BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Palmans H, Rabus H, Belchior AL, Bug MU, Galer S, Giesen U, Gonon G, Gruel G, Hilgers G, Moro D, Nettelbeck H, Pinto M, Pola A, Pszona S, Schettino G, Sharpe PH, Teles P, Villagrasa C, Wilkens JJ. Future development of biologically relevant dosimetry. Br J Radiol 2015;88:20140392. [PMID: 25257709 DOI: 10.1259/bjr.20140392] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 de la Fuente Rosales L, Incerti S, Francis Z, Bernal MA. Accounting for radiation-induced indirect damage on DNA with the Geant 4-DNA code. Phys Med 2018;51:108-16. [PMID: 29908994 DOI: 10.1016/j.ejmp.2018.06.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
2 Ramos-méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. Phys Med Biol 2018;63:235015. [DOI: 10.1088/1361-6560/aaeeee] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
3 Selva A, Bolst D, Guatelli S, Conte V. Energy imparted and ionization yield in nanometre-sized volumes. Radiation Physics and Chemistry 2022;192:109910. [DOI: 10.1016/j.radphyschem.2021.109910] [Reference Citation Analysis]
4 Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021;13:2997. [PMID: 34203882 DOI: 10.3390/cancers13122997] [Reference Citation Analysis]
5 Kyriakou I, Tremi I, Georgakilas AG, Emfietzoglou D. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Appl Radiat Isot 2021;172:109654. [PMID: 33676082 DOI: 10.1016/j.apradiso.2021.109654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Galer S, Shipley D, Palmans H, Kirkby K, Nisbet A. Monte Carlo simulation of a TEPC for microdosimetry of carbon ions. Radiation Physics and Chemistry 2017;140:412-8. [DOI: 10.1016/j.radphyschem.2017.02.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
7 Rabus H, Baek WY, Dangendorf V, Giesen U, Hilgers G, Nettelbeck H. PROPOSAL FOR A EUROPEAN METROLOGY NETWORK ON BIOLOGICAL IONISING RADIATION EFFECTS. Radiat Prot Dosimetry 2019;186:143-7. [PMID: 30809673 DOI: 10.1093/rpd/ncz011] [Reference Citation Analysis]
8 Ramos-Méndez J, Schuemann J, Incerti S, Paganetti H, Schulte R, Faddegon B. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations. Phys Med Biol 2017;62:5908-25. [PMID: 28594336 DOI: 10.1088/1361-6560/aa7831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
9 Baek WY, Dangendorf V, Giesen U, Hilgers G, Nettelbeck H, Rabus H. PROSPECTS FOR METROLOGY RELATED TO BIOLOGICAL RADIATION EFFECTS OF ION BEAMS. Radiat Prot Dosimetry 2019;183:131-5. [PMID: 30561691 DOI: 10.1093/rpd/ncy273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
10 Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med 2016;32:1187-200. [PMID: 27659007 DOI: 10.1016/j.ejmp.2016.09.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
11 Harrison RM, Ainsbury E, Alves J, Bottollier-Depois JF, Breustedt B, Caresana M, Clairand I, Fantuzzi E, Fattibene P, Gilvin P, Hupe O, Knežević Ž, Lopez MA, Olko P, Olšovcová V, Rabus H, Rühm W, Silari M, Stolarczyk L, Tanner R, Vanhavere F, Vargas A, Woda C. EURADOS STRATEGIC RESEARCH AGENDA 2020: VISION FOR THE DOSIMETRY OF IONISING RADIATION. Radiat Prot Dosimetry 2021;194:42-56. [PMID: 33989429 DOI: 10.1093/rpd/ncab063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Di Maria S, Belchior A, Pereira E, Quental L, Oliveira M, Mendes F, Lavrado J, Paulo A, Vaz P. Dosimetry assessment of DNA damage by Auger-emitting radionuclides: Experimental and Monte Carlo studies. Radiation Physics and Chemistry 2017;140:278-82. [DOI: 10.1016/j.radphyschem.2017.01.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
13 Hofmann W, Li WB, Friedland W, Miller BW, Madas B, Bardiès M, Balásházy I. Internal microdosimetry of alpha-emitting radionuclides. Radiat Environ Biophys 2020;59:29-62. [PMID: 31863162 DOI: 10.1007/s00411-019-00826-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
14 Alexander F, Villagrasa C, Rabus H, Wilkens JJ. Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations. Eur Phys J D 2015;69. [DOI: 10.1140/epjd/e2015-60206-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
15 Rabus H. Nanodosimetry - on the ''tracks'' of biological radiation effectiveness. Z Med Phys 2020;30:91-4. [PMID: 32029295 DOI: 10.1016/j.zemedi.2020.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Alp M, Cucinotta FA. Track structure model of microscopic energy deposition by protons and heavy ions in segments of neuronal cell dendrites represented by cylinders or spheres. Life Sci Space Res (Amst) 2017;13:27-38. [PMID: 28554507 DOI: 10.1016/j.lssr.2017.03.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
17 Jackson SA, Prise KM. Nothing endures but change. Br J Radiol 2017;90:20160904. [PMID: 27998186 DOI: 10.1259/bjr.20160904] [Reference Citation Analysis]
18 Gómez F, Fleta C, Esteban S, Quirion D, Pellegrini G, Lozano M, Prezado Y, Dos Santos M, Guardiola C, Montarou G, Prieto-pena J, Pardo-montero J. Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes. Phys Med Biol 2016;61:4036-47. [DOI: 10.1088/0031-9155/61/11/4036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lomax A. What will the medical physics of proton therapy look like 10 yr from now? A personal view. Med Phys 2018;45. [DOI: 10.1002/mp.13206] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
20 Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021;11:286. [PMID: 33917956 DOI: 10.3390/jpm11040286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Vasi F, Schmidli K, Hälg RA, Schneider U. Feasibility study of macroscopic simulations of nanodosimetric parameters for proton therapy. Med Phys 2020;47:5872-81. [DOI: 10.1002/mp.14178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Fromm M, Kodaira S, Kusumoto T, Barillon R, Yamauchi T. Role of intermediate species in the formation of ion tracks in PADC: A review. Polymer Degradation and Stability 2019;161:213-24. [DOI: 10.1016/j.polymdegradstab.2019.01.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
23 Casiraghi M, Schulte RW. Nanodosimetry-Based Plan Optimization for Particle Therapy. Comput Math Methods Med 2015;2015:908971. [PMID: 26167202 DOI: 10.1155/2015/908971] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
24 Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021;66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Scherb H, Kusmierz R, Voigt K. Secondary sex ratio and trends in the associated gender-specific births near nuclear facilities in France and Germany: Update of birth counts. Reproductive Toxicology 2019;89:159-67. [DOI: 10.1016/j.reprotox.2019.07.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 Bortot D, Mazzucconi D, Pola A, Fazzi A, Pullia M, Savazzi S, Colautti P, Conte V, Agosteo S. A nano-microdosimetric characterization of a therapeutic carbon ion beam at CNAO. Radiation Physics and Chemistry 2020;170:108674. [DOI: 10.1016/j.radphyschem.2019.108674] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiation Physics and Chemistry 2020;166:108515. [DOI: 10.1016/j.radphyschem.2019.108515] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
28 Pater P, Bäckstöm G, Villegas F, Ahnesjö A, Enger SA, Seuntjens J, El Naqa I. Proton and light ion RBE for the induction of direct DNA double strand breaks. Med Phys 2016;43:2131. [PMID: 27147325 DOI: 10.1118/1.4944870] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
29 Ngcezu SA, Rabus H. Investigation into the foundations of the track-event theory of cell survival and the radiation action model based on nanodosimetry. Radiat Environ Biophys 2021;60:559-78. [PMID: 34427743 DOI: 10.1007/s00411-021-00936-4] [Reference Citation Analysis]
30 Gehrke T, Burigo L, Arico G, Berke S, Jakubek J, Turecek D, Tessonnier T, Mairani A, Martišíková M. Energy deposition measurements of single 1 H, 4 He and 12 C ions of therapeutic energies in a silicon pixel detector. J Inst 2017;12:P04025-P04025. [DOI: 10.1088/1748-0221/12/04/p04025] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
31 Rudek B, Bennett D, Bug MU, Wang M, Baek WY, Buhr T, Hilgers G, Champion C, Rabus H. Double differential cross sections for proton induced electron emission from molecular analogues of DNA constituents for energies in the Bragg peak region. J Chem Phys 2016;145:104301. [PMID: 27634254 DOI: 10.1063/1.4962171] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
32 Rahmanian S, Niklas M, Abdollahi A, Jäkel O, Greilich S. Application of fluorescent nuclear track detectors for cellular dosimetry. Phys Med Biol 2017;62:2719-40. [DOI: 10.1088/1361-6560/aa56b4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
33 Niklas M, Zimmermann F, Schlegel J, Schwager C, Debus J, Jäkel O, Abdollahi A, Greilich S. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors. Phys Med Biol 2016;61:N441-60. [PMID: 27499388 DOI: 10.1088/0031-9155/61/17/N441] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Alexander F, Villagrasa C, Rabus H, Wilkens JJ. Local weighting of nanometric track structure properties in macroscopic voxel geometries for particle beam treatment planning. Phys Med Biol 2015;60:9145-56. [DOI: 10.1088/0031-9155/60/23/9145] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
35 Reiners C, Hänscheid H, Schneider R. High-dose radiation exposure and hypothyroidism: aetiology, prevention and replacement therapy. J Radiol Prot 2021;41. [PMID: 34547726 DOI: 10.1088/1361-6498/ac28ee] [Reference Citation Analysis]