BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res 2019;38:218. [PMID: 31122265 DOI: 10.1186/s13046-019-1214-z] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021;34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
2 Al-Azzam N. Sirtuin 6 and metabolic genes interplay in Warburg effect in cancers. J Clin Biochem Nutr 2020;66:169-75. [PMID: 32523242 DOI: 10.3164/jcbn.19-110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol 2020;177:113988. [PMID: 32330495 DOI: 10.1016/j.bcp.2020.113988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Petővári G, Dankó T, Tőkés AM, Vetlényi E, Krencz I, Raffay R, Hajdu M, Sztankovics D, Németh K, Vellai-Takács K, Jeney A, Kulka J, Sebestyén A. In Situ Metabolic Characterisation of Breast Cancer and Its Potential Impact on Therapy. Cancers (Basel) 2020;12:E2492. [PMID: 32899149 DOI: 10.3390/cancers12092492] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Sakharkar MK, Rajamanickam K, Ji S, Dhillon SK, Yang J. Pairwise correlation of genes involved in glucose metabolism: a potential diagnostic marker of cancer? Genes Cancer 2021;12:69-76. [PMID: 34163562 DOI: 10.18632/genesandcancer.216] [Reference Citation Analysis]
6 Klein S, Distel LVR, Neuhuber W, Kryschi C. Caffeic Acid, Quercetin and 5-Fluorocytidine-Functionalized Au-Fe3O4 Nanoheterodimers for X-ray-Triggered Drug Delivery in Breast Tumor Spheroids. Nanomaterials (Basel) 2021;11:1167. [PMID: 33947086 DOI: 10.3390/nano11051167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Lee H, To NB, Kim M, Nguyen YT, Cho SK, Choi HK. Metabolic and lipidomic characterization of radioresistant MDA-MB-231 human breast cancer cells to investigate potential therapeutic targets. J Pharm Biomed Anal 2022;208:114449. [PMID: 34749107 DOI: 10.1016/j.jpba.2021.114449] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li H, Zimmerman SE, Weyemi U. Genomic instability and metabolism in cancer. Int Rev Cell Mol Biol 2021;364:241-65. [PMID: 34507785 DOI: 10.1016/bs.ircmb.2021.05.004] [Reference Citation Analysis]
9 Xu Z, Peng B, Cai Y, Wu G, Huang J, Gao M, Guo G, Zeng S, Gong Z, Yan Y. N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol 2020;182:114258. [PMID: 33017575 DOI: 10.1016/j.bcp.2020.114258] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
10 Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Medicine in Drug Discovery 2020;6:100024. [DOI: 10.1016/j.medidd.2020.100024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
11 Lee JJ, Beak S, Ahn SH, Moon BS, Kim J, Lee KP. Suppressing breast cancer by exercise: consideration to animal models and exercise protocols. Phys Act Nutr 2020;24:22-9. [PMID: 32698258 DOI: 10.20463/pan.2020.0011] [Reference Citation Analysis]
12 Zhang J, Chen G, Gao Y, Liang H. HOTAIR/miR-125 axis-mediated Hexokinase 2 expression promotes chemoresistance in human glioblastoma. J Cell Mol Med 2020;24:5707-17. [PMID: 32279420 DOI: 10.1111/jcmm.15233] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
13 Wang JM, Gao Q, Zhang Q, Hao L, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. Implication of BAG5 downregulation in metabolic reprogramming of cisplatin-resistant ovarian cancer cells via mTORC2 signaling pathway. Biochim Biophys Acta Mol Cell Res 2021;1868:119076. [PMID: 34126157 DOI: 10.1016/j.bbamcr.2021.119076] [Reference Citation Analysis]
14 Han J, Zhang Y, Xu J, Zhang T, Wang H, Wang Z, Jiang Y, Zhou L, Yang M, Hua Y, Cai Z. Her4 promotes cancer metabolic reprogramming via the c-Myc-dependent signaling axis. Cancer Lett 2021;496:57-71. [PMID: 33038488 DOI: 10.1016/j.canlet.2020.10.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ma Z, Li Z, Ma Z, Zhou Z, Zhuang H, Liu C, Huang B, Zou Y, Zheng Z, Yang L, Gong Y, Huang S, Zhou Q, Zhang C, Hou B. Development of a KRAS-Associated Metabolic Risk Model for Prognostic Prediction in Pancreatic Cancer. Biomed Res Int 2021;2021:9949272. [PMID: 34660806 DOI: 10.1155/2021/9949272] [Reference Citation Analysis]
16 Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020;52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chevalier B, Pasquier D, Lartigau EF, Chargari C, Schernberg A, Jannin A, Mirabel X, Vantyghem MC, Escande A. Metformin: (future) best friend of the radiation oncologist? Radiother Oncol 2020;151:95-105. [PMID: 32592892 DOI: 10.1016/j.radonc.2020.06.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
18 Pavlatovská B, Machálková M, Brisudová P, Pruška A, Štěpka K, Michálek J, Nečasová T, Beneš P, Šmarda J, Preisler J, Kozubek M, Navrátilová J. Lactic Acidosis Interferes With Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis. Front Oncol 2020;10:581365. [PMID: 33344237 DOI: 10.3389/fonc.2020.581365] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Gao Y, Zhu Y, Tran EL, Tokars V, Dean AE, Quan S, Gius D. MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism. Int J Biol Sci 2021;17:1203-16. [PMID: 33867840 DOI: 10.7150/ijbs.51184] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Sun X, Sun G, Huang Y, Zhang S, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. Glycolytic inhibition by 3-bromopyruvate increases the cytotoxic effects of chloroethylnitrosoureas to human glioma cells and the DNA interstrand cross-links formation. Toxicology 2020;435:152413. [PMID: 32109525 DOI: 10.1016/j.tox.2020.152413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wang R, Li J, Zhang C, Guan X, Qin B, Jin R, Qin L, Xu S, Zhang X, Liu R, Ye Q, Cheng L. Lactate Dehydrogenase B Is Required for Pancreatic Cancer Cell Immortalization Through Activation of Telomerase Activity. Front Oncol 2022;12:821620. [DOI: 10.3389/fonc.2022.821620] [Reference Citation Analysis]
22 da Silva EL, Mesquita FP, de Sousa Portilho AJ, Bezerra ECA, Daniel JP, Aranha ESP, Farran S, de Vasconcellos MC, de Moraes MEA, Moreira-Nunes CA, Montenegro RC. Differences in glucose concentration shows new perspectives in gastric cancer metabolism. Toxicol In Vitro 2022;:105357. [PMID: 35427737 DOI: 10.1016/j.tiv.2022.105357] [Reference Citation Analysis]
23 Yongabi D, Khorshid M, Losada-Pérez P, Bakhshi Sichani S, Jooken S, Stilman W, Theßeling F, Martens T, Van Thillo T, Verstrepen K, Dedecker P, Vanden Berghe P, Lettinga MP, Bartic C, Lieberzeit P, Schöning MJ, Thoelen R, Fransen M, Wübbenhorst M, Wagner P. Synchronized, Spontaneous, and Oscillatory Detachment of Eukaryotic Cells: A New Tool for Cell Characterization and Identification. Adv Sci (Weinh) 2022;:e2200459. [PMID: 35780480 DOI: 10.1002/advs.202200459] [Reference Citation Analysis]
24 Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci 2021;22:9451. [PMID: 34502361 DOI: 10.3390/ijms22179451] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Han JH, Kim M, Kim HJ, Jang SB, Bae SJ, Lee IK, Ryu D, Ha KT. Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int J Mol Sci 2021;22:5406. [PMID: 34065602 DOI: 10.3390/ijms22105406] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Craven RJ, Frazier HN, Thibault O. Dependence of glucose transport on autophagy and GAPDH activity. Brain Res 2021;1776:147747. [PMID: 34864044 DOI: 10.1016/j.brainres.2021.147747] [Reference Citation Analysis]
27 Hader M, Savcigil DP, Rosin A, Ponfick P, Gekle S, Wadepohl M, Bekeschus S, Fietkau R, Frey B, Schlücker E, Gaipl US. Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers (Basel) 2020;12:E1082. [PMID: 32349284 DOI: 10.3390/cancers12051082] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
28 Cocetta V, Ragazzi E, Montopoli M. Links between cancer metabolism and cisplatin resistance. Int Rev Cell Mol Biol 2020;354:107-64. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
29 Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020;11:377-98. [PMID: 32843908 DOI: 10.1007/s13167-020-00217-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
30 Baier D, Schoenhacker-alte B, Rusz M, Pirker C, Mohr T, Mendrina T, Kirchhofer D, Meier-menches SM, Hohenwallner K, Schaier M, Rampler E, Koellensperger G, Heffeter P, Keppler B, Berger W. The Anticancer Ruthenium Compound BOLD-100 Targets Glycolysis and Generates a Metabolic Vulnerability towards Glucose Deprivation. Pharmaceutics 2022;14:238. [DOI: 10.3390/pharmaceutics14020238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EK, Yeo ELL. Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett 2021;511:56-67. [PMID: 33933554 DOI: 10.1016/j.canlet.2021.04.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Sun X, Fan T, Sun G, Zhou Y, Huang Y, Zhang N, Zhao L, Zhong R, Peng Y. 2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation. Biochem Pharmacol 2022;199:115029. [PMID: 35381210 DOI: 10.1016/j.bcp.2022.115029] [Reference Citation Analysis]
33 Zhang X, Chen M, Ni X, Wang Y, Zheng X, Zhang H, Xu S, Yang CT. Metabolic Reprogramming of Sulfur in Hepatocellular Carcinoma and Sulfane Sulfur-Triggered Anti-Cancer Strategy. Front Pharmacol 2020;11:571143. [PMID: 33101029 DOI: 10.3389/fphar.2020.571143] [Reference Citation Analysis]
34 Daks A, Shuvalov O, Fedorova O, Petukhov A, Lezina L, Zharova A, Baidyuk E, Khudiakov A, Barlev NA. p53-Independent Effects of Set7/9 Lysine Methyltransferase on Metabolism of Non-Small Cell Lung Cancer Cells. Front Oncol 2021;11:706668. [PMID: 34692483 DOI: 10.3389/fonc.2021.706668] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhang Z, Zhang HJ. Glycometabolic rearrangements-aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): roles, regulatory networks, and therapeutic potential. Expert Opin Ther Targets 2021;:1-17. [PMID: 34874212 DOI: 10.1080/14728222.2021.2015321] [Reference Citation Analysis]
36 de Mey S, Dufait I, De Ridder M. Radioresistance of Human Cancers: Clinical Implications of Genetic Expression Signatures. Front Oncol 2021;11:761901. [PMID: 34778082 DOI: 10.3389/fonc.2021.761901] [Reference Citation Analysis]
37 Yang GJ, Wu J, Leung CH, Ma DL, Chen J. A review on the emerging roles of pyruvate kinase M2 in anti-leukemia therapy. Int J Biol Macromol 2021:S0141-8130(21)02378-3. [PMID: 34740687 DOI: 10.1016/j.ijbiomac.2021.10.213] [Reference Citation Analysis]
38 Gou Q, Zhang W, Xu Y, Jin J, Liu Q, Hou Y, Shi J. EGFR/PPARδ/HSP90 pathway mediates cancer cell metabolism and chemoresistance. J Cell Biochem 2021;122:394-402. [PMID: 33164261 DOI: 10.1002/jcb.29868] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Batista JM, Neves MJ, Pereira AG, Gonçalves LS, Menezes HC, Cardeal ZL. Metabolomic studies of amino acid analysis in Saccharomyces cells exposed to selenium and gamma irradiation. Anal Biochem 2020;597:113666. [PMID: 32142760 DOI: 10.1016/j.ab.2020.113666] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Skaripa-Koukelli I, Hauton D, Walsby-Tickle J, Thomas E, Owen J, Lakshminarayanan A, Able S, McCullagh J, Carlisle RC, Vallis KA. 3-Bromopyruvate-mediated MCT1-dependent metabolic perturbation sensitizes triple negative breast cancer cells to ionizing radiation. Cancer Metab 2021;9:37. [PMID: 34649623 DOI: 10.1186/s40170-021-00273-6] [Reference Citation Analysis]
41 Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020;96:561-76. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
42 Zheng J, Luo J, Zeng H, Guo L, Shao G. 125I suppressed the Warburg effect viaregulating miR-338/PFKL axis in hepatocellular carcinoma.Biomed Pharmacother. 2019;119:109402. [PMID: 31514072 DOI: 10.1016/j.biopha.2019.109402] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
43 Guo W, Tan HY, Chen F, Wang N, Feng Y. Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines. Cancers (Basel) 2020;12:E404. [PMID: 32050640 DOI: 10.3390/cancers12020404] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
44 Zhu Y, Piao C, Zhang Z, Jiang Y, Kong C. The potential role of c-MYC and polyamine metabolism in multiple drug resistance in bladder cancer investigated by metabonomics. Genomics 2021;114:125-37. [PMID: 34843906 DOI: 10.1016/j.ygeno.2021.11.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 He D, Chen M, Chang L, Gu J, Liu F, Gao X, Ruan Y. De novo pyrimidine synthesis fuels glycolysis and confers chemoresistance in gastric cancer. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.215837] [Reference Citation Analysis]
46 Subramanian C, Gorney R, Wang T, Ge D, Zhang N, Zuo A, Blagg BSJ, Cohen MS. A novel heat shock protein inhibitor KU757 with efficacy in lenvatinib-resistant follicular thyroid cancer cells overcomes up-regulated glycolysis in drug-resistant cells in vitro. Surgery 2021;169:34-42. [PMID: 32718802 DOI: 10.1016/j.surg.2020.06.009] [Reference Citation Analysis]
47 Mahar R, Ragavan M, Chang MC, Hardiman S, Moussatche N, Behar A, Renne R, Merritt ME. Metabolic signatures associated with oncolytic myxoma viral infections. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-15562-3] [Reference Citation Analysis]
48 Lai YC, Hsieh CY, Lu KY, Sung CH, Ho HY, Cheng ML, Chen AP, Ng SH, Chen FH, Lin G. Monitoring Early Glycolytic Flux Alterations Following Radiotherapy in Cancer and Immune Cells: Hyperpolarized Carbon-13 Magnetic Resonance Imaging Study. Metabolites 2021;11:518. [PMID: 34436459 DOI: 10.3390/metabo11080518] [Reference Citation Analysis]
49 Huang P, Zhu S, Liang X, Zhang Q, Luo X, Liu C, Song L. Regulatory Mechanisms of LncRNAs in Cancer Glycolysis: Facts and Perspectives. Cancer Manag Res 2021;13:5317-36. [PMID: 34262341 DOI: 10.2147/CMAR.S314502] [Reference Citation Analysis]
50 Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020;12:E2252. [PMID: 32806533 DOI: 10.3390/cancers12082252] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
51 Hu W, Xu Z, Zhu S, Sun W, Wang X, Tan C, Zhang Y, Zhang G, Xu Y, Tang J. Small extracellular vesicle-mediated Hsp70 intercellular delivery enhances breast cancer adriamycin resistance. Free Radic Biol Med 2021;164:85-95. [PMID: 33418113 DOI: 10.1016/j.freeradbiomed.2020.12.436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
52 Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020;12:E1662. [PMID: 32585857 DOI: 10.3390/cancers12061662] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
53 Lin YH. Crosstalk of lncRNA and Cellular Metabolism and Their Regulatory Mechanism in Cancer. Int J Mol Sci 2020;21:E2947. [PMID: 32331347 DOI: 10.3390/ijms21082947] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
54 Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer 2020;147:2658-68. [PMID: 32383203 DOI: 10.1002/ijc.33038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Soni VK, Shukla D, Kumar A, Vishvakarma NK. Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1. Int J Biochem Cell Biol 2020;123:105752. [PMID: 32325281 DOI: 10.1016/j.biocel.2020.105752] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
56 Chen SL, Huang QS, Huang YH, Yang X, Yang MM, He YF, Cao Y, Guan XY, Yun JP. GYS1 induces glycogen accumulation and promotes tumor progression via the NF-κB pathway in Clear Cell Renal Carcinoma. Theranostics 2020;10:9186-99. [PMID: 32802186 DOI: 10.7150/thno.46825] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021;40:2339-54. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Huang Y, Sun G, Sun X, Li F, Zhao L, Zhong R, Peng Y. The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment. Cancers (Basel) 2020;12:E3332. [PMID: 33187214 DOI: 10.3390/cancers12113332] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
59 Jothi J, Janardhanam VA, Rama K. Connexin 30 mediated rewiring of glucose metabolism in rat C6 xenograft and grades of glioma. Mol Cell Biochem 2020;470:157-64. [PMID: 32462383 DOI: 10.1007/s11010-020-03757-z] [Reference Citation Analysis]
60 Yi-Liang Shen E, Hung TM, Tsan DL, Cheng NM, Kang CJ, Huang SF, Hsu CL, Lin CY, Wang HM, Chia-Hsun Hsieh J, Cheng AJ, Fan KH, Tung-Chieh Chang J. Utilization of the lymph node-to-primary tumor ratio of PET standardized uptake value and circulating epstein-barr virus DNA to predict distant metastasis in nasopharyngeal carcinoma. Radiother Oncol 2022:S0167-8140(22)00240-7. [PMID: 35568282 DOI: 10.1016/j.radonc.2022.05.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Wang H, Wang L, Pan H, Wang Y, Shi M, Yu H, Wang C, Pan X, Chen Z. Exosomes Derived From Macrophages Enhance Aerobic Glycolysis and Chemoresistance in Lung Cancer by Stabilizing c-Myc via the Inhibition of NEDD4L. Front Cell Dev Biol 2020;8:620603. [PMID: 33748098 DOI: 10.3389/fcell.2020.620603] [Reference Citation Analysis]
62 van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021;11:653621. [PMID: 34041023 DOI: 10.3389/fonc.2021.653621] [Reference Citation Analysis]
63 Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022;15:97. [PMID: 35851420 DOI: 10.1186/s13045-022-01313-4] [Reference Citation Analysis]