199-218. [PMID: 24647116 DOI: 10.1016/j.tibs.2014.02.002] [Cited by in Crossref: 1001] [Cited by in F6Publishing: 956] [Article Influence: 125.1] [Reference Citation Analysis]
20 Wang J, Wang S, Wang W, Chen J, Zhang Z, Zheng Q, Liu Q, Cai L. Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J Cell Mol Med 2019;23:6319-30. [PMID: 31270951 DOI: 10.1111/jcmm.14520] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
21 Cui G, Li Z, Cao F, Li P, Jin M, Hou S, Yang X, Mu Y, Peng C, Shao H, Du Z. Activation of Nrf2/HO-1 signaling pathway attenuates ROS-mediated autophagy induced by silica nanoparticles in H9c2 cells. Environ Toxicol 2021;36:1389-401. [PMID: 33764603 DOI: 10.1002/tox.23134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 2018;50:77-97. [PMID: 29187515 DOI: 10.1152/physiolgenomics.00041.2017] [Cited by in Crossref: 113] [Cited by in F6Publishing: 106] [Article Influence: 22.6] [Reference Citation Analysis]
23 Gjyshi O, Flaherty S, Veettil MV, Johnson KE, Chandran B, Bottero V. Kaposi's sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1. J Virol 2015;89:2268-86. [PMID: 25505069 DOI: 10.1128/JVI.02742-14] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
24 Tsai C, Shen Y, Chen H, Liu K, Chang J, Chen P, Lin C, Yao H, Li C. Docosahexaenoic acid increases the expression of oxidative stress-induced growth inhibitor 1 through the PI3K/Akt/Nrf2 signaling pathway in breast cancer cells. Food and Chemical Toxicology 2017;108:276-88. [DOI: 10.1016/j.fct.2017.08.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
25 Fu Y, Zheng X, Jia X, Binderiya U, Wang Y, Bao W, Bao L, Zhao K, Fu Y, Hao H, Wang Z. A quantitative transcriptomic analysis of the physiological significance of mTOR signaling in goat fetal fibroblasts. BMC Genomics 2016;17:879. [PMID: 27821074 DOI: 10.1186/s12864-016-3151-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
26 Bartz RR, Suliman HB, Piantadosi CA. Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol 2015;6:291. [PMID: 26578967 DOI: 10.3389/fphys.2015.00291] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 6.1] [Reference Citation Analysis]
27 Gao C, Fan F, Chen J, Long Y, Tang S, Jiang C, Xu Y. FBW7 Regulates the Autophagy Signal in Mesangial Cells Induced by High Glucose. Biomed Res Int 2019;2019:6061594. [PMID: 31119177 DOI: 10.1155/2019/6061594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
28 Becker TM, Juvik JA. The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence. Diseases 2016;4:E22. [PMID: 28933402 DOI: 10.3390/diseases4020022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]