BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng Z, Ko C. The Role of Glial Cells in the Formation and Maintenance of the Neuromuscular Junction. Annals of the New York Academy of Sciences 2008;1132:19-28. [DOI: 10.1196/annals.1405.016] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Santosa KB, Keane AM, Jablonka-Shariff A, Vannucci B, Snyder-Warwick AK. Clinical relevance of terminal Schwann cells: An overlooked component of the neuromuscular junction. J Neurosci Res 2018;96:1125-35. [PMID: 29536564 DOI: 10.1002/jnr.24231] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
2 Zainul Z. Terminal Schwann Cells Lead Synapse Remodelling following Injury(1,2). eNeuro 2014;1:ENEURO. [PMID: 26464962 DOI: 10.1523/ENEURO.0028-14.2014] [Reference Citation Analysis]
3 Madduri S, Gander B. Growth factor delivery systems and repair strategies for damaged peripheral nerves. J Control Release 2012;161:274-82. [PMID: 22178593 DOI: 10.1016/j.jconrel.2011.11.036] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 4.8] [Reference Citation Analysis]
4 Armati PJ, Mathey EK. Clinical implications of Schwann cell biology. J Peripher Nerv Syst 2014;19:14-23. [PMID: 24502278 DOI: 10.1111/jns5.12057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
5 Krakora D, Macrander C, Suzuki M. Neuromuscular junction protection for the potential treatment of amyotrophic lateral sclerosis. Neurol Res Int 2012;2012:379657. [PMID: 22919482 DOI: 10.1155/2012/379657] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
6 Barik A, Lu Y, Sathyamurthy A, Bowman A, Shen C, Li L, Xiong WC, Mei L. LRP4 is critical for neuromuscular junction maintenance. J Neurosci 2014;34:13892-905. [PMID: 25319686 DOI: 10.1523/JNEUROSCI.1733-14.2014] [Cited by in Crossref: 81] [Cited by in F6Publishing: 53] [Article Influence: 11.6] [Reference Citation Analysis]
7 Caillol G, Vacher H, Musarella M, Bellouze S, Dargent B, Autillo-touati A. Motor endplate disease affects neuromuscular junction maturation: Neuromuscular junction development. European Journal of Neuroscience 2012;36:2400-8. [DOI: 10.1111/j.1460-9568.2012.08164.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
8 Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, Seidenbecher C. Contributions of astrocytes to synapse formation and maturation - Potential functions of the perisynaptic extracellular matrix. Brain Res Rev. 2010;63:26-38. [PMID: 20096729 DOI: 10.1016/j.brainresrev.2010.01.001] [Cited by in Crossref: 139] [Cited by in F6Publishing: 138] [Article Influence: 11.6] [Reference Citation Analysis]
9 Thomson SR, Nahon JE, Mutsaers CA, Thomson D, Hamilton G, Parson SH, Gillingwater TH. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLoS One 2012;7:e52605. [PMID: 23285108 DOI: 10.1371/journal.pone.0052605] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
10 MacDonald R, Barbat-Artigas S, Cho C, Peng H, Shang J, Moustaine A, Carbonetto S, Robitaille R, Chalifour LE, Paudel H. A Novel Egr-1-Agrin Pathway and Potential Implications for Regulation of Synaptic Physiology and Homeostasis at the Neuromuscular Junction. Front Aging Neurosci 2017;9:258. [PMID: 28824419 DOI: 10.3389/fnagi.2017.00258] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
11 Wang H, Salter CG, Refai O, Hardy H, Barwick KES, Akpulat U, Kvarnung M, Chioza BA, Harlalka G, Taylan F, Sejersen T, Wright J, Zimmerman HH, Karakaya M, Stüve B, Weis J, Schara U, Russell MA, Abdul-Rahman OA, Chilton J, Blakely RD, Baple EL, Cirak S, Crosby AH. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization. Brain 2017;140:2838-50. [PMID: 29088354 DOI: 10.1093/brain/awx249] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
12 Voigt T, Neve A, Schümperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol 2014;40:416-34. [PMID: 23718187 DOI: 10.1111/nan.12064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
13 de Jongh R, Spijkers XM, Pasteuning-Vuhman S, Vulto P, Pasterkamp RJ. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices. J Neurochem 2021;157:393-412. [PMID: 33382092 DOI: 10.1111/jnc.15289] [Reference Citation Analysis]
14 Duregotti E, Negro S, Scorzeto M, Zornetta I, Dickinson BC, Chang CJ, Montecucco C, Rigoni M. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci U S A 2015;112:E497-505. [PMID: 25605902 DOI: 10.1073/pnas.1417108112] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 5.4] [Reference Citation Analysis]
15 Kitada M, Murakami T, Wakao S, Li G, Dezawa M. Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia 2019;67:950-66. [PMID: 30637802 DOI: 10.1002/glia.23582] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
16 Luttrell SM, Smith AST, Mack DL. Creating stem cell-derived neuromuscular junctions in vitro. Muscle Nerve 2021. [PMID: 34328673 DOI: 10.1002/mus.27360] [Reference Citation Analysis]
17 Arbour D, Tremblay E, Martineau É, Julien JP, Robitaille R. Early and persistent abnormal decoding by glial cells at the neuromuscular junction in an ALS model. J Neurosci 2015;35:688-706. [PMID: 25589763 DOI: 10.1523/JNEUROSCI.1379-14.2015] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
18 Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021;10:3292. [PMID: 34943800 DOI: 10.3390/cells10123292] [Reference Citation Analysis]
19 Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020;13:610964. [PMID: 33343299 DOI: 10.3389/fnmol.2020.610964] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
20 Logan CV, Cossins J, Rodríguez Cruz PM, Parry DA, Maxwell S, Martínez-Martínez P, Riepsaame J, Abdelhamed ZA, Lake AV, Moran M, Robb S, Chow G, Sewry C, Hopkins PM, Sheridan E, Jayawant S, Palace J, Johnson CA, Beeson D. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain. Am J Hum Genet 2015;97:878-85. [PMID: 26626625 DOI: 10.1016/j.ajhg.2015.10.017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
21 Barik A, Li L, Sathyamurthy A, Xiong WC, Mei L. Schwann Cells in Neuromuscular Junction Formation and Maintenance. J Neurosci 2016;36:9770-81. [PMID: 27656017 DOI: 10.1523/JNEUROSCI.0174-16.2016] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 9.6] [Reference Citation Analysis]
22 Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 2008;60:430-40. [PMID: 18995817 DOI: 10.1016/j.neuron.2008.10.013] [Cited by in Crossref: 769] [Cited by in F6Publishing: 764] [Article Influence: 54.9] [Reference Citation Analysis]
23 Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021;12:494-514. [PMID: 33815879 DOI: 10.14336/AD.2020.0708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Grimal S, Puech S, Wagener R, Ventéo S, Carroll P, Fichard-Carroll A. Collagen XXVIII is a distinctive component of the peripheral nervous system nodes of ranvier and surrounds nonmyelinating glial cells. Glia 2010;58:1977-87. [PMID: 20830809 DOI: 10.1002/glia.21066] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
25 Chan ZC, Oentaryo MJ, Lee CW. MMP-mediated modulation of ECM environment during axonal growth and NMJ development. Neurosci Lett 2020;724:134822. [PMID: 32061716 DOI: 10.1016/j.neulet.2020.134822] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
26 Shi L, Fu AK, Ip NY. Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012;35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 8.5] [Reference Citation Analysis]
27 Tintignac LA, Brenner H, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiological Reviews 2015;95:809-52. [DOI: 10.1152/physrev.00033.2014] [Cited by in Crossref: 171] [Cited by in F6Publishing: 156] [Article Influence: 24.4] [Reference Citation Analysis]
28 Murray LM, Talbot K, Gillingwater TH. Review: Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathology and Applied Neurobiology 2010;36:133-56. [DOI: 10.1111/j.1365-2990.2010.01061.x] [Cited by in Crossref: 97] [Cited by in F6Publishing: 98] [Article Influence: 8.1] [Reference Citation Analysis]
29 Kawabuchi M, Tan H, Wang S. Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury. Ageing Res Rev 2011;10:43-53. [PMID: 20943206 DOI: 10.1016/j.arr.2010.10.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
30 Zacchigna S, Giacca M. Chapter 20 Gene Therapy Perspectives for Nerve Repair. Elsevier; 2009. pp. 381-92. [DOI: 10.1016/s0074-7742(09)87020-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
31 Sebastião AM, Rei N, Ribeiro JA. Amyotrophic Lateral Sclerosis (ALS) and Adenosine Receptors. Front Pharmacol 2018;9:267. [PMID: 29713276 DOI: 10.3389/fphar.2018.00267] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
32 Pfrieger FW. Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 2010;63:39-46. [PMID: 19931561 DOI: 10.1016/j.brainresrev.2009.11.002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 6.0] [Reference Citation Analysis]
33 Alvarez-Suarez P, Gawor M, Prószyński TJ. Perisynaptic schwann cells - The multitasking cells at the developing neuromuscular junctions. Semin Cell Dev Biol 2020;104:31-8. [PMID: 32147379 DOI: 10.1016/j.semcdb.2020.02.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
34 Jablonka-Shariff A, Broberg C, Rios R, Snyder-Warwick AK. T-box transcription factor 21 is expressed in terminal Schwann cells at the neuromuscular junction. Muscle Nerve 2021;64:109-15. [PMID: 33908666 DOI: 10.1002/mus.27257] [Reference Citation Analysis]
35 Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2021. [PMID: 34928395 DOI: 10.1007/s00421-021-04865-4] [Reference Citation Analysis]
36 Rousse I, St-Amour A, Darabid H, Robitaille R. Synapse-glia interactions are governed by synaptic and intrinsic glial properties. Neuroscience 2010;167:621-32. [PMID: 20188148 DOI: 10.1016/j.neuroscience.2010.02.036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 0.8] [Reference Citation Analysis]
37 Sugiura Y, Lin W. Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function. Biosci Rep 2011;31:295-302. [PMID: 21517783 DOI: 10.1042/BSR20100107] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
38 Schaakxs D, Kalbermatten DF, Raffoul W, Wiberg M, Kingham PJ. Regenerative cell injection in denervated muscle reduces atrophy and enhances recovery following nerve repair: Denervated Muscle Cell Therapy. Muscle Nerve 2013;47:691-701. [DOI: 10.1002/mus.23662] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
39 Sinegubov A, Andreeva D, Burzak N, Vasyutina M, Murashova L, Dyachuk V. Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Front Mol Neurosci 2022;15:737949. [DOI: 10.3389/fnmol.2022.737949] [Reference Citation Analysis]
40 Bolton MM, Eroglu C. Look who is weaving the neural web: glial control of synapse formation. Curr Opin Neurobiol 2009;19:491-7. [PMID: 19879129 DOI: 10.1016/j.conb.2009.09.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
41 Berg A, Zelano J, Pekna M, Wilhelmsson U, Pekny M, Cullheim S. Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice. PLoS One. 2013;8:e79395. [PMID: 24223940 DOI: 10.1371/journal.pone.0079395] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
42 Audouard E, Schakman O, René F, Huettl RE, Huber AB, Loeffler JP, Gailly P, Clotman F. The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. PLoS One 2012;7:e50509. [PMID: 23227180 DOI: 10.1371/journal.pone.0050509] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
43 Lepore E, Casola I, Dobrowolny G, Musarò A. Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells 2019;8:E906. [PMID: 31426366 DOI: 10.3390/cells8080906] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
44 Van Dyke JM, Smit-Oistad IM, Macrander C, Krakora D, Meyer MG, Suzuki M. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS). Exp Neurol 2016;277:275-82. [PMID: 26775178 DOI: 10.1016/j.expneurol.2016.01.008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
45 Strochlic L, Falk J, Goillot E, Sigoillot S, Bourgeois F, Delers P, Rouvière J, Swain A, Castellani V, Schaeffer L, Legay C. Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS One 2012;7:e29976. [PMID: 22253844 DOI: 10.1371/journal.pone.0029976] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 6.1] [Reference Citation Analysis]
46 Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022. [PMID: 34997540 DOI: 10.1007/s12035-021-02658-6] [Reference Citation Analysis]
47 Koles K, Budnik V. Wnt signaling in neuromuscular junction development. Cold Spring Harb Perspect Biol 2012;4:a008045. [PMID: 22510459 DOI: 10.1101/cshperspect.a008045] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 6.6] [Reference Citation Analysis]
48 Rodrigues ACZ, Messi ML, Wang ZM, Abba MC, Pereyra A, Birbrair A, Zhang T, O'Meara M, Kwan P, Lopez EIS, Willis MS, Mintz A, Files DC, Furdui C, Oppenheim RW, Delbono O. The sympathetic nervous system regulates skeletal muscle motor innervation and acetylcholine receptor stability. Acta Physiol (Oxf) 2019;225:e13195. [PMID: 30269419 DOI: 10.1111/apha.13195] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]