BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tan ML, Choong PFM, Dass CR. Cancer, chitosan nanoparticles and catalytic nucleic acids. Journal of Pharmacy and Pharmacology 2009;61:3-12. [DOI: 10.1211/jpp.61.01.0002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Tan ML, Dunstan DE, Friedhuber AM, Choong PF, Dass CR. A nanoparticulate system that enhances the efficacy of the tumoricide Dz13 when administered proximal to the lesion site. Journal of Controlled Release 2010;144:196-202. [DOI: 10.1016/j.jconrel.2010.01.011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
2 Sentürk M, Ercan F, Yalcin S. The secondary metabolites produced by Lactobacillus plantarum downregulate BCL-2 and BUFFY genes on breast cancer cell line and model organism Drosophila melanogaster: molecular docking approach. Cancer Chemother Pharmacol 2020;85:33-45. [PMID: 31673827 DOI: 10.1007/s00280-019-03978-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
3 Miranda-calderón J, Macías-rosales L, Gracia-mora I, Ruiz-azuara L, Faustino-vega A, Gracia-mora J, Bernad-bernad M. Effect of casiopein III-ia loaded into chitosan nanoparticles on tumor growth inhibition. Journal of Drug Delivery Science and Technology 2018;48:1-8. [DOI: 10.1016/j.jddst.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
4 Kobiasi MA, Chua BY, Tonkin D, Jackson DC, Mainwaring DE. Control of size dispersity of chitosan biopolymer microparticles and nanoparticles to influence vaccine trafficking and cell uptake. J Biomed Mater Res 2012;100A:1859-67. [DOI: 10.1002/jbm.a.34153] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
5 Lee J, Yun KS, Choi CS, Shin SH, Ban HS, Rhim T, Lee SK, Lee KY. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug Chem 2012;23:1174-80. [PMID: 22607555 DOI: 10.1021/bc2006219] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 5.6] [Reference Citation Analysis]
6 Dubey PK, Singodia D, Verma RK, Vyas SP. RGD modified albumin nanospheres for tumour vasculature targeting. Journal of Pharmacy and Pharmacology 2011;63:33-40. [DOI: 10.1111/j.2042-7158.2010.01180.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
7 Agirre M, Zarate J, Ojeda E, Puras G, Rojas LA, Alemany R, Pedraz JL. Delivery of an adenovirus vector plasmid by ultrapure oligochitosan based polyplexes. Int J Pharm 2015;479:312-9. [PMID: 25550211 DOI: 10.1016/j.ijpharm.2014.12.062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
8 Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021;260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
9 Friedhuber AM, Chandolu V, Manchun S, Donkor O, Sriamornsak P, Dass CR. Nucleotropic doxorubicin nanoparticles decrease cancer cell viability, destroy mitochondria, induce autophagy and enhance tumour necrosis. Journal of Pharmacy and Pharmacology 2015;67:68-77. [DOI: 10.1111/jphp.12322] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
10 Bilensoy E. Cationic nanoparticles for cancer therapy. Expert Opinion on Drug Delivery 2010;7:795-809. [DOI: 10.1517/17425247.2010.485983] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 4.8] [Reference Citation Analysis]
11 Chokradjaroen C, Rujiravanit R, Theeramunkong S, Saito N. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products. Jpn J Appl Phys 2018;57:0102B5. [DOI: 10.7567/jjap.57.0102b5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
12 Fathabadi EG, Shelling AN, Al-kassas R. Nanocarrier systems for delivery of siRNA to ovarian cancer tissues. Expert Opinion on Drug Delivery 2012;9:743-54. [DOI: 10.1517/17425247.2012.683173] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
13 Grenha A. Chitosan nanoparticles: a survey of preparation methods. Journal of Drug Targeting 2012;20:291-300. [DOI: 10.3109/1061186x.2011.654121] [Cited by in Crossref: 136] [Cited by in F6Publishing: 26] [Article Influence: 13.6] [Reference Citation Analysis]
14 Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Formulation and evaluation of chitosan-based long-acting injectable hydrogel for PEGylated melphalan conjugate: Chitosan-based melphalan injectable hydrogel. J Pharm Pharmacol 2014;66:1240-50. [DOI: 10.1111/jphp.12262] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
15 Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 2011;8:521-36. [PMID: 21413903 DOI: 10.1517/17425247.2011.559223] [Cited by in Crossref: 77] [Cited by in F6Publishing: 67] [Article Influence: 7.0] [Reference Citation Analysis]
16 Pradeepkumar PI, Höbartner C. RNA-Cleaving DNA Enzymes and Their Potential Therapeutic Applications as Antibacterial and Antiviral Agents. In: Erdmann VA, Barciszewski J, editors. From Nucleic Acids Sequences to Molecular Medicine. Berlin: Springer Berlin Heidelberg; 2012. pp. 371-410. [DOI: 10.1007/978-3-642-27426-8_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
17 Indumathy S, Dass CR. Finding chemo: the search for marine-based pharmaceutical drugs active against cancer. J Pharm Pharmacol 2013;65:1280-301. [PMID: 23927467 DOI: 10.1111/jphp.12097] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
18 Arami H, Stephen Z, Veiseh O, Zhang M. Chitosan-Coated Iron Oxide Nanoparticles for Molecular Imaging and Drug Delivery. In: Jayakumar R, Prabaharan M, Muzzarelli RAA, editors. Chitosan for Biomaterials I. Berlin: Springer Berlin Heidelberg; 2011. pp. 163-84. [DOI: 10.1007/12_2011_121] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lian D, Chen Y, Xu G, Zeng X, Li Z, Li Z, Zhou Y, Mei L, Li X. Delivery of siRNA targeting HIF-1α loaded chitosan modified d -α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) nanoparticles into nasopharyngeal carcinoma cell to improve the therapeutic efficacy of cisplatin. RSC Adv 2016;6:37740-9. [DOI: 10.1039/c6ra03440c] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
20 De A, Kuppuswamy G, Jaiswal A. Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation. Drug Dev Ind Pharm 2019;45:1821-34. [PMID: 31486683 DOI: 10.1080/03639045.2019.1665060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Matokanovic M, Barisic K, Filipovic-grcic J, Maysinger D. Hsp70 silencing with siRNA in nanocarriers enhances cancer cell death induced by the inhibitor of Hsp90. European Journal of Pharmaceutical Sciences 2013;50:149-58. [DOI: 10.1016/j.ejps.2013.04.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
22 Shankar S, Pangeni R, Park JW, Rhim JW. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater Sci Eng C Mater Biol Appl 2018;92:508-17. [PMID: 30184776 DOI: 10.1016/j.msec.2018.07.015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
23 Bracamonte MV, Bollo S, Labbé P, Rivas GA, Ferreyra NF. Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase: Physicochemical characterization of the platform and evaluation of its biocatalytic activity. Electrochimica Acta 2011;56:1316-22. [DOI: 10.1016/j.electacta.2010.10.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Farré M, Barceló D. Introduction to the Analysis and Risk of Nanomaterials in Environmental and Food Samples. Analysis and Risk of Nanomaterials in Environmental and Food Samples. Elsevier; 2012. pp. 1-32. [DOI: 10.1016/b978-0-444-56328-6.00001-3] [Cited by in Crossref: 11] [Article Influence: 1.1] [Reference Citation Analysis]
25 Alexander A, Saraf S, Saraf S. A comparative study of chitosan and poloxamer based thermosensitive hydrogel for the delivery of PEGylated melphalan conjugates. Drug Development and Industrial Pharmacy 2015;41:1954-61. [DOI: 10.3109/03639045.2015.1011167] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
26 Farré M, Sanchís J, Barceló D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends in Analytical Chemistry 2011;30:517-27. [DOI: 10.1016/j.trac.2010.11.014] [Cited by in Crossref: 165] [Cited by in F6Publishing: 108] [Article Influence: 15.0] [Reference Citation Analysis]
27 Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-jonathan S, Limelette P, Saboungi M, Dubois P, Chourpa I. Synthesis and Evaluation of Novel Biocompatible Super-paramagnetic Iron Oxide Nanoparticles as Magnetic Anticancer Drug Carrier and Fluorescence Active Label. J Phys Chem C 2010;114:5850-8. [DOI: 10.1021/jp9112188] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
28 Timoshenko AV. Chitin hydrolysate stimulates VEGF-C synthesis by MDA-MB-231 breast cancer cells. Cell Biol Int 2011;35:281-6. [PMID: 21029043 DOI: 10.1042/CBI20090512] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
29 Xiang Y, Wu P, Tan LH, Lu Y. DNAzyme-functionalized gold nanoparticles for biosensing. Adv Biochem Eng Biotechnol 2014;140:93-120. [PMID: 24026635 DOI: 10.1007/10_2013_242] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
30 Dass CR, Tan ML, Galloway SJ, Choong PF. Dz13 Induces a Cytotoxic Stress Response with Upregulation of E2F1 in Tumor Cells Metastasizing to or from Bone. Oligonucleotides 2010;20:79-91. [DOI: 10.1089/oli.2009.0224] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
31 Hu L, Fu X, Kong G, Yin Y, Meng H, Ke G, Zhang X. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging. J Mater Chem B 2020;8:9449-65. [DOI: 10.1039/d0tb01750g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]