BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Parker SJ, Meyerowitz J, James JL, Liddell JR, Nonaka T, Hasegawa M, Kanninen KM, Lim S, Paterson BM, Donnelly PS, Crouch PJ, White AR. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS One 2012;7:e42277. [PMID: 22879928 DOI: 10.1371/journal.pone.0042277] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Moujalled D, White AR. Heterogeneous nuclear ribonucleoproteins in amyotrophic 
lateral sclerosis: what do we know? Future Neurology 2014;9:173-85. [DOI: 10.2217/fnl.14.7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
2 Limpert AS, Mattmann ME, Cosford ND. Recent progress in the discovery of small molecules for the treatment of amyotrophic lateral sclerosis (ALS). Beilstein J Org Chem 2013;9:717-32. [PMID: 23766784 DOI: 10.3762/bjoc.9.82] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
3 Moujalled D, James JL, Parker SJ, Lidgerwood GE, Duncan C, Meyerowitz J, Nonaka T, Hasegawa M, Kanninen KM, Grubman A, Liddell JR, Crouch PJ, White AR. Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress. PLoS One 2013;8:e67433. [PMID: 23840699 DOI: 10.1371/journal.pone.0067433] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
4 Gil-Bea FJ, Aldanondo G, Lasa-Fernández H, López de Munain A, Vallejo-Illarramendi A. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med 2017;19:e7. [PMID: 28597807 DOI: 10.1017/erm.2017.9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
5 Boyd JD, Lee P, Feiler MS, Zauur N, Liu M, Concannon J, Ebata A, Wolozin B, Glicksman MA. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. J Biomol Screen 2014;19:44-56. [PMID: 24019256 DOI: 10.1177/1087057113501553] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
6 Grubman A, White AR. Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med. 2014;16:e11. [PMID: 24849048 DOI: 10.1017/erm.2014.11] [Cited by in Crossref: 75] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
7 Lojk J, Prpar Mihevc S, Bregar VB, Pavlin M, Rogelj B. The Effect of Different Types of Nanoparticles on FUS and TDP-43 Solubility and Subcellular Localization. Neurotox Res 2017;32:325-39. [PMID: 28444573 DOI: 10.1007/s12640-017-9734-9] [Reference Citation Analysis]
8 Romano N, Catalani A, Lattante S, Belardo A, Proietti S, Bertini L, Silvestri F, Catalani E, Cervia D, Zolla L, Sabatelli M, Welshhans K, Ceci M. ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. Cell Signal 2020;70:109591. [PMID: 32126264 DOI: 10.1016/j.cellsig.2020.109591] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021;22:12193. [PMID: 34830074 DOI: 10.3390/ijms222212193] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Violi F, Solovyev N, Vinceti M, Mandrioli J, Lucio M, Michalke B. The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics 2020;12:668-81. [PMID: 32373852 DOI: 10.1039/d0mt00051e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
11 Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets 2020;24:971-84. [PMID: 32746659 DOI: 10.1080/14728222.2020.1805734] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chen HJ, Mitchell JC. Mechanisms of TDP-43 Proteinopathy Onset and Propagation. Int J Mol Sci 2021;22:6004. [PMID: 34199367 DOI: 10.3390/ijms22116004] [Reference Citation Analysis]
13 Wang F, Li J, Fan S, Jin Z, Huang C. Targeting stress granules: A novel therapeutic strategy for human diseases. Pharmacol Res 2020;161:105143. [PMID: 32814168 DOI: 10.1016/j.phrs.2020.105143] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
14 Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2019;119:1221-322. [DOI: 10.1021/acs.chemrev.8b00138] [Cited by in Crossref: 178] [Cited by in F6Publishing: 141] [Article Influence: 44.5] [Reference Citation Analysis]
15 Grubman A, Lidgerwood GE, Duncan C, Bica L, Tan JL, Parker SJ, Caragounis A, Meyerowitz J, Volitakis I, Moujalled D, Liddell JR, Hickey JL, Horne M, Longmuir S, Koistinaho J, Donnelly PS, Crouch PJ, Tammen I, White AR, Kanninen KM. Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathol Commun 2014;2:25. [PMID: 24581221 DOI: 10.1186/2051-5960-2-25] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
16 Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017;13:2115-62. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
17 McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020;14:581907. [PMID: 33328890 DOI: 10.3389/fncel.2020.581907] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
18 Nikseresht S, Hilton JBW, Kysenius K, Liddell JR, Crouch PJ. Copper-ATSM as a Treatment for ALS: Support from Mutant SOD1 Models and Beyond. Life (Basel) 2020;10:E271. [PMID: 33158182 DOI: 10.3390/life10110271] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
19 Paterson BM, Cullinane C, Crouch PJ, White AR, Barnham KJ, Roselt PD, Noonan W, Binns D, Hicks RJ, Donnelly PS. Modification of Biodistribution and Brain Uptake of Copper Bis(thiosemicarbazonato) Complexes by the Incorporation of Amine and Polyamine Functional Groups. Inorg Chem 2019;58:4540-52. [PMID: 30869878 DOI: 10.1021/acs.inorgchem.9b00117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
20 Grubman A, White AR, Liddell JR. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br J Pharmacol 2014;171:2159-73. [PMID: 24206195 DOI: 10.1111/bph.12513] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
21 Dang TN, Lim NK, Grubman A, Li QX, Volitakis I, White AR, Crouch PJ. Increased metal content in the TDP-43(A315T) transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Front Aging Neurosci 2014;6:15. [PMID: 24575040 DOI: 10.3389/fnagi.2014.00015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
22 Bica L, Liddell JR, Donnelly PS, Duncan C, Caragounis A, Volitakis I, Paterson BM, Cappai R, Grubman A, Camakaris J, Crouch PJ, White AR. Neuroprotective copper bis(thiosemicarbazonato) complexes promote neurite elongation. PLoS One 2014;9:e90070. [PMID: 24587210 DOI: 10.1371/journal.pone.0090070] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
23 Williams JR, Trias E, Beilby PR, Lopez NI, Labut EM, Bradford CS, Roberts BR, McAllum EJ, Crouch PJ, Rhoads TW, Pereira C, Son M, Elliott JL, Franco MC, Estévez AG, Barbeito L, Beckman JS. Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol Dis 2016;89:1-9. [PMID: 26826269 DOI: 10.1016/j.nbd.2016.01.020] [Cited by in Crossref: 83] [Cited by in F6Publishing: 71] [Article Influence: 13.8] [Reference Citation Analysis]
24 Lei Y, Zhang ZF, Lei RX, Wang S, Zhuang Y, Liu AC, Wu Y, Chen J, Tang JC, Pan MX, Liu R, Liao WJ, Feng YG, Wan Q, Zheng M. DJ-1 Suppresses Cytoplasmic TDP-43 Aggregation in Oxidative Stress-Induced Cell Injury. J Alzheimers Dis 2018;66:1001-14. [PMID: 30372676 DOI: 10.3233/JAD-180460] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
25 Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020;9:12. [PMID: 33659944 DOI: 10.12703/b/9-12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br J Pharmacol 2021;178:1298-315. [PMID: 32469420 DOI: 10.1111/bph.15148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2020:jnnp-2020-322983. [PMID: 33177049 DOI: 10.1136/jnnp-2020-322983] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
28 Budini M, Baralle FE, Buratti E. Targeting TDP-43 in neurodegenerative diseases. Expert Opinion on Therapeutic Targets 2014;18:617-32. [DOI: 10.1517/14728222.2014.896905] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
29 Preethi S, Bharathi V, Patel BK. Zn2+ modulates in vitro phase separation of TDP-432C and mutant TDP-432C-A315T C-terminal fragments of TDP-43 protein implicated in ALS and FTLD-TDP diseases. Int J Biol Macromol 2021;176:186-200. [PMID: 33577819 DOI: 10.1016/j.ijbiomac.2021.02.054] [Reference Citation Analysis]
30 Martínez MA, Úbeda A, Moreno J, Trillo MÁ. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci 2016;17:510. [PMID: 27058530 DOI: 10.3390/ijms17040510] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
31 Rao PPN, Shakeri A, Zhao Y, Calon F. Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021;225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Reference Citation Analysis]
32 Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019;12:25. [PMID: 30837838 DOI: 10.3389/fnmol.2019.00025] [Cited by in Crossref: 164] [Cited by in F6Publishing: 146] [Article Influence: 54.7] [Reference Citation Analysis]