BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Takeo T, Nakagata N, Yamamoto T. Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice. Biol Open 2017;6:706-13. [PMID: 28396487 DOI: 10.1242/bio.025122] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Higashitani Y, Horie K. Long-read sequence analysis of MMEJ-mediated CRISPR genome editing reveals complex on-target vector insertions that may escape standard PCR-based quality control.. [DOI: 10.1101/2023.03.03.531065] [Reference Citation Analysis]
2 Hart-Johnson S, Mankelow K. Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab Anim 2021;:236772211007306. [PMID: 33847177 DOI: 10.1177/00236772211007306] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
3 Arima Y, Nakagawa Y, Takeo T, Ishida T, Yamada T, Hino S, Nakao M, Hanada S, Umemoto T, Suda T, Sakuma T, Yamamoto T, Watanabe T, Nagaoka K, Tanaka Y, Kawamura YK, Tonami K, Kurihara H, Sato Y, Yamagata K, Nakamura T, Araki S, Yamamoto E, Izumiya Y, Sakamoto K, Kaikita K, Matsushita K, Nishiyama K, Nakagata N, Tsujita K. Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nat Metab 2021;3:196-210. [PMID: 33619377 DOI: 10.1038/s42255-021-00342-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
4 Takeo T, Nakao S, Nakagawa Y, Sztein JM, Nakagata N. Cryopreservation of mouse resources. Lab Anim Res 2020;36:33. [PMID: 32963977 DOI: 10.1186/s42826-020-00066-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
5 Kunii A, Yamamoto T, Sakuma T. Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell Dev Biol Anim 2020;56:359-66. [PMID: 32514717 DOI: 10.1007/s11626-020-00469-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Goto M, Takeo T, Takahashi R, Nakagata N. Efficient production of immunodeficient non-obese diabetic/Shi-scid IL2rγnull mice via the superovulation technique using inhibin antiserum and gonadotropin. Lab Anim 2021;55:13-20. [PMID: 32507045 DOI: 10.1177/0023677220928091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
7 Ahmadzadeh V, Farajnia S, Baghban R, Rahbarnia L, Zarredar H. CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond. J Cell Biochem 2019;120:16379-92. [PMID: 31219653 DOI: 10.1002/jcb.29140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
8 Nakade S, Mochida K, Kunii A, Nakamae K, Aida T, Tanaka K, Sakamoto N, Sakuma T, Yamamoto T. Biased genome editing using the local accumulation of DSB repair molecules system. Nat Commun 2018;9:3270. [PMID: 30115916 DOI: 10.1038/s41467-018-05773-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
9 Nakagawa Y, Sakuma T, Takeo T, Nakagata N, Yamamoto T. Electroporation-mediated genome editing in vitrified/warmed mouse zygotes created by IVF via ultra-superovulation. Exp Anim 2018;67:535-43. [PMID: 30012936 DOI: 10.1538/expanim.18-0062] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
10 Sakuma T, Yamamoto T. Magic wands of CRISPR—lots of choices for gene knock-in. Cell Biol Toxicol 2017;33:501-5. [DOI: 10.1007/s10565-017-9409-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]