BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020;41:bnaa010. [PMID: 32310267 DOI: 10.1210/endrev/bnaa010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 45.0] [Reference Citation Analysis]
Number Citing Articles
1 Watanabe Y, Prescott M, Campbell RE, Jasoni CL. Prenatal androgenization causes expression changes of progesterone and androgen receptor mRNAs in the arcuate nucleus of female mice across development. J Neuroendocrinol 2021;:e13058. [PMID: 34748236 DOI: 10.1111/jne.13058] [Reference Citation Analysis]
2 Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, Vishwas S, Chellappan DK, Gupta G, Jha NK, Anand K, Dua K. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci 2021;280:119753. [PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753] [Reference Citation Analysis]
3 Cai Y, Zhang F, Dou X, Zeng H, Wu G, Liang Y, Xu X, Zhao J, Ye J, Zhang W. Integrated metabolomics and network pharmacology to reveal the therapeutic mechanism of Dingkun Pill on polycystic ovary syndrome. Journal of Ethnopharmacology 2022. [DOI: 10.1016/j.jep.2022.115442] [Reference Citation Analysis]
4 Stamou MI, Balasubramanian R. Hypothalamic Ceramides and the Ovarian Sympathetic System: At the Crossroads of Obesity and Puberty. Cell Metab 2021;33:6-8. [PMID: 33264644 DOI: 10.1016/j.cmet.2020.11.012] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022;20:12. [PMID: 35012577 DOI: 10.1186/s12958-021-00878-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
6 Liyanage GSG, Inoue R, Fujitani M, Ishijima T, Shibutani T, Abe K, Kishida T, Okada S. Effects of Soy Isoflavones, Resistant Starch and Antibiotics on Polycystic Ovary Syndrome (PCOS)-Like Features in Letrozole-Treated Rats. Nutrients 2021;13:3759. [PMID: 34836015 DOI: 10.3390/nu13113759] [Reference Citation Analysis]
7 Abbott DH, Levine JE, Dumesic DA. Androgen Receptors in Multiple Organ Systems Provide Molecular Gateways to Polycystic Ovary Syndrome. Endocrinology 2020;161:bqaa095. [PMID: 32530028 DOI: 10.1210/endocr/bqaa095] [Reference Citation Analysis]
8 Li H, Guo Y, Zhang G, Deng J, Fischer H, Craig LB, Yu X, Kem DC. Gonadotrophin-releasing hormone receptor autoantibodies induce polycystic ovary syndrome-like features in a rat model. Exp Physiol 2021;106:902-12. [PMID: 33576068 DOI: 10.1113/EP089109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li G, Hu J, Zhang S, Fan W, Wen L, Wang G, Zhang D. Changes in Resting-State Cerebral Activity in Women With Polycystic Ovary Syndrome: A Functional MR Imaging Study. Front Endocrinol (Lausanne) 2020;11:603279. [PMID: 33362718 DOI: 10.3389/fendo.2020.603279] [Reference Citation Analysis]
10 Burt Solorzano CM, McCartney CR. Polycystic Ovary Syndrome: Ontogeny in Adolescence. Endocrinol Metab Clin North Am 2021;50:25-42. [PMID: 33518184 DOI: 10.1016/j.ecl.2020.10.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
11 Dewailly D, Barbotin AL, Dumont A, Catteau-Jonard S, Robin G. Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2020;11:641. [PMID: 33013710 DOI: 10.3389/fendo.2020.00641] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Pugeat M, Dewailly D. Epigenetics suggests new perspectives for the treatment of polycystic ovary syndrome: Transgenerational effect of fetal exposure to Antimüllerian Hormone. Ann Endocrinol (Paris) 2021;82:71-3. [PMID: 33839124 DOI: 10.1016/j.ando.2021.04.001] [Reference Citation Analysis]
13 Leung KL, Sanchita S, Pham CT, Davis BA, Okhovat M, Ding X, Dumesic P, Grogan TR, Williams KJ, Morselli M, Ma F, Carbone L, Li X, Pellegrini M, Dumesic DA, Chazenbalk GD. Dynamic changes in chromatin accessibility, altered adipogenic gene expression, and total versus de novo fatty acid synthesis in subcutaneous adipose stem cells of normal-weight polycystic ovary syndrome (PCOS) women during adipogenesis: evidence of cellular programming. Clin Epigenetics 2020;12:181. [PMID: 33228780 DOI: 10.1186/s13148-020-00970-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Tennilä J, Jääskeläinen J, Utriainen P, Voutilainen R, Häkkinen M, Auriola S, Morin-Papunen L, Liimatta J. PCOS Features and Steroid Profiles Among Young Adult Women with a History of Premature Adrenarche. J Clin Endocrinol Metab 2021:dgab385. [PMID: 34060603 DOI: 10.1210/clinem/dgab385] [Reference Citation Analysis]
15 Saadat N, Puttabyatappa M, Elangovan VR, Dou J, Ciarelli JN, Thompson RC, Bakulski KM, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology 2022;163:bqab225. [PMID: 34718504 DOI: 10.1210/endocr/bqab225] [Reference Citation Analysis]
16 Chappell NR, Gibbons WE, Blesson C. Pathology of Hyperandrogenemia in the Oocyte of Polycystic Ovary Syndrome. Steroids 2022. [DOI: 10.1016/j.steroids.2022.108989] [Reference Citation Analysis]
17 Abbott DH, Dumesic DA. Passing on PCOS: new insights into its epigenetic transmission. Cell Metab 2021;33:463-6. [PMID: 33657389 DOI: 10.1016/j.cmet.2021.02.008] [Reference Citation Analysis]
18 Silva MSB, Decoster L, Trova S, Mimouni NEH, Delli V, Chachlaki K, Yu Q, Boehm U, Prevot V, Giacobini P. Female sexual behavior is disrupted in a preclinical mouse model of PCOS via an attenuated hypothalamic nitric oxide pathway. Proc Natl Acad Sci U S A 2022;119:e2203503119. [PMID: 35867816 DOI: 10.1073/pnas.2203503119] [Reference Citation Analysis]
19 Marshall CJ, Prescott M, Campbell RE. Investigating the NPY/AgRP/GABA to GnRH Neuron Circuit in Prenatally Androgenized PCOS-Like Mice. J Endocr Soc 2020;4:bvaa129. [PMID: 33094210 DOI: 10.1210/jendso/bvaa129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Parker J, O’brien C, Hawrelak J, Gersh FL. Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. IJERPH 2022;19:1336. [DOI: 10.3390/ijerph19031336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Roy S, Huang B, Sinha N, Wang J, Sen A. Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics. PLoS Genet 2021;17:e1009483. [PMID: 33784295 DOI: 10.1371/journal.pgen.1009483] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Rizk MG, Thackray VG. Intersection of Polycystic Ovary Syndrome and the Gut Microbiome. J Endocr Soc 2021;5:bvaa177. [PMID: 33381671 DOI: 10.1210/jendso/bvaa177] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Hoeger KM, Dokras A, Piltonen T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J Clin Endocrinol Metab 2021;106:e1071-83. [PMID: 33211867 DOI: 10.1210/clinem/dgaa839] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
24 Mimouni NEH, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, Ternier G, Pigny P, Catteau-Jonard S, Simon V, Prevot V, Boutillier AL, Giacobini P. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab 2021;33:513-530.e8. [PMID: 33539777 DOI: 10.1016/j.cmet.2021.01.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
25 Chu X, Snoeren E, Södersten P, Ågmo A. Sexual incentive motivation and male and female copulatory behavior in female rats given androgen from postnatal day 20. Physiol Behav 2021;237:113460. [PMID: 33991538 DOI: 10.1016/j.physbeh.2021.113460] [Reference Citation Analysis]
26 Stener-Victorin E, Deng Q. Transmission of Polycystic Ovary Syndrome via Epigenetic Inheritance. Trends Mol Med 2021;27:723-4. [PMID: 34127396 DOI: 10.1016/j.molmed.2021.05.005] [Reference Citation Analysis]
27 Shao S, Zhao H, Lu Z, Lei X, Zhang Y. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology. Endocrinology 2021;162:bqab117. [PMID: 34125877 DOI: 10.1210/endocr/bqab117] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Burger LL, Wagenmaker ER, Phumsatitpong C, Olson DP, Moenter SM. Prenatal Androgenization Alters the Development of GnRH Neuron and Preoptic Area RNA Transcripts in Female Mice. Endocrinology 2020;161:bqaa166. [PMID: 33095238 DOI: 10.1210/endocr/bqaa166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Han S, Zhang Y, Zheng Y, Liu C, Jiang Y, Zhao S, Zhao H. Thada Is Dispensable for Female Fertility in Mice. Front Endocrinol 2022;13:787733. [DOI: 10.3389/fendo.2022.787733] [Reference Citation Analysis]
30 Heras V, Castellano JM, Fernandois D, Velasco I, Rodríguez-Vazquez E, Roa J, Vazquez MJ, Ruiz-Pino F, Rubio M, Pineda R, Torres E, Avendaño MS, Paredes A, Pinilla L, Belsham D, Diéguez C, Gaytán F, Casals N, López M, Tena-Sempere M. Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metab 2020;32:951-966.e8. [PMID: 33080217 DOI: 10.1016/j.cmet.2020.10.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
31 de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021;27:771-96. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Moore AM. Impaired steroid hormone feedback in polycystic ovary syndrome: Evidence from preclinical models for abnormalities within central circuits controlling fertility. Clin Endocrinol (Oxf) 2022. [PMID: 35349177 DOI: 10.1111/cen.14711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Rodriguez Paris V, Edwards MC, Aflatounian A, Bertoldo MJ, Ledger WL, Handelsman DJ, Gilchrist RB, Walters KA. Pathogenesis of Reproductive and Metabolic PCOS Traits in a Mouse Model. J Endocr Soc 2021;5:bvab060. [PMID: 34056500 DOI: 10.1210/jendso/bvab060] [Reference Citation Analysis]
34 Abbott DH, Dumesic DA. Midgestation origins of androgenic and estrogenic pathophysiology in three major women's health disorders. Fertil Steril 2020;114:1183-4. [PMID: 32919706 DOI: 10.1016/j.fertnstert.2020.08.024] [Reference Citation Analysis]
35 Wu Y, Chanclón B, Micallef P, Stener-Victorin E, Wernstedt Asterholm I, Benrick A. Maternal adiponectin prevents visceral adiposity and adipocyte hypertrophy in prenatal androgenized female mice. FASEB J 2021;35:e21299. [PMID: 33715227 DOI: 10.1096/fj.202002212R] [Reference Citation Analysis]
36 Rezq S, Huffman AM, Basnet J, Yanes Cardozo LL, Romero DG. Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19. Int J Mol Sci 2021;22:9746. [PMID: 34575910 DOI: 10.3390/ijms22189746] [Reference Citation Analysis]
37 Rudic J, Jakovljevic V, Jovic N, Nikolic M, Sretenovic J, Mitrovic S, Bolevich S, Bolevich S, Mitrovic M, Raicevic S, Andric K, Dimkic Milenkovic A, Rakic D, Joksimovic Jovic J. Antioxidative Effects of Standardized Aronia melanocarpa Extract on Reproductive and Metabolic Disturbances in a Rat Model of Polycystic Ovary Syndrome. Antioxidants 2022;11:1099. [DOI: 10.3390/antiox11061099] [Reference Citation Analysis]
38 Johnson BS, Krishna MB, Padmanabhan RA, Pillai SM, Jayakrishnan K, Laloraya M. Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis. Hum Reprod 2022:deac139. [PMID: 35728080 DOI: 10.1093/humrep/deac139] [Reference Citation Analysis]
39 Esquivel-Zuniga MR, Kirschner CK, McCartney CR, Burt Solorzano CM. Non-PCOS Hyperandrogenic Disorders in Adolescents. Semin Reprod Med 2022. [PMID: 35052005 DOI: 10.1055/s-0041-1742259] [Reference Citation Analysis]
40 di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian hormone in female reproduction. Endocr Rev 2021:bnab012. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022;:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Reference Citation Analysis]
42 Silva MSB, Giacobini P. New insights into anti-Müllerian hormone role in the hypothalamic-pituitary-gonadal axis and neuroendocrine development. Cell Mol Life Sci 2021;78:1-16. [PMID: 32564094 DOI: 10.1007/s00018-020-03576-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
43 Andrisse S, Feng M, Wang Z, Awe O, Yu L, Zhang H, Bi S, Wang H, Li L, Joseph S, Heller N, Mauvais-Jarvis F, Wong GW, Segars J, Wolfe A, Divall S, Ahima R, Wu S. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J 2021;35:e21921. [PMID: 34547140 DOI: 10.1096/fj.202100961R] [Reference Citation Analysis]
44 Yanes Cardozo LL, Romero DG. Management of cardiometabolic complications in polycystic ovary syndrome: Unmet needs. FASEB J 2021;35:e21945. [PMID: 34606638 DOI: 10.1096/fj.202002526RR] [Reference Citation Analysis]
45 Khatun M, Meltsov A, Lavogina D, Loid M, Kask K, Arffman RK, Rossi HR, Lättekivi F, Jääger K, Krjutškov K, Rinken A, Salumets A, Piltonen TT. Decidualized endometrial stromal cells present with altered androgen response in PCOS. Sci Rep 2021;11:16287. [PMID: 34381107 DOI: 10.1038/s41598-021-95705-0] [Reference Citation Analysis]
46 Secchi C, Belli M, Harrison TNH, Swift J, Ko C, Duleba AJ, Stupack D, Chang RJ, Shimasaki S. Effect of the spatial-temporal specific theca cell Cyp17 overexpression on the reproductive phenotype of the novel TC17 mouse. J Transl Med 2021;19:428. [PMID: 34654452 DOI: 10.1186/s12967-021-03103-x] [Reference Citation Analysis]
47 Mancini A, Bruno C, Vergani E, d'Abate C, Giacchi E, Silvestrini A. Oxidative Stress and Low-Grade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. Int J Mol Sci 2021;22:1667. [PMID: 33562271 DOI: 10.3390/ijms22041667] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
48 Barsky M, Merkison J, Hosseinzadeh P, Yang L, Bruno-Gaston J, Dunn J, Gibbons W, Blesson CS. Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development. J Steroid Biochem Mol Biol 2021;207:105830. [PMID: 33515680 DOI: 10.1016/j.jsbmb.2021.105830] [Reference Citation Analysis]
49 Dejana R, Nikola J, Marija BI, Aleksandra D, Ognjen D, Tatjana V, Kristina A, Vladimir J, Jovana JJ. Challenges in Establishing a Relevant Model of Polycystic Ovary Syndrome in Rats – A Mini Review. Serbian Journal of Experimental and Clinical Research 2021;0. [DOI: 10.2478/sjecr-2021-0034] [Reference Citation Analysis]
50 Sati A, Prescott M, Holland S, Jasoni CL, Desroziers E, Campbell RE. Morphological evidence indicates a role for microglia in shaping the PCOS-like brain. J Neuroendocrinol 2021;33:e12999. [PMID: 34216402 DOI: 10.1111/jne.12999] [Reference Citation Analysis]
51 Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology 2021;162:bqab158. [PMID: 34346492 DOI: 10.1210/endocr/bqab158] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Li T, Dong G, Kang Y, Zhang M, Sheng X, Wang Z, Liu Y, Kong N, Sun H. Increased homocysteine regulated by androgen activates autophagy by suppressing the mammalian target of rapamycin pathway in the granulosa cells of polycystic ovary syndrome mice. Bioengineered 2022;13:10875-88. [PMID: 35485387 DOI: 10.1080/21655979.2022.2066608] [Reference Citation Analysis]
53 Joham AE, Norman RJ, Stener-victorin E, Legro RS, Franks S, Moran LJ, Boyle J, Teede HJ. Polycystic ovary syndrome. The Lancet Diabetes & Endocrinology 2022. [DOI: 10.1016/s2213-8587(22)00163-2] [Reference Citation Analysis]
54 Jamieson BB, Moore AM, Lohr DB, Thomas SX, Coolen LM, Lehman MN, Campbell RE, Piet R. Prenatal androgen treatment impairs the suprachiasmatic nucleus arginine-vasopressin to kisspeptin neuron circuit in female mice. Front Endocrinol 2022;13:951344. [DOI: 10.3389/fendo.2022.951344] [Reference Citation Analysis]
55 Rotgers E, Nicol B, Rodriguez K, Rattan S, Flaws JA, Yao HH. Constitutive expression of Steroidogenic factor-1 (NR5A1) disrupts ovarian functions, fertility, and metabolic homeostasis in female mice. FASEB J 2021;35:e21770. [PMID: 34288113 DOI: 10.1096/fj.202100304R] [Reference Citation Analysis]
56 Huffman AM, Rezq S, Basnet J, Yanes Cardozo LL, Romero DG. SARS-CoV-2 Viral Entry Proteins in Hyperandrogenemic Female Mice: Implications for Women with PCOS and COVID-19. Int J Mol Sci 2021;22:4472. [PMID: 33922918 DOI: 10.3390/ijms22094472] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Rodriguez Paris V, Walters KA. Humanin: A Potential Treatment for PCOS? Endocrinology 2021;162:bqab085. [PMID: 33899108 DOI: 10.1210/endocr/bqab085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Steegers-Theunissen RPM, Wiegel RE, Jansen PW, Laven JSE, Sinclair KD. Polycystic Ovary Syndrome: A Brain Disorder Characterized by Eating Problems Originating during Puberty and Adolescence. Int J Mol Sci 2020;21:E8211. [PMID: 33153014 DOI: 10.3390/ijms21218211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Silva MSB, Campbell RE. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. Compr Physiol 2022;12:3347-69. [PMID: 35578968 DOI: 10.1002/cphy.c210025] [Reference Citation Analysis]
60 Mimouni NEH, Giacobini P. Polycystic ovary syndrome mouse model by prenatal exposure to high anti-Müllerian hormone. STAR Protoc 2021;2:100684. [PMID: 34401772 DOI: 10.1016/j.xpro.2021.100684] [Reference Citation Analysis]
61 Bharati J, Kumar S, Kumar S, Mohan NH, Islam R, Pegu SR, Banik S, Das BC, Borah S, Sarkar M. Androgen receptor gene deficiency results in the reduction of steroidogenic potential in porcine luteal cells. Anim Biotechnol 2022;:1-14. [PMID: 35678291 DOI: 10.1080/10495398.2022.2079517] [Reference Citation Analysis]
62 Seidu T, McWhorter P, Myer J, Alamgir R, Eregha N, Bogle D, Lofton T, Ecelbarger C, Andrisse S. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. J Endocrinol 2021;250:49-65. [PMID: 34060475 DOI: 10.1530/JOE-21-0040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
63 Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020;41:bnaa010. [PMID: 32310267 DOI: 10.1210/endrev/bnaa010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 45.0] [Reference Citation Analysis]
64 Sucquart IE, Nagarkar R, Edwards MC, Rodriguez Paris V, Aflatounian A, Bertoldo MJ, Campbell RE, Gilchrist RB, Begg DP, Handelsman DJ, Padmanabhan V, Anderson RA, Walters KA. Neurokinin 3 Receptor Antagonism Ameliorates Key Metabolic Features in a Hyperandrogenic PCOS Mouse Model. Endocrinology 2021;162:bqab020. [PMID: 33522579 DOI: 10.1210/endocr/bqab020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Piltonen TT, Arffman RK, Joham AE. Natural History of Polycystic Ovary Syndrome and New Advances in the Epidemiology. Semin Reprod Med 2021;39:94-101. [PMID: 34464984 DOI: 10.1055/s-0041-1735211] [Reference Citation Analysis]
66 Anesetti G, Chávez-Genaro R. Neonatal androgenization in rats affects oocyte maturation. Reprod Sci 2021;28:2799-806. [PMID: 33825168 DOI: 10.1007/s43032-021-00559-6] [Reference Citation Analysis]
67 Pieczyńska JM, Pruszyńska-Oszmałek E, Kołodziejski PA, Łukomska A, Bajerska J. The Role of a High-Fat, High-Fructose Diet on Letrozole-Induced Polycystic Ovarian Syndrome in Prepubertal Mice. Nutrients 2022;14:2478. [PMID: 35745209 DOI: 10.3390/nu14122478] [Reference Citation Analysis]