BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Grin'kina NM, Karnabi EE, Damania D, Wadgaonkar S, Muslimov IA, Wadgaonkar R. Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 2012;7:e36475. [PMID: 22615770 DOI: 10.1371/journal.pone.0036475] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Aoki M, Aoki H, Ramanathan R, Hait NC, Takabe K. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential. Mediators Inflamm 2016;2016:8606878. [PMID: 26966342 DOI: 10.1155/2016/8606878] [Cited by in Crossref: 45] [Cited by in F6Publishing: 83] [Article Influence: 9.0] [Reference Citation Analysis]
2 Tian T, Zhao Y, Huang Q, Li J. n-3 Polyunsaturated Fatty Acids Improve Inflammation via Inhibiting Sphingosine Kinase 1 in a Rat Model of Parenteral Nutrition and CLP-Induced Sepsis. Lipids 2016;51:271-8. [PMID: 26856322 DOI: 10.1007/s11745-016-4129-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
3 Zhou X, Cao Y, Ao G, Hu L, Liu H, Wu J, Wang X, Jin M, Zheng S, Zhen X, Alkayed NJ, Jia J, Cheng J. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal 2014;21:1741-58. [PMID: 24624937 DOI: 10.1089/ars.2013.5587] [Cited by in Crossref: 84] [Cited by in F6Publishing: 83] [Article Influence: 12.0] [Reference Citation Analysis]
4 Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58-67. [PMID: 24899305 DOI: 10.1038/nature13475] [Cited by in Crossref: 615] [Cited by in F6Publishing: 598] [Article Influence: 87.9] [Reference Citation Analysis]
5 Pyszko J, Strosznajder JB. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol Neurobiol 2014;50:38-48. [PMID: 24399507 DOI: 10.1007/s12035-013-8622-4] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
6 Al-Shujairi WH, Clarke JN, Davies LT, Alsharifi M, Pitson SM, Carr JM. Intracranial Injection of Dengue Virus Induces Interferon Stimulated Genes and CD8+ T Cell Infiltration by Sphingosine Kinase 1 Independent Pathways. PLoS One 2017;12:e0169814. [PMID: 28095439 DOI: 10.1371/journal.pone.0169814] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
7 Pyne S, Adams DR, Pyne NJ. Sphingosine Kinases as Druggable Targets. In: Gomez-cambronero J, Frohman MA, editors. Lipid Signaling in Human Diseases. Cham: Springer International Publishing; 2020. pp. 49-76. [DOI: 10.1007/164_2018_96] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
8 Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res 2016;62:93-106. [PMID: 26970273 DOI: 10.1016/j.plipres.2016.03.001] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 22.8] [Reference Citation Analysis]
9 Vutukuri R, Brunkhorst R, Kestner RI, Hansen L, Bouzas NF, Pfeilschifter J, Devraj K, Pfeilschifter W. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J Neurochem 2018;144:172-85. [PMID: 29023711 DOI: 10.1111/jnc.14236] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
10 Gong P, Xu X, Shi J, Ni L, Huang Q, Xia L, Nie D, Lu X, Chen J, Shi W. Phosphorylation of mitogen- and stress-activated protein kinase-1 in astrocytic inflammation: a possible role in inhibiting production of inflammatory cytokines. PLoS One 2013;8:e81747. [PMID: 24349124 DOI: 10.1371/journal.pone.0081747] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
11 Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood-brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol 2013;40:45-52. [PMID: 23167559 DOI: 10.1111/1440-1681.12032] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
12 Mazi TA, Sarode GV, Czlonkowska A, Litwin T, Kim K, Shibata NM, Medici V. Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes. Int J Mol Sci 2019;20:E5937. [PMID: 31779102 DOI: 10.3390/ijms20235937] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
13 Wang B, Zhang Y, Cao W, Wei X, Chen J, Ying W. SIRT2 Plays Significant Roles in Lipopolysaccharides-Induced Neuroinflammation and Brain Injury in Mice. Neurochem Res 2016;41:2490-500. [DOI: 10.1007/s11064-016-1981-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
14 Xiong Y, Lee HJ, Mariko B, Lu YC, Dannenberg AJ, Haka AS, Maxfield FR, Camerer E, Proia RL, Hla T. Sphingosine kinases are not required for inflammatory responses in macrophages. J Biol Chem 2013;288:32563-73. [PMID: 24081141 DOI: 10.1074/jbc.M113.483750] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
15 Gao Q, Hernandes MS. Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation 2021. [PMID: 34291398 DOI: 10.1007/s10753-021-01501-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Qiao P, Ma J, Wang Y, Huang Z, Zou Q, Cai Z, Tang Y. Curcumin Prevents Neuroinflammation by Inducing Microglia to Transform into the M2-phenotype via CaMKKβ-dependent Activation of the AMP-Activated Protein Kinase Signal Pathway. Curr Alzheimer Res 2020;17:735-52. [PMID: 33176649 DOI: 10.2174/1567205017666201111120919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kebir O, Chaumette B, Krebs MO. Epigenetic variability in conversion to psychosis: novel findings from an innovative longitudinal methylomic analysis. Transl Psychiatry 2018;8:93. [PMID: 29695761 DOI: 10.1038/s41398-018-0138-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
18 Dai D, Tian Y, Guo H, Zhang P, Huang Y, Zhang W, Xu F, Zhang Z. A pharmacometabonomic approach using predose serum metabolite profiles reveals differences in lipid metabolism in survival and non-survival rats treated with lipopolysaccharide. Metabolomics 2016;12. [DOI: 10.1007/s11306-015-0892-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
19 Ito T, Yoshida K, Negishi T, Miyajima M, Takamatsu H, Kikutani H, Kumanogoh A, Yukawa K. Plexin-A1 is required for Toll-like receptor-mediated microglial activation in the development of lipopolysaccharide-induced encephalopathy. Int J Mol Med 2014;33:1122-30. [PMID: 24604454 DOI: 10.3892/ijmm.2014.1690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Yang G, Gu M, Chen W, Liu W, Xiao Y, Wang H, Lai W, Xian G, Zhang Z, Li Z, Sheng P. SPHK-2 Promotes the Particle-Induced Inflammation of RAW264.7 by Maintaining Consistent Expression of TNF-α and IL-6. Inflammation 2018;41:1498-507. [DOI: 10.1007/s10753-018-0795-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
21 Kuperberg SJ, Wadgaonkar R. Sepsis-Associated Encephalopathy: The Blood-Brain Barrier and the Sphingolipid Rheostat. Front Immunol 2017;8:597. [PMID: 28670310 DOI: 10.3389/fimmu.2017.00597] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 11.5] [Reference Citation Analysis]
22 Kolahdooz Z, Nasoohi S, Asle-Rousta M, Ahmadiani A, Dargahi L. Sphingosin-1-phosphate Receptor 1: a Potential Target to Inhibit Neuroinflammation and Restore the Sphingosin-1-phosphate Metabolism. Can J Neurol Sci 2015;42:195-202. [PMID: 25860537 DOI: 10.1017/cjn.2015.19] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
23 Liu L, Gao Z, Zhang L, Su L, Dong G, Yu H, Tian J, Zhao H, Xu Y, Liu H. Temporal dynamic changes of connexin 43 expression in C6 cells following lipopolysaccharide stimulation. Neural Regen Res 2012;7:1947-53. [PMID: 25624823 DOI: 10.3969/j.issn.1673-5374.2012.25.004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Yanguas-casás N, Barreda-manso MA, Nieto-sampedro M, Romero-ramírez L. TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Anti-Inflammatory Effects in Microglial Cells: ANTI-INFLAMMATORY EFFECT OF TUDCA IN MICROGLIA. J Cell Physiol 2017;232:2231-45. [DOI: 10.1002/jcp.25742] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 14.5] [Reference Citation Analysis]