BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ji J, Upadhyay S, Xiong X, Malmlöf M, Sandström T, Gerde P, Palmberg L. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization. Part Fibre Toxicol 2018;15:19. [PMID: 29716632 DOI: 10.1186/s12989-018-0256-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Rahman M, Irmler M, Introna M, Beckers J, Palmberg L, Johanson G, Upadhyay S, Ganguly K. Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface. Sci Rep 2022;12:16396. [PMID: 36180488 DOI: 10.1038/s41598-022-20657-y] [Reference Citation Analysis]
2 Makutani Y, Kawakami H, Tsujikawa T, Yoshimura K, Chiba Y, Ito A, Kawamura J, Haratani K, Nakagawa K. Contribution of MMP14-expressing cancer-associated fibroblasts in the tumor immune microenvironment to progression of colorectal cancer. Front Oncol 2022;12:956270. [DOI: 10.3389/fonc.2022.956270] [Reference Citation Analysis]
3 Upadhyay S, Chakraborty A, Thimraj TA, Baldi M, Steneholm A, Ganguly K, Gerde P, Ernstgård L, Palmberg L. Establishment of Repeated In Vitro Exposure System for Evaluating Pulmonary Toxicity of Representative Criteria Air Pollutants Using Advanced Bronchial Mucosa Models. Toxics 2022;10:277. [DOI: 10.3390/toxics10060277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zerboni A, Rossi T, Bengalli R, Catelani T, Rizzi C, Priola M, Casadei S, Mantecca P. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environ Pollut 2022;297:118767. [PMID: 34974087 DOI: 10.1016/j.envpol.2021.118767] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
5 Vázquez-gómez G, Karasová M, Tylichová Z, Kabátková M, Hampl A, Matthews J, Neča J, Ciganek M, Machala M, Vondráček J. Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022;11:707. [DOI: 10.3390/cells11040707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sun Y, Kinsela AS, Cen X, Sun S, Collins RN, Cliff DI, Wu Y, Waite TD. Impact of reactive iron in coal mine dust on oxidant generation and epithelial lung cell viability. Sci Total Environ 2021;810:152277. [PMID: 34902414 DOI: 10.1016/j.scitotenv.2021.152277] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Müller L, Usemann J, Alves MP, Latzin P. Diesel exposure increases susceptibility of primary human nasal epithelial cells to rhinovirus infection. Physiol Rep 2021;9:e14994. [PMID: 34542243 DOI: 10.14814/phy2.14994] [Reference Citation Analysis]
8 Shen F, Li D, Chen J. Mechanistic toxicity assessment of fine particulate matter emitted from fuel combustion via pathway-based approaches in human cells. Sci Total Environ 2021;806:150214. [PMID: 34571223 DOI: 10.1016/j.scitotenv.2021.150214] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021;168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Faber SC, McNabb NA, Ariel P, Aungst ER, McCullough SD. Exposure Effects Beyond the Epithelial Barrier: Transepithelial Induction of Oxidative Stress by Diesel Exhaust Particulates in Lung Fibroblasts in an Organotypic Human Airway Model. Toxicol Sci 2020;177:140-55. [PMID: 32525552 DOI: 10.1093/toxsci/kfaa085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Goossens J, Jonckheere A, Dupont LJ, Bullens DMA. Air Pollution and the Airways: Lessons from a Century of Human Urbanization. Atmosphere 2021;12:898. [DOI: 10.3390/atmos12070898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 He RW, Houtzager MMG, Jongeneel WP, Westerink RHS, Cassee FR. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system. Environ Int 2021;156:106718. [PMID: 34166876 DOI: 10.1016/j.envint.2021.106718] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng 2021;12:20417314211008696. [PMID: 33996022 DOI: 10.1177/20417314211008696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
14 Cai J, Zang X, Wu Z, Liu J, Wang D. Altered protein S-glutathionylation depicts redox imbalance triggered by transition metal oxide nanoparticles in a breastfeeding system. NanoImpact 2021;22:100305. [DOI: 10.1016/j.impact.2021.100305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 He RW, Braakhuis HM, Vandebriel RJ, Staal YCM, Gremmer ER, Fokkens PHB, Kemp C, Vermeulen J, Westerink RHS, Cassee FR. Optimization of an air-liquid interface in vitro cell co-culture model to estimate the hazard of aerosol exposures. J Aerosol Sci 2021;153:105703. [PMID: 33658726 DOI: 10.1016/j.jaerosci.2020.105703] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
16 Song N, Wang W, Wang Y, Guan Y, Xu S, Guo MY. Hydrogen sulfide of air induces macrophage extracellular traps to aggravate inflammatory injury via the regulation of miR-15b-5p on MAPK and insulin signals in trachea of chickens. Sci Total Environ 2021;771:145407. [PMID: 33548704 DOI: 10.1016/j.scitotenv.2021.145407] [Cited by in Crossref: 10] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
17 Daniel S, Phillippi D, Schneider LJ, Nguyen KN, Mirpuri J, Lund AK. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet. Part Fibre Toxicol 2021;18:3. [PMID: 33419468 DOI: 10.1186/s12989-020-00393-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
18 Ganguly K, Nordström A, Thimraj TA, Rahman M, Ramström M, Sompa SI, Lin EZ, O'Brien F, Koelmel J, Ernstgård L, Johanson G, Pollitt KJG, Palmberg L, Upadhyay S. Addressing the challenges of E-cigarette safety profiling by assessment of pulmonary toxicological response in bronchial and alveolar mucosa models. Sci Rep 2020;10:20460. [PMID: 33235237 DOI: 10.1038/s41598-020-77452-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
19 Smyth T, Veazey J, Eliseeva S, Chalupa D, Elder A, Georas SN. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein Tricellulin. Part Fibre Toxicol 2020;17:52. [PMID: 33059747 DOI: 10.1186/s12989-020-00383-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
20 Padukudru Anand M, Larsson K, Johanson G, Phuleria HC, Ravindra PV, Ernstgård L, Mabalirajan U, Krishna M, Palmberg L, Pollitt KJG, Upadhyay S, Ganguly K. Clinical, Epidemiological and Experimental Approaches to Assess Adverse Health Outcomes of Indoor Biomass Smoke Exposure: Conclusions from An Indo-Swedish Workshop in Mysuru, January 2020. Toxics 2020;8:E68. [PMID: 32899560 DOI: 10.3390/toxics8030068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Zhang X, Zhang Y, Meng Q, Sun H, Wu S, Xu J, Yun J, Yang X, Li B, Zhu H, Xue L, Li X, Chen R. MicroRNA-382-5p is involved in pulmonary inflammation induced by fine particulate matter exposure. Environmental Pollution 2020;262:114278. [DOI: 10.1016/j.envpol.2020.114278] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
22 Cattani-Cavalieri I, Valença SDS, Schmidt M. Nanodomains in cardiopulmonary disorders and the impact of air pollution. Biochem Soc Trans 2020;48:799-811. [PMID: 32597478 DOI: 10.1042/BST20190250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Cappellini F, Di Bucchianico S, Karri V, Latvala S, Malmlöf M, Kippler M, Elihn K, Hedberg J, Odnevall Wallinder I, Gerde P, Karlsson HL. Dry Generation of CeO2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interface-Dosimetry Considerations and Comparison to Submerged Exposure. Nanomaterials (Basel) 2020;10:E618. [PMID: 32230801 DOI: 10.3390/nano10040618] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
24 Ehrmann S, Schmid O, Darquenne C, Rothen-Rutishauser B, Sznitman J, Yang L, Barosova H, Vecellio L, Mitchell J, Heuze-Vourc'h N. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv 2020;17:463-78. [PMID: 32057260 DOI: 10.1080/17425247.2020.1730807] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
25 Li X, Zhang Y, Li B, Yang H, Cui J, Li X, Zhang X, Sun H, Meng Q, Wu S, Li S, Wang J, Aschner M, Chen R. Activation of NLRP3 in microglia exacerbates diesel exhaust particles-induced impairment in learning and memory in mice. Environ Int 2020;136:105487. [PMID: 31999974 DOI: 10.1016/j.envint.2020.105487] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
26 Gibbs JL, Dallon BW, Lewis JB, Walton CM, Arroyo JA, Reynolds PR, Bikman BT. Diesel Exhaust Particle Exposure Compromises Alveolar Macrophage Mitochondrial Bioenergetics. Int J Mol Sci 2019;20:E5598. [PMID: 31717476 DOI: 10.3390/ijms20225598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
27 Flies EJ, Mavoa S, Zosky GR, Mantzioris E, Williams C, Eri R, Brook BW, Buettel JC. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ Int 2019;133:105187. [PMID: 31648161 DOI: 10.1016/j.envint.2019.105187] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
28 Ji J, Ganguly K, Mihai X, Sun J, Malmlöf M, Gerde P, Upadhyay S, Palmberg L. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019;13:1362-79. [PMID: 31462114 DOI: 10.1080/17435390.2019.1655600] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
29 Thimraj TA, Sompa SI, Ganguly K, Ernstgård L, Johanson G, Palmberg L, Upadhyay S. Evaluation of diacetyl mediated pulmonary effects in physiologically relevant air-liquid interface models of human primary bronchial epithelial cells. Toxicol In Vitro 2019;61:104617. [PMID: 31381966 DOI: 10.1016/j.tiv.2019.104617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kaur K, Jaramillo IC, Mohammadpour R, Sturrock A, Ghandehari H, Reilly C, Paine R 3rd, Kelly KE. Effect of collection methods on combustion particle physicochemical properties and their biological response in a human macrophage-like cell line. J Environ Sci Health A Tox Hazard Subst Environ Eng 2019;54:1170-85. [PMID: 31342848 DOI: 10.1080/10934529.2019.1632626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
31 Shi R, Su WW, Zhu ZT, Guan MY, Cheng KL, Fan WY, Wei GY, Li PB, Yang ZY, Yao HL. Regulation effects of naringin on diesel particulate matter-induced abnormal airway surface liquid secretion. Phytomedicine 2019;63:153004. [PMID: 31301536 DOI: 10.1016/j.phymed.2019.153004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
32 Kulvinskiene I, Raudoniute J, Bagdonas E, Ciuzas D, Poliakovaite K, Stasiulaitiene I, Zabulyte D, Bironaite D, Rimantas Venskutonis P, Martuzevicius D, Aldonyte R. Lung alveolar tissue destruction and protein citrullination in diesel exhaust-exposed mouse lungs. Basic Clin Pharmacol Toxicol 2019;125:166-77. [PMID: 30801928 DOI: 10.1111/bcpt.13213] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]