1
|
Liu L, He P, Wang Y, Ma F, Li D, Bai Z, Qu Y, Zhu L, Yoon CW, Yu X, Huang Y, Liang Z, Zhang Y, Liu K, Guo T, Zeng Y, Zhou Q, Chung HK, Fan R, Wang Y. Engineering sonogenetic EchoBack-CAR T cells. Cell 2025; 188:2621-2636.e20. [PMID: 40179881 DOI: 10.1016/j.cell.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/13/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy for solid tumors encounters challenges such as on-target off-tumor toxicity, exhaustion, and limited T cell persistence. Here, we engineer sonogenetic EchoBack-CAR T cells using an ultrasensitive heat-shock promoter screened from a library and integrated with a positive feedback loop from CAR signaling, enabling long-lasting CAR expression upon focused-ultrasound (FUS) stimulation. EchoBack-hGD2CAR T cells, targeting disialoganglioside GD2, exhibited potent cytotoxicity and persistence in 3D glioblastoma (GBM) models. In mice, EchoBack-hGD2CAR T cells suppressed GBM without off-tumor toxicity and outperformed their constitutive counterparts. Single-cell RNA sequencing revealed enhanced cytotoxicity and reduced exhaustion in EchoBack-CAR T cells compared with the standard CAR T cells. This EchoBack design was further adapted to target prostate-specific membrane antigen (EchoBack-PSMACAR) for prostate cancer treatment, demonstrating long-lasting tumor suppression with minimal off-tumor toxicity. Thus, the sonogenetic EchoBack-CAR T cells can serve as a versatile, efficient, and safe strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Peixiang He
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuxuan Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Fengyi Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Dulei Li
- Acoustic Cell Therapy, Inc., San Diego, CA 92130, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yunjia Qu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Linshan Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixuan Huang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhengyu Liang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiming Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kunshu Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - H Kay Chung
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Kondo T, Bourassa FXP, Achar S, DuSold J, Céspedes PF, Ando M, Dwivedi A, Moraly J, Chien C, Majdoul S, Kenet AL, Wahlsten M, Kvalvaag A, Jenkins E, Kim SP, Ade CM, Yu Z, Gaud G, Davila M, Love P, Yang JC, Dustin ML, Altan-Bonnet G, François P, Taylor N. Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity. Cell 2025; 188:2372-2389.e35. [PMID: 40220754 DOI: 10.1016/j.cell.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors (TCRs) can discriminate between neoantigen-expressing cancer cells and self-antigen-expressing healthy tissues but have limited potency against tumors. We used a high-throughput platform to systematically evaluate the impact of co-expressing a TCR and CAR on the same CAR T cell. While strong TCR-antigen interactions enhanced CAR activation, weak TCR-antigen interactions actively antagonized their activation. Mathematical modeling captured this TCR-CAR crosstalk in CAR T cells, allowing us to engineer dual TCR/CAR T cells targeting neoantigens (HHATL8F/p53R175H) and human epithelial growth factor receptor 2 (HER2) ligands, respectively. These T cells exhibited superior anti-cancer activity and minimal toxicity against healthy tissue compared with conventional CAR T cells in a humanized solid tumor mouse model. Harnessing pre-existing inhibitory crosstalk between receptors, therefore, paves the way for the design of more precise cancer immunotherapies.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Fuzzy Logic
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Cell Line, Tumor
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - François X P Bourassa
- Department of Physics, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sooraj Achar
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Justyn DuSold
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; CAMS Oxford Institute, University of Oxford, Oxford, UK
| | - Makoto Ando
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alka Dwivedi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Saliha Majdoul
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam L Kenet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Madison Wahlsten
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Catherine M Ade
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marco Davila
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Paul François
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; MILA Québec, Montréal, QC, Canada.
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Phanthaphol N, Somboonpatarakun C, Suwanchiwasiri K, Yuti P, Sujjitjoon J, Augsornworawat P, Baillie GS, Junking M, Yenchitsomanus PT. Enhanced cytotoxicity against cholangiocarcinoma by fifth-generation chimeric antigen receptor T cells targeting integrin αvβ6 and secreting anti-PD-L1 scFv. J Transl Med 2025; 23:451. [PMID: 40241132 PMCID: PMC12004729 DOI: 10.1186/s12967-025-06453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a fatal bile duct cancer with high resistance and recurrence rates, with only one fifth of patients eligible for surgical treatment. The disease resists standard chemotherapy and often relapses. Chimeric antigen receptor (CAR) T cell therapy has shown promise for hematological malignancies but faces challenges in solid tumors due to resistance mechanisms like PD-L1 expression, which tumors use to evade the immune system. To address this challenge, we developed fifth-generation CAR T cells targeting integrin αvβ6 that also secrete anti-PD-L1 single-chain variable fragment (scFv) to target both tumor cells and the PD-1/PD-L1 pathway. We examined integrin αvβ6 and PD-L1 expression in CCA cell lines and engineered T cells to express either fourth-generation CAR T cells targeting integrin αvβ6 (A20 CAR4 T cells) or fifth-generation CAR T cells with anti-PD-L1 scFv secretion (A20 CAR5 T cells). In vitro, A20 CAR5 T cells exhibited less exhaustion and superior long-term functionality compared to A20 CAR4 T cells. In 3D spheroid models of CCA, A20 CAR5 T cells demonstrated enhanced antitumor activity and better infiltration into the spheroid core. These findings suggest that A20 CAR5 T cells have significant potential and warrant further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Nattaporn Phanthaphol
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanpirom Suwanchiwasiri
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Punn Augsornworawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Wei J, Li D, Long H, Han M. Immune microenvironment of tumor-draining lymph nodes: insights for immunotherapy. Front Immunol 2025; 16:1562797. [PMID: 40292299 PMCID: PMC12021902 DOI: 10.3389/fimmu.2025.1562797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) play a crucial role in modulating tumor immune responses and influencing the efficacy of immunotherapy. However, our current understanding of the microenvironment within these lymph nodes remains limited. Tumors not only impair the anti-tumor activity of CD8+ T cells by creating an immunosuppressive microenvironment, but they also facilitate immune evasion and promote metastasis by altering the structure and function of TDLNs. Research has shown that tumor-specific memory CD8+ T cells (TTSM) within TDLNs are essential for the efficacy of immune checkpoint inhibitors, such as PD-1/PD-L1 blockers. Moreover, the abnormal structure of TDLNs, along with the presence of immunosuppressive cells-such as regulatory T cells (Tregs), regulatory B cells (Bregs), and immunosuppressive dendritic cells (DCs)-contributes to tumor-mediated immune evasion. Therefore, gaining a deeper understanding of the immune microenvironment within TDLNs is essential for improving the effectiveness of immunotherapies and developing novel therapeutic strategies. This review explores various TDLN-based therapeutic strategies, addressing the controversies surrounding lymph node dissection, the use of TDLNs as a source of tumor-infiltrating lymphocytes (TILs) for therapy, targeting immunosuppressive cells within TDLNs, and methods to reverse the structural abnormalities of TDLNs. These strategies offer valuable insights and potential directions for advancing tumor immunotherapy.
Collapse
Affiliation(s)
- Jiahuan Wei
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Daozhang Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haixia Long
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mei Han
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
5
|
Renninger J, Kurz L, Stein H. Mitigation and Management of Common Toxicities Associated with the Administration of CAR-T Therapies in Oncology Patients. Drug Saf 2025:10.1007/s40264-025-01538-5. [PMID: 40108072 DOI: 10.1007/s40264-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapies are one of the main approaches among targeted cellular therapies. Despite the potential benefit and durable responses observed in some patients receiving CAR-T therapies, serious and potentially fatal toxicities remain a major challenge. The most common CAR-T-associated toxicities include cytokine release syndrome (CRS), neurotoxicity, cytopenias, and infections. While CRS and neurotoxicity are generally managed with tocilizumab and corticosteroids, respectively, high-grade toxicities can be life-threatening. Close postinfusion monitoring and assessment of clinical laboratory parameters, patient-related and clinical risk factors (e.g., age, tumor burden, comorbidities, baseline laboratory parameters, and underlying abnormalities), and therapy-related risk factors (e.g., CAR-T type, dose, and CAR-T-induced toxicity) are effective strategies to mitigate the toxicities. Clinical laboratory parameters, including various cytokines, have been identified for CRS (interleukin [IL]-1, IL-2, IL-5, IL-6, IL-8, IL-10, C-reactive protein [CRP], interferon [IFN]-γ, ferritin, granulocyte-macrophage colony-stimulating factor [GM-CSF], and monocyte chemoattractant protein-1), neurotoxicity (IL-1, IL-2, IL-6, IL-15, tumor necrosis factor [TNF]-α, GM-CSF, and IFN-γ), cytopenias (IL-2, IL-4, IL-6, IL-10, IFN-γ, ferritin, and CRP), and infections (IL-8, IL-1β, CRP, IFN-γ, and procalcitonin). CAR-T-associated toxicities can be monitored and treated to mitigate the risk to patients. Assessment of alterations in clinical laboratory parameter values that are correlated with CAR-T-associated toxicities may predict development and/or severity of a given toxicity, which can improve patient management strategies and ultimately enable the patients to better tolerate these therapies.
Collapse
Affiliation(s)
- Jonathan Renninger
- GSK Safety Evaluation and Risk Management, Global Safety, Philadelphia, PA, USA.
| | - Lisa Kurz
- GSK Safety Evaluation and Risk Management, Global Safety, Upper Providence, PA, USA
| | - Heather Stein
- GSK Safety Evaluation and Risk Management, Global Safety, Cambridge, MA, USA
| |
Collapse
|
6
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025; 48:265-279. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
7
|
Shraim R, Mooney B, Conkrite KL, Hamilton AK, Morin GB, Sorensen PH, Maris JM, Diskin SJ, Sacan A. ImmunoTar-integrative prioritization of cell surface targets for cancer immunotherapy. Bioinformatics 2025; 41:btaf060. [PMID: 39932005 PMCID: PMC11904301 DOI: 10.1093/bioinformatics/btaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 02/19/2025] Open
Abstract
MOTIVATION Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of targeted and less toxic immunotherapies, such as chimeric antigen receptor (CAR)-T cells and antibody-drug conjugates (ADCs). These therapies, effective in treating both pediatric and adult patients with solid and hematological malignancies, rely on the identification of cancer-specific surface protein targets. While technologies like RNA sequencing and proteomics exist to survey these targets, identifying optimal targets for immunotherapies remains a challenge in the field. RESULTS To address this challenge, we developed ImmunoTar, a novel computational tool designed to systematically prioritize candidate immunotherapeutic targets. ImmunoTar integrates user-provided RNA-sequencing or proteomics data with quantitative features from multiple public databases, selected based on predefined criteria, to generate a score representing the gene's suitability as an immunotherapeutic target. We validated ImmunoTar using three distinct cancer datasets, demonstrating its effectiveness in identifying both known and novel targets across various cancer phenotypes. By compiling diverse data into a unified platform, ImmunoTar enables comprehensive evaluation of surface proteins, streamlining target identification and empowering researchers to efficiently allocate resources, thereby accelerating the development of effective cancer immunotherapies. AVAILABILITY AND IMPLEMENTATION Code and data to run and test ImmunoTar are available at https://github.com/sacanlab/immunotar.
Collapse
Affiliation(s)
- Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, United States
| | - Brian Mooney
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 4S6, Canada
| | - Karina L Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Amber K Hamilton
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Gregg B Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
8
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 PMCID: PMC11983698 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
9
|
Wang Z, Dai Y, Zhou Y, Wang Y, Chen P, Li Y, Zhang Y, Wang X, Hu Y, Li H, Li G, Jing Y. Research progress of T cells in cholangiocarcinoma. Front Immunol 2025; 16:1453344. [PMID: 40070825 PMCID: PMC11893616 DOI: 10.3389/fimmu.2025.1453344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cholangiocarcinoma (CCA), a malignant tumor, is typically challenging to detect early and often results in a poor prognosis. In recent years, research interest has grown in the potential application of immunotherapy for CCA treatment. T cells, as a crucial component of the immune system, play a significant role in immune surveillance and therapy for cholangiocarcinoma. This article provides a review of the research advancements concerning T cells in cholangiocarcinoma patients, including their distribution, functional status, and correlation with patient prognosis within the tumor microenvironment. It further discusses the potential applications and challenges of immunotherapy strategies targeting T cells in CCA treatment and anticipates future research directions. A more profound understanding of T cells' role in cholangiocarcinoma can guide the development of clinical treatment strategies, thereby enhancing patient survival rates and quality of life. Finally, we explored the potential risks and side effects of immunotherapy for T-cell cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yaoxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunfei Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocui Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ying Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haonan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaopeng Li
- Department of Hepatobiliary Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
10
|
Dong J, Wu J, Jin Y, Zheng Z, Su T, Shao L, Bei J, Chen S. In-depth analysis of the safety of CAR-T cell therapy for solid tumors. Front Immunol 2025; 16:1548979. [PMID: 40066440 PMCID: PMC11891211 DOI: 10.3389/fimmu.2025.1548979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, the rapid progress in oncology, immunology, and molecular biology has dramatically advanced cancer immunotherapy, particularly CAR-T cell therapy. This innovative approach involves engineering a patient's T cells to express receptors that specifically target tumor antigens, enhancing their ability to identify and eliminate cancer cells. However, the effectiveness of CAR-T therapy in solid tumors is often hampered by the challenging tumor microenvironment (TME). The complex TME includes dense stroma that obstructs T cell infiltration, abnormal blood vessel structures leading to hypoxia, and an acidic pH, all of which hinder CAR-T cell function. Additionally, the presence of immunosuppressive factors in the TME reduces the efficacy of CAR-T cells, making successful targeting of tumors more difficult. The safety of CAR-T therapy has gained interest, especially CAR-T therapy has shown considerable effectiveness in various cancers, with notable results in multiple myeloma and hepatocellular carcinoma, among others. Nonetheless, CAR-T cell therapy is associated with several adverse reactions primarily driven by heightened levels of proinflammatory cytokines. These reactions include cytokine release syndrome (CRS), neurotoxicity (CANS), and organ toxicity, often leading to serious complications. CRS, characterized by systemic inflammation due to cytokine release, can escalate to severe organ dysfunction. It typically occurs within the first week post-infusion, correlating with CAR-T cell expansion and often presents with fever and hypotension. Meanwhile, CANS encompasses neurological issues ranging from mild symptoms to severe seizures, possibly exacerbated by CRS. Organ toxicity can also arise from CAR-T therapy, with potential damage affecting the gastrointestinal tract, kidneys, liver, and lungs, often tied to shared antigens found in both tumor and healthy tissues. Moreover, long-term effects like cytokine-associated hematotoxicity (CAHT) and secondary malignancies represent significant concerns that could affect the patient's quality of life post-treatment. The long-term adverse effects and challenges in treating solid tumors underscore the need for ongoing research. Strategies to improve CAR-T cell efficacy, minimize adverse reactions, and enhance patient safety are critical. Future explorations could include designing CAR-T cells to better navigate the TME, identifying specific target antigen profiles to minimize off-target damage, and developing adjunct therapies to mitigate cytokine-related toxicity. Continued monitoring for long-term effects will also be paramount in improving patient outcomes and maintaining their quality of life. Overall, while CAR-T therapy holds great promise, it must be administered with careful consideration of potential side effects and rigorous management strategies to ensure patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Jiayi Dong
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiexiong Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ye Jin
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhu Zheng
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Su
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Shao
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaxin Bei
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Size Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cancer Immunotherapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H. Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond. Front Immunol 2025; 16:1544532. [PMID: 40046061 PMCID: PMC11880241 DOI: 10.3389/fimmu.2025.1544532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has garnered significant attention for its transformative impact on the treatment of hematologic malignancies such as leukemia and lymphoma. Despite its remarkable success, challenges such as resistance, limited efficacy in solid tumors, and adverse side effects remain prominent. This review consolidates recent advancements in CAR-T-cell therapy and explores innovative engineering techniques and strategies to overcome the immunosuppressive tumor microenvironment (TME). We also discuss emerging applications beyond cancer, including autoimmune diseases and chronic infections. Future perspectives highlight the development of more potent CAR-T cells with increased specificity and persistence and reduced toxicity, providing a roadmap for next-generation immunotherapies.
Collapse
Affiliation(s)
- Zishan Yang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingjun Ha
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinhan Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Zheng F, Zhang S, Chang AE, Moon JJ, Wicha MS, Wang SX, Chen J, Liu J, Cheng F, Li Q. Breaking Immunosuppression to Enhance Cancer Stem Cell-Targeted Immunotherapy. Int J Biol Sci 2025; 21:1819-1836. [PMID: 39990669 PMCID: PMC11844285 DOI: 10.7150/ijbs.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer stem cell (CSC)-targeted immunotherapy has emerged as a novel strategy in cancer treatment in the past decade. However, its efficacy is significantly limited due to the existence of host immune suppressive activity. Specifically, programmed cell death ligand-1 (PD-L1) is overexpressed in CSCs, and PD-L1 overexpressed CSCs create immunosuppressive milieu via interacting with various immune cells in tumor microenvironments (TME). Hence, novel immunotherapeutic strategies targeting CSCs with concurrent immunosuppression interruption will be promising in enhancing anti-CSC effects. These include dendritic cell (DC) and nanodisc (ND)-based vaccines to present CSC antigens in the forms of CSC lysate, CSC-marker proteins, and CSC-derived peptides to induce anti-CSC immunity. In addition, CSC-directed bispecific antibodies (BiAbs) and antibody drug conjugates (ADCs) have been developed to target CSCs effectively. Furthermore, chimeric antigen receptor (CAR)-T cell therapy and natural killer (NK) cell-based therapy targeting CSCs have achieved progress in both solid and hematologic tumors, and inhibition of CSC associated signaling pathways has proven successful. In this review, we aimed to outline the roles and regulatory mechanisms of PD-L1 in the properties of CSCs; the crosstalk between CSCs and immunosuppressive cells in TME, and recent progress and future promises of immunosuppression blockage to enhance CSC-targeted immunotherapy.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Alfred E. Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Junhui Chen
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Jixian Liu
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Khan SH, Choi Y, Veena M, Lee JK, Shin DS. Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Front Immunol 2025; 15:1489827. [PMID: 39835140 PMCID: PMC11743624 DOI: 10.3389/fimmu.2024.1489827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles. We discuss the importance of antigen identification by emphasizing the identification of tumor-specific and tumor-associated antigens and the development of CAR T therapies targeting these antigens. Furthermore, we highlight key structural innovations, including cytokine-armored CARs, protease-regulated CARs, and CARs engineered with chemokine receptors, to enhance tumor infiltration and activity within the immunosuppressive microenvironment. Additionally, novel manufacturing approaches, such as the Sleeping Beauty transposon system, mRNA-based CAR transfection, and in vivo CAR T cell production, are discussed as scalable solution to improve the accessibility of CAR T cell therapies. Finally, we address critical therapeutic limitations, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and suboptimal persistence of CAR T cells. An examination of emerging strategies for countering these limitations reveals that CRISPR-Cas9-mediated genetic modifications and combination therapies utilizing checkpoint inhibitors can improve CAR T cell functionality and durability. By integrating insights from preclinical models, clinical trials, and innovative engineering approaches, this review addresses advances in CAR T cell therapies and their performance in solid tumors.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Antigens, Neoplasm/immunology
- Tumor Microenvironment/immunology
- Animals
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Safwaan H. Khan
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yeonjoo Choi
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mysore Veena
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - John K. Lee
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
14
|
Santoso A, Levink I, Pihlak R, Chau I. The Immune Landscape and Its Potential for Immunotherapy in Advanced Biliary Tract Cancer. Curr Oncol 2024; 32:24. [PMID: 39851940 PMCID: PMC11763487 DOI: 10.3390/curroncol32010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Biliary tract cancers (BTC) are a highly heterogeneous group of cancers at the genomic, epigenetic and molecular levels. The vast majority of patients initially present at an advanced (unresectable) disease stage due to a lack of symptoms and an aggressive tumour biology. Chemotherapy has been the mainstay of treatment in patients with advanced BTC but the survival outcomes and prognosis remain poor. The addition of immune checkpoint inhibitors (ICI) to chemotherapy have shown only a marginal benefit over chemotherapy alone due to the complex tumour immune microenvironment of these cancers. This review appraises our current understanding of the immune landscape of advanced BTC, including emerging transcriptome-based classifications, highlighting the mechanisms of immune evasion and resistance to ICI and their therapeutic implications. It describes the shifting treatment paradigm from traditional chemotherapy to immunotherapy combinations as well as the potential biomarkers for predicting response to ICI.
Collapse
Affiliation(s)
- Andry Santoso
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| | - Iris Levink
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Rille Pihlak
- University Hospitals Sussex NHS Foundation Trust, Brighton BN1 9RW, UK;
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| |
Collapse
|
15
|
Yang Z, Zhang P, Zhao Y, Guo R, Hu J, Wang Q, Zhao Z, Liu H, Lv S, Ren Z, Hu Y, Cui D. DRD4 promotes chemo-resistance and cancer stem cell-like phenotypes by mediating the activation of the Akt/β-catenin signaling axis in liver cancer. Br J Cancer 2024; 131:1212-1223. [PMID: 39174739 PMCID: PMC11442912 DOI: 10.1038/s41416-024-02811-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) significantly impact chemo-resistance and recurrence in liver cancer. Dopamine receptor D4 (DRD4) is known to enhance the cancer stem cell (CSC) phenotype in glioblastoma and correlates with poor prognosis in some non-central nervous system tumors; however, its influence on LCSCs remains uncertain. METHODS To investigate the gene and protein expression profiles of DRD4 in LCSCs and non-LCSCs, we utilized transcriptome sequencing and Western blotting analysis. Bioinformatics analysis and immunohistochemistry were employed to assess the correlation between DRD4 expression levels and the pathological characteristics of liver cancer patients. The impact of DRD4 on LCSC phenotypes and signaling pathways were explored using pharmacological or gene-editing techniques. Additionally, the effect of DRD4 on the protein expression and intracellular localization of β-catenin were examined using Western blotting and immunofluorescence. RESULTS DRD4 expression is significantly elevated in LCSCs and correlates with short survival in liver cancer. The expression and activity of DRD4 are positive to resistance, self renewal and tumorigenicity in HCC. Mechanistically, DRD4 stabilizes β-catenin and promotes its entry into the nucleus via activating the PI3K/Akt/GSK-3β pathway, thereby enhancing LCSC phenotypes. CONCLUSIONS Inhibiting DRD4 expression and activation offers a promising targeted therapy for eradicating LCSCs and relieve chemo-resistance.
Collapse
MESH Headings
- Humans
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Drug Resistance, Neoplasm/genetics
- beta Catenin/metabolism
- beta Catenin/genetics
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Mice
- Animals
- Cell Line, Tumor
- Phenotype
- Male
- Gene Expression Regulation, Neoplastic
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Female
- Mice, Nude
Collapse
Affiliation(s)
- Zhengyan Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China
| | - Pai Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, 471023, China
| | - Yiwei Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Ran Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jinglin Hu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Qi Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China
| | - Zhi Zhao
- Henan University-affiliated Zhengzhou Yihe Hospital, Zhengzhou, 450000, China
| | - Handi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China
| | - Zhiguang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital, Henan University, Kaifeng, 475004, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China.
| | - Daxiang Cui
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
16
|
Ju A, Choi S, Jeon Y, Kim K. Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors. Brain Tumor Res Treat 2024; 12:208-220. [PMID: 39542517 PMCID: PMC11570086 DOI: 10.14791/btrt.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy, which has demonstrated remarkable efficacy in hematologic malignancies, is being extended to the treatment of refractory solid tumors, including brain tumors. Lymphodepletion (LD) is an essential preconditioning process that enhances CAR-T efficacy by promoting CAR-T cell expansion and persistence in the body, and has become a standard regimen for hematologic cancers. Recent clinical results of CAR-T therapy for solid tumors, including brain tumors, have shown that cyclophosphamide/fludarabine-based preconditioning has potential benefits and is gradually becoming adopted in solid tumor CAR-T trials. Furthermore, some CAR-T trials for solid tumors are attempting to develop LD regimens optimized specifically for solid tumors, distinct from the standard LD regimens used in hematologic cancers. In contrast, CAR-T therapy targeting brain tumors frequently employs locoregionally repeated administration in tumors or cerebrospinal fluid, resulting in less frequent use of LD compared to other solid tumors. Nevertheless, several clinical studies suggest that LD may still provide potential benefits for CAR-T expansion and improvement in clinical responses in systemic CAR-T administration. The studies presented in this review suggest that while LD can be beneficial for enhancing CAR-T efficacy, considerations must be made regarding its compatibility with the CAR-T administration route, potential excessive activation based on CAR-T structural characteristics, and target expression in normal organs. Additionally, given the unique characteristics of brain tumors, optimized selection of LD agents, as well as dosing and regimens, may be required, highlighting the need for further research.
Collapse
Affiliation(s)
- Anna Ju
- R&D Center, CellabMED Inc., Seoul, Korea
| | | | | | - Kiwan Kim
- R&D Center, CellabMED Inc., Seoul, Korea.
| |
Collapse
|
17
|
Kenyon CM, Kelly BG, Bowen AR, Gumbleton M, Deacon DC. Lichen striatus as an immune-related adverse event following ipilimumab/nivolumab and COVID-19 infection in an adult. JAAD Case Rep 2024; 52:34-37. [PMID: 39282526 PMCID: PMC11402379 DOI: 10.1016/j.jdcr.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Affiliation(s)
- Courtney M Kenyon
- University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, Utah
| | - Brenna G Kelly
- Department of Dermatology, University of Utah, Salt Lake City, Utah
| | - Anneli R Bowen
- Department of Dermatology, University of Utah, Salt Lake City, Utah
| | - Matthew Gumbleton
- Division of Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Dekker C Deacon
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| |
Collapse
|
18
|
Dadgar N, Arunachalam AK, Hong H, Phoon YP, Arpi-Palacios JE, Uysal M, Wehrle CJ, Aucejo F, Ma WW, Melenhorst JJ. Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy. Cancers (Basel) 2024; 16:3232. [PMID: 39335203 PMCID: PMC11429565 DOI: 10.3390/cancers16183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive malignancy originating from the bile ducts, with poor prognosis and limited treatment options. Traditional therapies, such as surgery, chemotherapy, and radiation, have shown limited efficacy, especially in advanced cases. Recent advancements in immunotherapy, particularly T cell-based therapies like chimeric antigen receptor T (CAR T) cells, tumor-infiltrating lymphocytes (TILs), and T cell receptor (TCR)-based therapies, have opened new avenues for improving outcomes in CCA. This review provides a comprehensive overview of the current state of T cell therapies for CCA, focusing on CAR T cell therapy. It highlights key challenges, including the complex tumor microenvironment and immune evasion mechanisms, and the progress made in preclinical and clinical trials. The review also discusses ongoing clinical trials targeting specific CCA antigens, such as MUC1, EGFR, and CD133, and the evolving role of precision immunotherapy in enhancing treatment outcomes. Despite significant progress, further research is needed to optimize these therapies for solid tumors like CCA. By summarizing the most recent clinical results and future directions, this review underscores the promising potential of T cell therapies in revolutionizing CCA treatment.
Collapse
Affiliation(s)
- Neda Dadgar
- Cleveland Clinic Foundation, Enterprise Cancer Institute, Translational Hematology & Oncology Research, Cleveland, OH 44114, USA;
| | - Arun K. Arunachalam
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Hanna Hong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Yee Peng Phoon
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Jorge E. Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Melis Uysal
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Chase J. Wehrle
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA;
| | - Jan Joseph Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| |
Collapse
|
19
|
Drougkas K, Karampinos K, Karavolias I, Gomatou G, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Kotteas E. CAR-T Cell Therapy in Pancreatic and Biliary Tract Cancers: An Updated Review of Clinical Trials. J Gastrointest Cancer 2024; 55:990-1003. [PMID: 38695995 DOI: 10.1007/s12029-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Pancreatic and biliary tract cancers are digestive system tumors with dismal prognosis and limited treatment options. The effectiveness of conventional surgical interventions, radiation therapy, and systemic therapy is restricted in these cases. Furthermore, clinical trials have shown that immunotherapy using immune checkpoint inhibitors has only demonstrated modest clinical results when applied to patients with pancreatobiliary tumors. This highlights the importance of implementing combination immunotherapy approaches or exploring alternative therapeutic strategies to improve treatment outcomes. MATERIALS AND METHODS We reviewed the relevant literature on chimeric antigen receptor (CAR)-T cell therapy for pancreatobiliary cancers from PubMed/Medline and ClinicalTrials.gov and retrieved the relevant data accordingly. Attention was additionally given to the examination of grey literature with the aim of obtaining additional details regarding ongoing clinical trials. We mainly focused on abstracts and presentations and e-posters and slides of recent important annual meetings (namely ESMO Immuno-Oncology Congress, ESMO Congress, ASCO Virtual Scientific Program, ASCO Gastrointestinal Cancers Symposium). RESULTS CAR-T cell therapy has emerged as a promising and evolving treatment approach for pancreatic and biliary tract cancer. This form of adoptive cell therapy utilizes genetic engineering to modify the expression of specific antibodies on the surface of T cells enabling them to target specific cancer-associated antigens and to induce potent anti-tumor activity. The aim of this review is to provide an updated summary of the available evidence from clinical trials that have explored the application of CAR-T cell therapy in treating pancreatobiliary cancers. CONCLUSIONS While the utilization of CAR-T cell therapy in pancreatobiliary cancers is still in its initial phases with only a limited amount of clinical data available, the field is advancing rapidly, incorporating novel technologies to mitigate potential toxicities and enhance antigen-directed tumor eradication.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Karampinos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Karavolias
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioanna Ploumaki
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Triantafyllou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
21
|
Hua S, Gu X, Jin H, Zhang X, Liu Q, Yang J. Tumor-infiltrating T lymphocytes: A promising immunotherapeutic target for preventing immune escape in cholangiocarcinoma. Biomed Pharmacother 2024; 177:117080. [PMID: 38972151 DOI: 10.1016/j.biopha.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Cholangiocarcinoma (CCA) is becoming more common and deadly worldwide. Tumor-infiltrating T cell subtypes make distinct contributions to the immune system; collectively, they constitute a significant portion of the tumor microenvironment (TME) in CCA. By secreting cytokines and other chemicals, regulatory T cells (Tregs) decrease activated T cell responses, acting as immunosuppressors. Reduced CD8+ T cell activation results in stimulating programmed death-1 (PD-1), which undermines the immunological homeostasis of T lymphocytes. On the other hand, cancer cells are eliminated by activated cytotoxic T lymphocyte (CTL) through the perforin-granzyme or Fas-FasL pathways. Th1 and CTL immune cell infiltration into the malignant tumor is also facilitated by γδ T cells. A higher prognosis is typically implied by CD8+ T cell infiltration, and survival is inversely associated with Treg cell density. Immune checkpoint inhibitors, either singly or in combination, provide novel therapeutic strategies for CCA immunotherapy. Furthermore, it is anticipated that immunotherapeutic strategies-such as the identification of new immune targets, combination treatments involving several immune checkpoint inhibitors, and chimeric antigen receptor-T therapies (CAR-T)-will optimize the effectiveness of anti-CCA treatments while reducing adverse effects.
Collapse
Affiliation(s)
- Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
22
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
23
|
Shraim R, Mooney B, Conkrite KL, Weiner AK, Morin GB, Sorensen PH, Maris JM, Diskin SJ, Sacan A. IMMUNOTAR - Integrative prioritization of cell surface targets for cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597422. [PMID: 38895237 PMCID: PMC11185603 DOI: 10.1101/2024.06.04.597422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of less toxic immunotherapies; however, identifying targets for immunotherapies remains a challenge in the field. To address this challenge, we developed IMMUNOTAR, a computational tool that systematically prioritizes and identifies candidate immunotherapeutic targets. IMMUNOTAR integrates user-provided RNA-sequencing or proteomics data with quantitative features extracted from publicly available databases based on predefined optimal immunotherapeutic target criteria and quantitatively prioritizes potential surface protein targets. We demonstrate the utility and flexibility of IMMUNOTAR using three distinct datasets, validating its effectiveness in identifying both known and new potential immunotherapeutic targets within the analyzed cancer phenotypes. Overall, IMMUNOTAR enables the compilation of data from multiple sources into a unified platform, allowing users to simultaneously evaluate surface proteins across diverse criteria. By streamlining target identification, IMMUNOTAR empowers researchers to efficiently allocate resources and accelerate immunotherapy development.
Collapse
Affiliation(s)
- Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Brian Mooney
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Karina L. Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Amber K. Weiner
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Li X, Li W, Xu L, Song Y. Chimeric antigen receptor-immune cells against solid tumors: Structures, mechanisms, recent advances, and future developments. Chin Med J (Engl) 2024; 137:1285-1302. [PMID: 37640679 PMCID: PMC11191032 DOI: 10.1097/cm9.0000000000002818] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Indexed: 08/31/2023] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR)-T cell immunotherapies has led to breakthroughs in the treatment of hematological malignancies. However, their success in treating solid tumors has been limited. CAR-natural killer (NK) cells have several advantages over CAR-T cells because NK cells can be made from pre-existing cell lines or allogeneic NK cells with a mismatched major histocompatibility complex (MHC), which means they are more likely to become an "off-the-shelf" product. Moreover, they can kill cancer cells via CAR-dependent/independent pathways and have limited toxicity. Macrophages are the most malleable immune cells in the body. These cells can efficiently infiltrate into tumors and are present in large numbers in tumor microenvironments (TMEs). Importantly, CAR-macrophages (CAR-Ms) have recently yielded exciting preclinical results in several solid tumors. Nevertheless, CAR-T, CAR-NK, and CAR-M all have their own advantages and limitations. In this review, we systematically discuss the current status, progress, and the major hurdles of CAR-T cells, CAR-NK cells, and CAR-M as they relate to five aspects: CAR structure, therapeutic mechanisms, the latest research progress, current challenges and solutions, and comparison according to the existing research in order to provide a reasonable option for treating solid tumors in the future.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Linping Xu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
25
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Yuan G, Ye M, Zhang Y, Zeng X. Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors. Med Oncol 2024; 41:126. [PMID: 38652178 DOI: 10.1007/s12032-024-02310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has revolutionized cancer treatment, but its application to solid tumors is limited. CAR-T cells have poor incapability of entering, surviving, proliferating, and finally exerting function in the tumor microenvironment. This review summarizes the main strategies related to enhancing the infiltration, efficacy, antigen recognition, and production of CAR-T in solid tumors. Additional applications of CAR-γδ T and macrophages are also discussed. We believe CAR-T will be a milestone in treating solid tumors once these problems are solved.
Collapse
Affiliation(s)
- Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mengke Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Dobersberger M, Sumesgutner D, Zajc CU, Salzer B, Laurent E, Emminger D, Sylvander E, Lehner E, Teufl M, Seigner J, Bobbili MR, Kunert R, Lehner M, Traxlmayr MW. An engineering strategy to target activated EGFR with CAR T cells. CELL REPORTS METHODS 2024; 4:100728. [PMID: 38492569 PMCID: PMC11045874 DOI: 10.1016/j.crmeth.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.
Collapse
Affiliation(s)
- Markus Dobersberger
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria
| | - Delia Sumesgutner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Charlotte U Zajc
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Benjamin Salzer
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elisabeth Laurent
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, 1190 Vienna, Austria
| | - Dominik Emminger
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elise Sylvander
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elisabeth Lehner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Jacqueline Seigner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, BOKU University, 1190 Vienna, Austria
| | - Madhusudhan Reddy Bobbili
- Department of Biotechnology, Institute of Molecular Biotechnology, BOKU University, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, BOKU University, 1190 Vienna, Austria
| | - Manfred Lehner
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael W Traxlmayr
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria.
| |
Collapse
|
28
|
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int 2024; 24:133. [PMID: 38622705 PMCID: PMC11017638 DOI: 10.1186/s12935-024-03315-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
29
|
Kembuan GJ, Kim JY, Maus MV, Jan M. Targeting solid tumor antigens with chimeric receptors: cancer biology meets synthetic immunology. Trends Cancer 2024; 10:312-331. [PMID: 38355356 PMCID: PMC11006585 DOI: 10.1016/j.trecan.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a medical breakthrough in the treatment of B cell malignancies. There is intensive focus on developing solid tumor-targeted CAR-T cell therapies. Although clinically approved CAR-T cell therapies target B cell lineage antigens, solid tumor targets include neoantigens and tumor-associated antigens (TAAs) with diverse roles in tumor biology. Multiple early-stage clinical trials now report encouraging signs of efficacy for CAR-T cell therapies that target solid tumors. We review the landscape of solid tumor target antigens from the perspective of cancer biology and gene regulation, together with emerging clinical data for CAR-T cells targeting these antigens. We then discuss emerging synthetic biology strategies and their application in the clinical development of novel cellular immunotherapies.
Collapse
Affiliation(s)
- Gabriele J Kembuan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Joanna Y Kim
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
30
|
Kashyap D, Salman H. Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy. Int J Mol Sci 2024; 25:3780. [PMID: 38612592 PMCID: PMC11011362 DOI: 10.3390/ijms25073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.
Collapse
Affiliation(s)
| | - Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
31
|
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM, Mahmoud AB. Redefining the battle against colorectal cancer: a comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol 2024; 15:1350208. [PMID: 38533510 PMCID: PMC10963412 DOI: 10.3389/fimmu.2024.1350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Salima Shebbo
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Najat Binothman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manar Darwaish
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hanan A. Niaz
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
32
|
Lu L, Xie M, Yang B, Zhao WB, Cao J. Enhancing the safety of CAR-T cell therapy: Synthetic genetic switch for spatiotemporal control. SCIENCE ADVANCES 2024; 10:eadj6251. [PMID: 38394207 PMCID: PMC10889354 DOI: 10.1126/sciadv.adj6251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is a promising and precise targeted therapy for cancer that has demonstrated notable potential in clinical applications. However, severe adverse effects limit the clinical application of this therapy and are mainly caused by uncontrollable activation of CAR-T cells, including excessive immune response activation due to unregulated CAR-T cell action time, as well as toxicity resulting from improper spatial localization. Therefore, to enhance controllability and safety, a control module for CAR-T cells is proposed. Synthetic biology based on genetic engineering techniques is being used to construct artificial cells or organisms for specific purposes. This approach has been explored in recent years as a means of achieving controllability in CAR-T cell therapy. In this review, we summarize the recent advances in synthetic biology methods used to address the major adverse effects of CAR-T cell therapy in both the temporal and spatial dimensions.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
| | - Wen-bin Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Shabaneh TB, Stevens AR, Stull SM, Shimp KR, Seaton BW, Gad EA, Jaeger-Ruckstuhl CA, Simon S, Koehne AL, Price JP, Olson JM, Hoffstrom BG, Jellyman D, Riddell SR. Systemically administered low-affinity HER2 CAR T cells mediate antitumor efficacy without toxicity. J Immunother Cancer 2024; 12:e008566. [PMID: 38325903 PMCID: PMC11145640 DOI: 10.1136/jitc-2023-008566] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The paucity of tumor-specific targets for chimeric antigen receptor (CAR) T-cell therapy of solid tumors necessitates careful preclinical evaluation of the therapeutic window for candidate antigens. Human epidermal growth factor receptor 2 (HER2) is an attractive candidate for CAR T-cell therapy in humans but has the potential for eliciting on-target off-tumor toxicity. We developed an immunocompetent tumor model of CAR T-cell therapy targeting murine HER2 (mHER2) and examined the effect of CAR affinity, T-cell dose, and lymphodepletion on safety and efficacy. METHODS Antibodies specific for mHER2 were generated, screened for affinity and specificity, tested for immunohistochemical staining of HER2 on normal tissues, and used for HER2-targeted CAR design. CAR candidates were evaluated for T-cell surface expression and the ability to induce T-cell proliferation, cytokine production, and cytotoxicity when transduced T cells were co-cultured with mHER2+ tumor cells in vitro. Safety and efficacy of various HER2 CARs was evaluated in two tumor models and normal non-tumor-bearing mice. RESULTS Mice express HER2 in the same epithelial tissues as humans, rendering these tissues vulnerable to recognition by systemically administered HER2 CAR T cells. CAR T cells designed with single-chain variable fragment (scFvs) that have high-affinity for HER2 infiltrated and caused toxicity to normal HER2-positive tissues but exhibited poor infiltration into tumors and antitumor activity. In contrast, CAR T cells designed with an scFv with low-affinity for HER2 infiltrated HER2-positive tumors and controlled tumor growth without toxicity. Toxicity mediated by high-affinity CAR T cells was independent of tumor burden and correlated with proliferation of CAR T cells post infusion. CONCLUSIONS Our findings illustrate the disadvantage of high-affinity CARs for targets such as HER2 that are expressed on normal tissues. The use of low-affinity HER2 CARs can safely regress tumors identifying a potential path for therapy of solid tumors that exhibit high levels of HER2.
Collapse
Affiliation(s)
- Tamer Basel Shabaneh
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Andrew R Stevens
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sylvia M Stull
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kristen R Shimp
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brandon W Seaton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ekram A Gad
- Comparative Medicine, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Carla A Jaeger-Ruckstuhl
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sylvain Simon
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda L Koehne
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jason P Price
- Molecular Design and Therapeutics, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - James M Olson
- Molecular Design and Therapeutics, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - David Jellyman
- Antibody Technology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
34
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
35
|
Hadfield MJ, DeCarli K, Bash K, Sun G, Almhanna K. Current and Emerging Therapeutic Targets for the Treatment of Cholangiocarcinoma: An Updated Review. Int J Mol Sci 2023; 25:543. [PMID: 38203714 PMCID: PMC10779232 DOI: 10.3390/ijms25010543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cholangiocarcinoma is a malignancy of the bile ducts that is often associated with late diagnosis, poor overall survival, and limited treatment options. The standard of care therapy for cholangiocarcinoma has been cytotoxic chemotherapy with modest improvements in overall survival with the addition of immune checkpoint inhibitors. The discovery of actionable mutations has led to the advent of targeted therapies against FGFR and IDH-1, which has expanded the treatment landscape for this patient population. Significant efforts have been made in the pre-clinical space to explore novel immunotherapeutic approaches, as well as antibody-drug conjugates. This review provides an overview of the current landscape of treatment options, as well as promising future therapeutic targets.
Collapse
Affiliation(s)
- Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Kathryn DeCarli
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Kinan Bash
- Department of Graduate Studies, University of New England, Biddeford, ME 04005, USA;
| | - Grace Sun
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Khaldoun Almhanna
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| |
Collapse
|
36
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
37
|
Guo Y, Tong C, Wu Z, Lu Y, Wang Y, Han W. Reciprocal activation of antigen-presenting cells and CAR T cells triggers a widespread endogenous anti-tumor immune response through sustained high-level IFNγ production. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0324. [PMID: 37929324 PMCID: PMC10690879 DOI: 10.20892/j.issn.2095-3941.2023.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Yelei Guo
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiqiang Wu
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuting Lu
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Wang
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
38
|
Kronig MN, Wehrli M, Salas-Benito D, Maus MV. "Hurdles race for CAR T-cell therapy in digestive tract cancer". Immunol Rev 2023; 320:100-119. [PMID: 37694970 PMCID: PMC10846098 DOI: 10.1111/imr.13273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Digestive tract cancers (DTC) belong to the most investigated family of tumors. The incidence, prevalence, and mortality rate of DTC remain high, especially for patients with pancreatic cancer. Even though immunotherapy such as immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid cancer types, ICI are still restricted to a very small group of patients and seem to be more efficacious in combination with chemotherapy. Cellular immunotherapy such as CAR T-cell therapy has entered clinical routine in hematological malignancies with outstanding results. There is growing interest on translating this kind of immunotherapy and success into patients with solid malignancies, such as DTC. This review attempts to describe the major advances in preclinical and clinical research with CAR T cells in DTC, considering the most relevant hurdles in each subtype of DTC.
Collapse
Affiliation(s)
- Marie-Noelle Kronig
- Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Switzerland
| | - Marc Wehrli
- Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Switzerland
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Diego Salas-Benito
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Marcela V. Maus
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
39
|
Zhou X, Renauer PA, Zhou L, Fang SY, Chen S. Applications of CRISPR technology in cellular immunotherapy. Immunol Rev 2023; 320:199-216. [PMID: 37449673 PMCID: PMC10787818 DOI: 10.1111/imr.13241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
CRISPR technology has transformed multiple fields, including cancer and immunology. CRISPR-based gene editing and screening empowers direct genomic manipulation of immune cells, opening doors to unbiased functional genetic screens. These screens aid in the discovery of novel factors that regulate and reprogram immune responses, offering novel drug targets. The engineering of immune cells using CRISPR has sparked a transformation in the cellular immunotherapy field, resulting in a multitude of ongoing clinical trials. In this review, we discuss the development and applications of CRISPR and related gene editing technologies in immune cells, focusing on functional genomics screening, gene editing-based cell therapies, as well as future directions in this rapidly advancing field.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Shao-Yu Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Mahanti K, Bhattacharyya S. Rough neighborhood: Intricacies of cancer stem cells and infiltrating immune cell interaction in tumor microenvironment and potential in therapeutic targeting. Transl Res 2023; 265:S1931-5244(23)00176-7. [PMID: 39491179 DOI: 10.1016/j.trsl.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Ongoing research on cellular heterogeneity of Cancer stem cells (CSCs) and its synergistic involvement with tumor milieu reveals enormous complexity, resulting in diverse hindrance in immune therapy. CSCs has captured attention for their contribution in shaping of tumor microenvironment and as target for therapeutic intervention. Recent studies have highlighted cell-extrinsic and intrinsic mechanisms of reciprocal interaction between tumor stroma constituents and CSCs. Therapeutic targeting requires an in-depth understanding of the underlying mechanisms involved with the rate limiting factors in tumor aggressiveness and pinpoint role of CSCs. Some of the major constituents of tumor microenvironment includes resident and infiltrating immune cell, both innate and adaptive. Some of these immune cells play crucial role as adjustors of tumor immune response. Tumor-adjustor immune cell interaction confer plasticity and features enabling tumor growth and metastasis in one hand and on the other hand blunts anti-tumor immunity. Detail understanding of CSC and TME resident immune cells interaction can shape new avenues for cancer immune therapy. In this review, we have tried to summarize the development of knowledge on cellular, molecular and functional interaction between CSCs and tumor microenvironment immune cells, highlighting immune-mediated therapeutic strategies aimed at CSCs. We also discussed developing a potential CSC and TME targeted therapeutic avenue.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India
| | - Sankar Bhattacharyya
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India.
| |
Collapse
|
41
|
Wang X, Qiu W, Liu H, He M, He W, Li Z, Wu Z, Xu X, Chen P. The inducible secreting TLR5 agonist, CBLB502, enhances the anti-tumor activity of CAR133-NK92 cells in colorectal cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0033. [PMID: 37731205 PMCID: PMC10546094 DOI: 10.20892/j.issn.2095-3941.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE CAR-T/NK cells have had limited success in the treatment of solid tumors, such as colorectal cancer (CRC), in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response. This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells. METHODS Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines, respectively. Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells (CAR133-i502-NK92). The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release, the RTCA assay, and the degranulation test, as well as measuring tumor bioluminescence signal intensity in mice xenografts. RESULTS We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation (9.0 × 104 cells vs. 7.0 × 104 cells) and specific anti-tumor activities in vitro and in a xenogeneic mouse model, and were well-tolerated. Notably, CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells. Furthermore, in hCD133+/hCD133- mixed cancer xenograft models, CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts (n = 5, P = 0.0297). Greater T-cell infiltration was associated with greater anti-tumor potency (P < 0.0001). CONCLUSIONS Armed with a CBLB502 TLR5 agonist, CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner. This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Qiu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Haoyu Liu
- College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei He
- College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhiqiang Wu
- Department of Biotherapeutics, The First Medical Center, Chinese PLA General Hospital, Beijing 100038, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
42
|
Lin X, Sun Y, Dong X, Liu Z, Sugimura R, Xie G. IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother 2023; 165:115123. [PMID: 37406511 DOI: 10.1016/j.biopha.2023.115123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Adoptive cell therapies (ACT) based on chimeric antigen receptor (CAR)-modified immune cells have made great progress with six CAR-T cell products approved by the U.S. FDA for hematological malignancies. Compared with CAR-T cells, CAR-NK cells have attracted increasing attention owing to their multiple killing mechanisms, higher safety profile, and broad sources. Induced pluripotent stem cell (iPSC)-derived NK (iPSC-NK) cells possess a mature phenotype and potent cytolytic activity, and can provide a homogeneous population of CAR-NK cells that can be expanded to clinical scale. Thus, iPSC-derived CAR-NK (CAR-iNK) cells could be used as a standardized and "off-the-shelf" product for cancer immunotherapy. In this review, we summarize the current status of the manufacturing techniques, genetic modification strategies, preclinical and clinical evidence of CAR-iNK cells, and discuss the challenges and future prospects of CAR-iNK cell therapy as a novel cellular immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zishen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
43
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
44
|
Sabahi M, Salehipour A, Bazl MSY, Rezaei N, Mansouri A, Borghei-Razavi H. Local immunotherapy of glioblastoma: A comprehensive review of the concept. J Neuroimmunol 2023; 381:578146. [PMID: 37451079 DOI: 10.1016/j.jneuroim.2023.578146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Despite advancements in standard treatments, the prognosis of Glioblastoma (GBM) remains poor, prompting research for novel therapies. Immunotherapy is a promising treatment option for GBM, and many immunotherapeutic agents are currently under investigation. Chimeric antigen receptor (CAR) T cells are rapidly evolving in immunotherapy of GBM with many clinical trials showing efficacy of CAR T cells exerting anti-tumor activity following recognition of tumor-associated antigens (TAAs). Exhaustion in CAR T cells can reduce their capacity for long-term persistence and anti-tumor action. Local immunotherapy, which targets the tumor microenvironment and creates a more hospitable immunological environment for CAR T cells, has the potential to reduce CAR T cell exhaustion and increase immunity. Tertiary lymphoid structures (TLS) are ectopic lymphoid-like formations that can develop within the tumor microenvironment or in other non-lymphoid tissues. As a comprehensive local immunotherapy tool, the incorporation of TLS into an implanted biodegradable scaffold has amazing immunotherapeutic potential. The immune response to GBM can be improved even further by strategically inserting a stimulator of interferon genes (STING) agonist into the scaffold. Additionally, the scaffold's addition of glioma stem cells (GSC), which immunotherapeutic approaches may use to target, enhances the removal of cancer cells from their source. Furthermore, it has been demonstrated that GSCs have an impact on TLS formation, which helps to create a favorable tumor microenvironment. Herein, we overview local delivery of a highly specific tandem AND-gate CAR T cell along with above mentioned components. A multifaceted approach that successfully engages the immune system to mount an efficient targeted immune response against GBM is provided by the integration of CAR T cells, TLS, STING agonists, and GSCs within an implantable biodegradable scaffold. This approach offers a promising therapeutic approach for patients with GBM.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| | - Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sajjad Yavari Bazl
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| |
Collapse
|
45
|
Huang H, Weng Y, Tian W, Lin X, Chen J, Luo L. Molecular mechanisms of pyroptosis and its role in anti-tumor immunity. Int J Biol Sci 2023; 19:4166-4180. [PMID: 37705746 PMCID: PMC10496503 DOI: 10.7150/ijbs.86855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Pyroptosis is a form of cell death that is characterized by the destruction of the cell, and it has implications in both the immune system and cancer immunotherapy. The gasdermin family is responsible for the activation of pyroptosis, which involves the formation of pores in the cellular membrane that permit the discharge of inflammatory factors. The inflammasome response is a powerful mechanism that helps to eliminate bacteria and cancer cells when cellular damage occurs. As tumor cells become more resilient to apoptosis, other treatments for cancer are becoming more popular. It is essential to gain a thorough understanding of pyroptosis in order to use it in cancer treatment, considering the intricate association between pyroptosis and the immune system's defensive reaction against tumors. This review offers an overview of the mechanisms of pyroptosis, the relationship between the gasdermin family and pyroptosis, and the interplay between pyroptosis and anti-tumor immunity. In addition, the potential implications of pyroptosis in cancer immunotherapy are discussed. Additionally, we explore future research possibilities and introduce a novel approach to tumor treatment.
Collapse
Affiliation(s)
- Hongyong Huang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanmin Weng
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, Guangdong, 518036, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, Guangdong, 518036, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China
| |
Collapse
|
46
|
Lu X, Green BL, Xie C, Liu C, Chen X. Preclinical and clinical studies of immunotherapy for the treatment of cholangiocarcinoma. JHEP Rep 2023; 5:100723. [PMID: 37229173 PMCID: PMC10205436 DOI: 10.1016/j.jhepr.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 05/27/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare primary liver cancer associated with high mortality and few systemic treatment options. The behaviour of the immune system has come into focus as a potential treatment modality for many cancer types, but immunotherapy has yet to dramatically alter the treatment paradigm for CCA as it has for other diseases. Herein, we review recent studies describing the relevance of the tumour immune microenvironment (TIME) in CCA. Various non-parenchymal cell types are critically important in controlling CCA progression, prognosis, and response to systemic therapy. Knowledge of the behaviour of these leukocytes could help generate hypotheses to guide the development of potential immune-directed therapies. Recently, an immunotherapy-containing combination was approved for the treatment of advanced-stage CCA. However, despite level 1 evidence demonstrating the improved efficacy of this therapy, survival remained suboptimal. In the current manuscript, we provide a comprehensive review of the TIME in CCA, preclinical studies of immunotherapies against CCA, as well as ongoing clinical trials applying immunotherapies for the treatment of CCA. Particular emphasis is placed on microsatellite unstable tumours, a rare CCA subtype that demonstrates heightened sensitivity to approved immune checkpoint inhibitors. We also discuss the challenges involved in applying immunotherapies to the treatment of CCA and the importance of understanding the TIME.
Collapse
Affiliation(s)
- Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Benjamin L. Green
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
47
|
Pospieszna J, Dams-Kozlowska H, Udomsak W, Murias M, Kucinska M. Unmasking the Deceptive Nature of Cancer Stem Cells: The Role of CD133 in Revealing Their Secrets. Int J Mol Sci 2023; 24:10910. [PMID: 37446085 DOI: 10.3390/ijms241310910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer remains a leading cause of death globally, and its complexity poses a significant challenge to effective treatment. Cancer stem cells and their markers have become key players in tumor growth and progression. CD133, a marker in various cancer types, is an active research area as a potential therapeutic target. This article explores the role of CD133 in cancer treatment, beginning with an overview of cancer statistics and an explanation of cancer stem cells and their markers. The rise of CD133 is discussed, including its structure, functions, and occurrence in different cancer types. Furthermore, the article covers CD133 as a therapeutic target, focusing on gene therapy, immunotherapy, and approaches to affect CD133 expression. Nanoparticles such as gold nanoparticles and nanoliposomes are also discussed in the context of CD133-targeted therapy. In conclusion, CD133 is a promising therapeutic target for cancer treatment. As research in this area progresses, it is hoped that CD133-targeted therapies will offer new and effective treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary Street, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Wachirawit Udomsak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10 Street, 61-614 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| |
Collapse
|
48
|
Drougkas K, Karampinos K, Karavolias I, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Trontzas I, Kotteas E. Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end? J Cancer Res Clin Oncol 2023; 149:2709-2734. [PMID: 36564524 PMCID: PMC10129996 DOI: 10.1007/s00432-022-04547-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Chimeric Antigen Receptor (CAR)-T cell therapy is a form of adoptive cell therapy that has demonstrated tremendous results in the treatment of hematopoietic malignancies, leading to the US Food and Drug Administration (FDA) approval of four CD19-targeted CAR-T cell products. With the unprecedented success of CAR-T cell therapy in hematological malignancies, hundreds of preclinical studies and clinical trials are currently undergoing to explore the translation of this treatment to solid tumors. However, the clinical experience in non-hematologic malignancies has been less encouraging, with only a few patients achieving complete responses. Tumor-associated antigen heterogeneity, inefficient CAR-T cell trafficking and the immunosuppressive tumor microenvironment are considered as the most pivotal roadblocks in solid tumor CAR-T cell therapy. MATERIALS AND METHODS We reviewed the relevant literature/clinical trials for CAR-T cell immunotherapy for solid tumors from Pubmed and ClinicalTrials.gov. CONCLUSION Herein, we provide an update on solid tumor CAR-T cell clinical trials, focusing on the studies with published results. We further discuss some of the key hurdles that CAR-T cell therapy is encountering for solid tumor treatment as well as the strategies that are exploited to overcome these obstacles.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece.
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece.
| | - Konstantinos Karampinos
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioannis Karavolias
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioanna Ploumaki
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Efthymios Triantafyllou
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioannis Trontzas
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Pathology, Yale University School of Medicine, New Haven, USA, CT
| | - Elias Kotteas
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
| |
Collapse
|
49
|
Zeng W, Mao R, Zhang Z, Chen X. Combination Therapies for Advanced Biliary Tract Cancer. J Clin Transl Hepatol 2023; 11:490-501. [PMID: 36643047 PMCID: PMC9817051 DOI: 10.14218/jcth.2022.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/18/2023] Open
Abstract
Biliary tract cancers (BTCs) are a group of malignant neoplasms that have recently increased in incidence and have a poor prognosis. Surgery is the only curative therapy. However, most patients are only indicated for palliative therapy because of advanced-stage disease at diagnosis and rapid progression. The current first-line treatment for advanced BTC is gemcitabine and cisplatin chemotherapy. Nonetheless, many patients develop resistance to this regimen. Over the years, few chemotherapy regimens have managed to improve the overall survival of patients. Accordingly, novel therapies such as targeted therapy have been introduced to treat this patient population. Extensive research on tumorigenesis and the genetic profiling of BTC have revealed the heterogenicity and potential target pathways, such as EGFR, VEGF, MEK/ERK, PI3K and mTOR. Moreover, mutational analysis has documented the presence of IDH1, FGFR2, HER2, PRKACA, PRKACB, BRAF, and KRAS gene aberrations. The emergence of immunotherapy in recent years has expanded the treatment landscape for this group of malignancies. Cancer vaccines, adoptive cell transfer, and immune checkpoint inhibitors have been extensively investigated in trials of BTC. Therefore, patient stratification and a combination of various therapies have become a reasonable and important clinical strategy to improve patient outcomes. This review elaborates the literature on combined treatment strategies for advanced BTC from the past few years and ongoing clinical trials to provide new inspiration for the treatment of advanced BTC.
Collapse
Affiliation(s)
- Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiqi Mao
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Xiaoping Chen, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. ORCID: https://orcid.org/0000-0002-4527-4975 (ZZ). Tel: +86-27-83663400, Fax: +86-27-83662851, E-mail: (ZZ) and (XC)
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Xiaoping Chen, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. ORCID: https://orcid.org/0000-0002-4527-4975 (ZZ). Tel: +86-27-83663400, Fax: +86-27-83662851, E-mail: (ZZ) and (XC)
| |
Collapse
|
50
|
Queiroz MM, Lima NF, Biachi de Castria T. Immunotherapy and Targeted Therapy for Advanced Biliary Tract Cancer: Adding New Flavors to the Pizza. Cancers (Basel) 2023; 15:1970. [PMID: 37046631 PMCID: PMC10093144 DOI: 10.3390/cancers15071970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Biliary tract cancers (BTCs) are a rare pathology and can be divided into four major subgroups: intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, hilar cholangiocarcinoma, and gallbladder cancer. In the era of precision oncology, the development of next-generation sequencing (NGS) allowed a better understanding of molecular differences between these subgroups. Thus, the development of drugs that can target these alterations and inhibit the abnormal pathway activation has changed the prognosis of BTC patients. Additionally, the development of immune checkpoint inhibitors and a better understanding of tumor immunogenicity led to the development of clinical trials with immunotherapy for this scenario. The development of biomarkers that can predict how the immune system acts against the tumor cells, and which patients benefit from this activation, are urgently needed. Here, we review the most recent data regarding targeted treatment and immunotherapy in the scenario of BTC treatment, while also discussing the future perspectives for this challenging disease.
Collapse
Affiliation(s)
- Marcello Moro Queiroz
- Oncology Center, Hospital Sírio-Libanês, 115 Dona Adma Jafet Street, São Paulo 01308-050, SP, Brazil
| | - Nildevande Firmino Lima
- Oncology Center, Hospital Sírio-Libanês, 115 Dona Adma Jafet Street, São Paulo 01308-050, SP, Brazil
| | - Tiago Biachi de Castria
- Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| |
Collapse
|