BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sankar A, Zhang T, Gaonkar B, Doshi J, Erus G, Costafreda SG, Marangell L, Davatzikos C, Fu CH. Diagnostic potential of structural neuroimaging for depression from a multi-ethnic community sample. BJPsych Open 2016;2:247-54. [PMID: 27703783 DOI: 10.1192/bjpo.bp.115.002493] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
Number Citing Articles
1 Fu CHY, Fan Y, Davatzikos C. Widespread Morphometric Abnormalities in Major Depression: Neuroplasticity and Potential for Biomarker Development. Neuroimaging Clin N Am 2020;30:85-95. [PMID: 31759575 DOI: 10.1016/j.nic.2019.09.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
2 Mousavian M, Chen J, Traylor Z, Greening S. Depression detection from sMRI and rs-fMRI images using machine learning. J Intell Inf Syst 2021;57:395-418. [DOI: 10.1007/s10844-021-00653-w] [Reference Citation Analysis]
3 MacQueen GM, Hassel S, Arnott SR, Jean A, Bowie CR, Bray SL, Davis AD, Downar J, Foster JA, Frey BN, Goldstein BI, Hall GB, Harkness KL, Harris J, Lam RW, Lebel C, Milev R, Müller DJ, Parikh SV, Rizvi S, Rotzinger S, Sharma GB, Soares CN, Turecki G, Vila-Rodriguez F, Yu J, Zamyadi M, Strother SC, Kennedy SH; CAN-BIND Investigator Team. The Canadian Biomarker Integration Network in Depression (CAN-BIND): magnetic resonance imaging protocols. J Psychiatry Neurosci 2019;44:223-36. [PMID: 30840428 DOI: 10.1503/jpn.180036] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
4 Li H, Song S, Wang D, Tan Z, Lian Z, Wang Y, Zhou X, Pan C. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features. BMC Psychiatry 2021;21:415. [PMID: 34416848 DOI: 10.1186/s12888-021-03414-9] [Reference Citation Analysis]
5 Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp. 2020;41:3468-3535. [PMID: 32374075 DOI: 10.1002/hbm.25013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
6 Geng X, Xu J, Liu B, Shi Y. Multivariate Classification of Major Depressive Disorder Using the Effective Connectivity and Functional Connectivity. Front Neurosci 2018;12:38. [PMID: 29515348 DOI: 10.3389/fnins.2018.00038] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
7 Li M, Das T, Deng W, Wang Q, Li Y, Zhao L, Ma X, Wang Y, Yu H, Li X, Meng Y, Palaniyappan L, Li T. Clinical utility of a short resting-state MRI scan in differentiating bipolar from unipolar depression. Acta Psychiatr Scand 2017;136:288-99. [PMID: 28504840 DOI: 10.1111/acps.12752] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 8.2] [Reference Citation Analysis]
8 Velosa T, Caldeira S, Capelas M. Depression and Spiritual Distress in Adult Palliative Patients: A Cross-Sectional Study. Religions 2017;8:156. [DOI: 10.3390/rel8080156] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
9 Rashid M, Singh H, Goyal V. The use of machine learning and deep learning algorithms in functional magnetic resonance imaging—A systematic review. Expert Systems 2020;37. [DOI: 10.1111/exsy.12644] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
10 Fu CHY, Fan Y, Davatzikos C. Addressing heterogeneity (and homogeneity) in treatment mechanisms in depression and the potential to develop diagnostic and predictive biomarkers. Neuroimage Clin 2019;24:101997. [PMID: 31525565 DOI: 10.1016/j.nicl.2019.101997] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
11 Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci Ther 2018;24:1037-52. [PMID: 30136381 DOI: 10.1111/cns.13048] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]