BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mazumder R, Morampudi KS, Motwani M, Vasudevan S, Goldman R. Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes. PLoS One 2012;7:e36212. [PMID: 22586465 DOI: 10.1371/journal.pone.0036212] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 McIntosh AT, Wei R, Ahn J, Aouizerat BE, Kassaye SG, Augenbraun MH, Price JC, French AL, Gange SJ, Anastos KM, Goldman R. A genomic variant of ALPK2 is associated with increased liver fibrosis risk in HIV/HCV coinfected women. PLoS One 2021;16:e0247277. [PMID: 33705408 DOI: 10.1371/journal.pone.0247277] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Shi S, Wang L, Cao M, Chen G, Yu J. Proteomic analysis and prediction of amino acid variations that influence protein posttranslational modifications. Briefings in Bioinformatics 2019;20:1597-606. [DOI: 10.1093/bib/bby036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
3 Shameer K, Tripathi LP, Kalari KR, Dudley JT, Sowdhamini R. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment. Brief Bioinform 2016;17:841-62. [PMID: 26494363 DOI: 10.1093/bib/bbv084] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
4 García-García A, Buendia Arellano M, Deyà-Martínez À, Lozano Blasco J, Serrano M, Van Den Rym A, García-Solis B, Esteve-Solé A, Yiyi L, Vlagea A, Solanich X, Fisher MR, Lyons JJ, de Diego RP, Alsina L. Novel PGM3 compound heterozygous variants with IgE-related dermatitis, lymphopenia, without syndromic features. Pediatr Allergy Immunol 2021;32:566-75. [PMID: 33098103 DOI: 10.1111/pai.13398] [Reference Citation Analysis]
5 Patel KR, Roberts JT, Barb AW. Allotype-specific processing of the CD16a N45-glycan from primary human natural killer cells and monocytes. Glycobiology 2020;30:427-32. [PMID: 31967297 DOI: 10.1093/glycob/cwaa002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
6 Zhang X. Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias. Mol Cell Proteomics 2016;15:3665-84. [PMID: 27073180 DOI: 10.1074/mcp.M114.047514] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
7 Fu HL, Valiathan RR, Payne L, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Fridman R. Glycosylation at Asn211 regulates the activation state of the discoidin domain receptor 1 (DDR1). J Biol Chem 2014;289:9275-87. [PMID: 24509848 DOI: 10.1074/jbc.M113.541102] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
8 Cole C, Krampis K, Karagiannis K, Almeida JS, Faison WJ, Motwani M, Wan Q, Golikov A, Pan Y, Simonyan V, Mazumder R. Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. BMC Bioinformatics 2014;15:28. [PMID: 24467687 DOI: 10.1186/1471-2105-15-28] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
9 Kim DS, Hahn Y. The acquisition of novel N-glycosylation sites in conserved proteins during human evolution. BMC Bioinformatics 2015;16:29. [PMID: 25628020 DOI: 10.1186/s12859-015-0468-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
10 Karagiannis K, Simonyan V, Mazumder R. SNVDis: a proteome-wide analysis service for evaluating nsSNVs in protein functional sites and pathways. Genomics Proteomics Bioinformatics 2013;11:122-6. [PMID: 23618375 DOI: 10.1016/j.gpb.2012.10.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
11 Fan Y, Hu Y, Yan C, Goldman R, Pan Y, Mazumder R, Dingerdissen HM. Loss and gain of N-linked glycosylation sequons due to single-nucleotide variation in cancer. Sci Rep 2018;8:4322. [PMID: 29531238 DOI: 10.1038/s41598-018-22345-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
12 Li F, Li C, Revote J, Zhang Y, Webb GI, Li J, Song J, Lithgow T. GlycoMinestruct: a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features. Sci Rep 2016;6:34595. [PMID: 27708373 DOI: 10.1038/srep34595] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
13 Wei W, Misra S, Cannon MV, Yang R, Zhu X, Gilmore R, Zhu M, Zhang B. Molecular mechanisms of missense mutations that generate ectopic N-glycosylation sites in coagulation factor VIII. Biochem J 2018;475:873-86. [PMID: 29444815 DOI: 10.1042/BCJ20170884] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
14 Pan Y, Yan C, Hu Y, Fan Y, Pan Q, Wan Q, Torcivia-Rodriguez J, Mazumder R. Distribution bias analysis of germline and somatic single-nucleotide variations that impact protein functional site and neighboring amino acids. Sci Rep 2017;7:42169. [PMID: 28176830 DOI: 10.1038/srep42169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Gock H, Murray-segal LJ, Winterhalter AC, Aminian A, Moore GTC, Brown SJ, d'Apice AJF, Cowan PJ. Altered Glycosylation in Donor Mice Causes Rejection of Strain-Matched Skin and Heart Grafts: Glycosylation Affects Skin Graft Outcome. American Journal of Transplantation 2014;14:797-805. [DOI: 10.1111/ajt.12634] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
16 Sanda M, Goldman R. Data Independent Analysis of IgG Glycoforms in Samples of Unfractionated Human Plasma. Anal Chem 2016;88:10118-25. [PMID: 27649061 DOI: 10.1021/acs.analchem.6b02554] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
17 Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics Clin Appl 2015;9:17-32. [PMID: 25522218 DOI: 10.1002/prca.201400152] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
18 Chen T, Zhang H, Niu G, Zhang S, Hong Z. Multiple N-glycans cooperate in balancing misfolded BRI1 secretion and ER retention. Plant Mol Biol 2020;103:581-96. [PMID: 32409993 DOI: 10.1007/s11103-020-01012-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lam PV, Goldman R, Karagiannis K, Narsule T, Simonyan V, Soika V, Mazumder R. Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinformatics 2013;11:96-104. [PMID: 23459159 DOI: 10.1016/j.gpb.2012.11.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 4.4] [Reference Citation Analysis]
20 Pan Y, Karagiannis K, Zhang H, Dingerdissen H, Shamsaddini A, Wan Q, Simonyan V, Mazumder R. Human germline and pan-cancer variomes and their distinct functional profiles. Nucleic Acids Res 2014;42:11570-88. [PMID: 25232094 DOI: 10.1093/nar/gku772] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
21 Tan Z, Zhu J, Stemmer PM, Sun L, Yang Z, Schultz K, Gaffrey MJ, Cesnik AJ, Yi X, Hao X, Shortreed MR, Shi T, Lubman DM. Comprehensive Detection of Single Amino Acid Variants and Evaluation of Their Deleterious Potential in a PANC-1 Cell Line. J Proteome Res 2020;19:1635-46. [PMID: 32058723 DOI: 10.1021/acs.jproteome.9b00840] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
22 Abunimer A, Smith K, Wu TJ, Lam P, Simonyan V, Mazumder R. Single-nucleotide variations in cardiac arrhythmias: prospects for genomics and proteomics based biomarker discovery and diagnostics. Genes (Basel) 2014;5:254-69. [PMID: 24705329 DOI: 10.3390/genes5020254] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
23 Pedersen NB, Carlsson MC, Pedersen SF. Glycosylation of solute carriers: mechanisms and functional consequences. Pflugers Arch 2016;468:159-76. [PMID: 26383868 DOI: 10.1007/s00424-015-1730-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
24 Langhans M, Weber W, Babel L, Grunewald M, Meckel T. The right motifs for plant cell adhesion: what makes an adhesive site? Protoplasma 2017;254:95-108. [PMID: 27091341 DOI: 10.1007/s00709-016-0970-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
25 Dingerdissen H, Motwani M, Karagiannis K, Simonyan V, Mazumder R. Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins. FEBS J 2013;280:1542-62. [PMID: 23350563 DOI: 10.1111/febs.12155] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]