BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lehmann A, Kliewer A, Günther T, Nagel F, Schulz S. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking. Mol Endocrinol 2016;30:645-59. [PMID: 27101376 DOI: 10.1210/me.2015-1244] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Csaba Z, Dournaud P. Internalization of somatostatin receptors in brain and periphery. Prog Mol Biol Transl Sci 2023;196:43-57. [PMID: 36813365 DOI: 10.1016/bs.pmbts.2022.09.004] [Reference Citation Analysis]
2 Kaufmann J, Blum NK, Nagel F, Schuler A, Drube J, Degenhart C, Engel J, Eickhoff JE, Dasgupta P, Fritzwanker S, Guastadisegni M, Schulte C, Miess-tanneberg E, Maric HM, Spetea M, Kliewer A, Baumann M, Klebl B, Reinscheid RK, Hoffmann C, Schulz S. A bead-based GPCR phosphorylation immunoassay for high-throughput ligand profiling and GRK inhibitor screening. Commun Biol 2022;5:1206. [DOI: 10.1038/s42003-022-04135-9] [Reference Citation Analysis]
3 Fritzwanker S, Nagel F, Kliewer A, Schulz S. In situ visualization of opioid and cannabinoid drug effects using phosphosite-specific GPCR antibodies.. [DOI: 10.21203/rs.3.rs-1928865/v1] [Reference Citation Analysis]
4 Kaufmann J, Blum NK, Nagel F, Schuler A, Drube J, Degenhart C, Engel J, Eickhoff JE, Dasgupta P, Fritzwanker S, Guastadisegni M, Schulte C, Miess-tanneberg E, Maric HM, Spetea M, Kliewer A, Baumann M, Klebl B, Reinscheid RK, Hoffmann C, Schulz S. A bead-based GPCR phosphorylation immunoassay for high-throughput ligand profiling and GRK inhibitor screening.. [DOI: 10.1101/2022.07.25.501346] [Reference Citation Analysis]
5 Fritzwanker S, Nagel F, Kliewer A, Schulz S. In situ visualization of opioid and cannabinoid drug effects using phosphosite-specific GPCR antibodies.. [DOI: 10.1101/2022.06.14.496067] [Reference Citation Analysis]
6 Dasgupta P, Gűnther T, Schulz S. Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist. Life (Basel) 2021;11:1075. [PMID: 34685446 DOI: 10.3390/life11101075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
7 Chadha A, Paniagua AE, Williams DS. Comparison of Ciliary Targeting of Two Rhodopsin-Like GPCRs: Role of C-Terminal Localization Sequences in Relation to Cilium Type. J Neurosci 2021;41:7514-31. [PMID: 34301828 DOI: 10.1523/JNEUROSCI.0357-21.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D2 receptor regulation and signaling. Sci Rep 2021;11:8288. [PMID: 33859231 DOI: 10.1038/s41598-021-87417-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
9 Tulipano G, Schulz S. Somatostatin. Encyclopedia of Molecular Pharmacology 2021. [DOI: 10.1007/978-3-030-21573-6_137-1] [Reference Citation Analysis]
10 Tulipano G, Schulz S. Somatostatin. Encyclopedia of Molecular Pharmacology 2021. [DOI: 10.1007/978-3-030-57401-7_137] [Reference Citation Analysis]
11 Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal 2019;12:eaau8072. [PMID: 30914485 DOI: 10.1126/scisignal.aau8072] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
12 Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018;70:763-835. [PMID: 30232095 DOI: 10.1124/pr.117.015388] [Cited by in Crossref: 112] [Cited by in F6Publishing: 119] [Article Influence: 28.0] [Reference Citation Analysis]
13 Gupta MK, Mohan ML, Naga Prasad SV. G Protein-Coupled Receptor Resensitization Paradigms. Int Rev Cell Mol Biol 2018;339:63-91. [PMID: 29776605 DOI: 10.1016/bs.ircmb.2018.03.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
14 Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends in Pharmacological Sciences 2017;38:621-36. [DOI: 10.1016/j.tips.2017.04.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
15 Vázquez López JL, Schild L, Günther T, Schulz S, Neurath H, Becker A. The effects of kratom on restraint–stress-induced analgesia and its mechanisms of action. Journal of Ethnopharmacology 2017;205:178-85. [DOI: 10.1016/j.jep.2017.05.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
16 Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017;449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]