BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S. Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 2014;11:150. [PMID: 25163400 DOI: 10.1186/s12974-014-0150-2] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, Karimi-Abdolrezaee S. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflammation 2018;15:90. [PMID: 29558941 DOI: 10.1186/s12974-018-1128-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]
2 Jogia T, Lübstorf T, Jacobson E, Scriven E, Atresh S, Nguyen QH, Liebscher T, Schwab JM, Kopp MA, Walsham J, Campbell KE, Ruitenberg MJ. Prognostic value of early leukocyte fluctuations for recovery from traumatic spinal cord injury. Clin Transl Med 2021;11:e272. [PMID: 33463065 DOI: 10.1002/ctm2.272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Brennan FH, Popovich PG. Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Curr Opin Neurol 2018;31:334-44. [PMID: 29465433 DOI: 10.1097/WCO.0000000000000550] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 7.3] [Reference Citation Analysis]
4 Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021;287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Reference Citation Analysis]
5 Zhou Q, Xiang H, Li A, Lin W, Huang Z, Guo J, Wang P, Chi Y, Xiang K, Xu Y, Zhou L, So KF, Chen X, Sun X, Ren Y. Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury. J Neurotrauma 2019;36:903-18. [PMID: 30221582 DOI: 10.1089/neu.2018.5783] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
6 Tsuruma K, Saito Y, Okuyoshi H, Yamaguchi A, Shimazawa M, Goldman D, Hara H. Granulin 1 Promotes Retinal Regeneration in Zebrafish. Invest Ophthalmol Vis Sci 2018;59:6057-66. [PMID: 30577041 DOI: 10.1167/iovs.18-24828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
7 Becker T, Becker CG. Dynamic cell interactions allow spinal cord regeneration in zebrafish. Current Opinion in Physiology 2020;14:64-9. [DOI: 10.1016/j.cophys.2020.01.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today 2021;26:1642-55. [PMID: 33781952 DOI: 10.1016/j.drudis.2021.03.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Karova K, Wainwright JV, Machova-Urdzikova L, Pisal RV, Schmidt M, Jendelova P, Jhanwar-Uniyal M. Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-κB pathway inhibition. J Neuroinflammation 2019;16:12. [PMID: 30654804 DOI: 10.1186/s12974-019-1394-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
10 Pflieger FJ, Hernandez J, Schweighöfer H, Herden C, Rosengarten B, Rummel C. The role of neutrophil granulocytes in immune-to-brain communication. Temperature (Austin) 2018;5:296-307. [PMID: 30574524 DOI: 10.1080/23328940.2018.1538598] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
11 Murdock BJ, Goutman SA, Boss J, Kim S, Feldman EL. Amyotrophic Lateral Sclerosis Survival Associates With Neutrophils in a Sex-specific Manner. Neurol Neuroimmunol Neuroinflamm 2021;8:e953. [PMID: 33531377 DOI: 10.1212/NXI.0000000000000953] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Zhao JL, Lai ST, Du ZY, Xu J, Sun YR, Yuan Q, Wu X, Li ZQ, Hu J, Xie R. Circulating neutrophil-to-lymphocyte ratio at admission predicts the long-term outcome in acute traumatic cervical spinal cord injury patients. BMC Musculoskelet Disord 2020;21:548. [PMID: 32799840 DOI: 10.1186/s12891-020-03556-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 2017;14:207. [PMID: 29070054 DOI: 10.1186/s12974-017-0980-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
14 Zheng G, Zheng F, Luo Z, Ma H, Zheng D, Xiang G, Xu C, Zhou Y, Wu Y, Tian N, Wu Y, Zhang T, Ni W, Wang S, Xu H, Zhang X. CO-Releasing Molecule (CORM)-3 Ameliorates Spinal Cord-Blood Barrier Disruption Following Injury to the Spinal Cord. Front Pharmacol 2020;11:761. [PMID: 32581781 DOI: 10.3389/fphar.2020.00761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Dalamagkas K, Tsintou M, Seifalian AM. Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 2018;13:35-42. [PMID: 29451202 DOI: 10.4103/1673-5374.224360] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
16 Umezawa H, Naito Y, Tanaka K, Yoshioka K, Suzuki K, Sudo T, Hagihara M, Hatano M, Tatsumi K, Kasuya Y. Genetic and Pharmacological Inhibition of p38α Improves Locomotor Recovery after Spinal Cord Injury. Front Pharmacol 2017;8:72. [PMID: 28261102 DOI: 10.3389/fphar.2017.00072] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
17 Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, Franzen R, Wislet S. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther 2015;6:211. [PMID: 26530515 DOI: 10.1186/s13287-015-0202-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 5.4] [Reference Citation Analysis]
18 Zhang S, Fujita Y, Matsuzaki R, Yamashita T. Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis 2018;9:460. [PMID: 29700327 DOI: 10.1038/s41419-018-0543-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
19 Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 2021;18:284. [PMID: 34876174 DOI: 10.1186/s12974-021-02337-2] [Reference Citation Analysis]
20 Shi J, Wang S, Ke Q, Lin J, Zheng Y, Wu S, Huang Z, Lin W. T1R1/T1R3 Taste Receptor Suppresses Granulocyte-Mediated Neuroinflammation after Spinal Cord Injury. J Neurotrauma 2017;34:2353-63. [PMID: 28474538 DOI: 10.1089/neu.2016.4952] [Reference Citation Analysis]
21 Lin M, Huang W, Kabbani N, Theiss MM, Hamilton JF, Ecklund JM, Conley YP, Vodovotz Y, Brienza D, Wagner AK, Robbins E, Sowa GA, Lipsky RH. Effect of CHRFAM7A Δ2bp gene variant on secondary inflammation after spinal cord injury. PLoS One 2021;16:e0251110. [PMID: 33956875 DOI: 10.1371/journal.pone.0251110] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Sabin KZ, Echeverri K. The role of the immune system during regeneration of the central nervous system. J Immunol Regen Med 2020;7:100023. [PMID: 32864529 DOI: 10.1016/j.regen.2019.100023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016;10:98. [PMID: 27147970 DOI: 10.3389/fncel.2016.00098] [Cited by in Crossref: 160] [Cited by in F6Publishing: 157] [Article Influence: 26.7] [Reference Citation Analysis]
24 Chen Y, Liang L, Cao S, Hou G, Zhang Q, Ma H, Shi B. Serum CCL21 as a Potential Biomarker for Cognitive Impairment in Spinal Cord Injury. Biomed Res Int 2020;2020:6692802. [PMID: 33376730 DOI: 10.1155/2020/6692802] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Yu B, Yao C, Wang Y, Mao S, Wang Y, Wu R, Feng W, Chen Y, Yang J, Xue C, Liu D, Ding F, Gu X. The Landscape of Gene Expression and Molecular Regulation Following Spinal Cord Hemisection in Rats. Front Mol Neurosci 2019;12:287. [PMID: 31824262 DOI: 10.3389/fnmol.2019.00287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol 2021;200:101970. [PMID: 33358752 DOI: 10.1016/j.pneurobio.2020.101970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017;8:245. [PMID: 28539887 DOI: 10.3389/fphar.2017.00245] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
28 Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol. 2019;10:282. [PMID: 30967837 DOI: 10.3389/fneur.2019.00282] [Cited by in Crossref: 162] [Cited by in F6Publishing: 142] [Article Influence: 54.0] [Reference Citation Analysis]
29 Chambel SS, Tavares I, Cruz CD. Chronic Pain After Spinal Cord Injury: Is There a Role for Neuron-Immune Dysregulation? Front Physiol 2020;11:748. [PMID: 32733271 DOI: 10.3389/fphys.2020.00748] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
30 Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021;16. [PMID: 34384071 DOI: 10.1088/1748-605X/ac1d3c] [Reference Citation Analysis]
31 Koganti L, Liu J, DeMajewski A, Agostini MA, Wong TW, Faber DS, Zottoli SJ. Invasion of microglia/macrophages and granulocytes into the Mauthner axon myelin sheath following spinal cord injury of the adult goldfish, Carassius auratus. J Morphol 2020;281:135-52. [PMID: 31774588 DOI: 10.1002/jmor.21086] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Feng Z, Min L, Liang L, Chen B, Chen H, Zhou Y, Deng W, Liu H, Hou J. Neutrophil Extracellular Traps Exacerbate Secondary Injury via Promoting Neuroinflammation and Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Front Immunol 2021;12:698249. [PMID: 34456910 DOI: 10.3389/fimmu.2021.698249] [Reference Citation Analysis]
33 Cox A, Varma A, Barry J, Vertegel A, Banik N. Nanoparticle Estrogen in Rat Spinal Cord Injury Elicits Rapid Anti-Inflammatory Effects in Plasma, Cerebrospinal Fluid, and Tissue. J Neurotrauma 2015;32:1413-21. [PMID: 25845398 DOI: 10.1089/neu.2014.3730] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
34 Bongers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review. Antibiotics (Basel) 2019;8:E54. [PMID: 31060222 DOI: 10.3390/antibiotics8020054] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
35 Van Sandt RL, Welsh CJ, Jeffery ND, Young CR, Mccreedy DA, Wright GA, Boudreau CE, Levine GJ, Levine JM. Circulating neutrophil activation in dogs with naturally occurring spinal cord injury secondary to intervertebral disk herniation. ajvr 2022. [DOI: 10.2460/ajvr.21.05.0073] [Reference Citation Analysis]
36 Yates AG, Jogia T, Gillespie ER, Couch Y, Ruitenberg MJ, Anthony DC. Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury. J Neuroinflammation 2021;18:15. [PMID: 33407641 DOI: 10.1186/s12974-020-02050-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Pang QM, Chen SY, Xu QJ, Fu SP, Yang YC, Zou WH, Zhang M, Liu J, Wan WH, Peng JC, Zhang T. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front Immunol 2021;12:751021. [PMID: 34925326 DOI: 10.3389/fimmu.2021.751021] [Reference Citation Analysis]
38 Kumar H, Choi H, Jo MJ, Joshi HP, Muttigi M, Bonanomi D, Kim SB, Ban E, Kim A, Lee SH, Kim KT, Sohn S, Zeng X, Han I. Neutrophil elastase inhibition effectively rescued angiopoietin-1 decrease and inhibits glial scar after spinal cord injury. Acta Neuropathol Commun 2018;6:73. [PMID: 30086801 DOI: 10.1186/s40478-018-0576-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
39 Liu Y, Liu J, Liu B. Identification of Circular RNA Expression Profiles and their Implication in Spinal Cord Injury Rats at the Immediate Phase. J Mol Neurosci 2020;70:1894-905. [DOI: 10.1007/s12031-020-01586-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
40 Zhang D, Tang Q, Zheng G, Wang C, Zhou Y, Wu Y, Xuan J, Tian N, Wang X, Wu Y, Xu H, Zhang X. Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP-9 expression but not direct TJ proteins expression regulation. J Cell Mol Med 2017;21:3322-36. [PMID: 28699677 DOI: 10.1111/jcmm.13235] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
41 Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2021;226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Foster VS, Rash LD, King GF, Rank MM. Acid-Sensing Ion Channels: Expression and Function in Resident and Infiltrating Immune Cells in the Central Nervous System. Front Cell Neurosci 2021;15:738043. [PMID: 34602982 DOI: 10.3389/fncel.2021.738043] [Reference Citation Analysis]
43 Jiang W, Li M, He F, Zhu L. Inhibition of NLRP3 inflammasome attenuates spinal cord injury‐induced lung injury in mice. J Cell Physiol 2019;234:6012-22. [DOI: 10.1002/jcp.27233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 2020;21:E7533. [PMID: 33066029 DOI: 10.3390/ijms21207533] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
45 Navegantes KC, de Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 2017;15:36. [PMID: 28202039 DOI: 10.1186/s12967-017-1141-8] [Cited by in Crossref: 142] [Cited by in F6Publishing: 129] [Article Influence: 28.4] [Reference Citation Analysis]
46 Shi LB, Tang PF, Zhang W, Zhao YP, Zhang LC, Zhang H. Naringenin inhibits spinal cord injury-induced activation of neutrophils through miR-223. Gene. 2016;592:128-133. [PMID: 27432064 DOI: 10.1016/j.gene.2016.07.037] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
47 Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371:531-539. [PMID: 29383445 DOI: 10.1007/s00441-017-2785-7] [Cited by in Crossref: 159] [Cited by in F6Publishing: 153] [Article Influence: 39.8] [Reference Citation Analysis]
48 Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018;661:119-25. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
49 Chio JCT, Wang J, Surendran V, Li L, Zavvarian MM, Pieczonka K, Fehlings MG. Delayed administration of high dose human immunoglobulin G enhances recovery after traumatic cervical spinal cord injury by modulation of neuroinflammation and protection of the blood spinal cord barrier. Neurobiol Dis 2021;148:105187. [PMID: 33249350 DOI: 10.1016/j.nbd.2020.105187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Liu F, Xu H, Yin Y, Chen Y, Xie L, Li H, Wang D, Shi B, Shi W. Decreased Adiponectin Levels Are a Risk Factor for Cognitive Decline in Spinal Cord Injury. Disease Markers 2022;2022:1-6. [DOI: 10.1155/2022/5389162] [Reference Citation Analysis]
51 Kumar H, Jo M, Choi H, Muttigi MS, Shon S, Kim B, Lee S, Han I. Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood–Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neurobiol 2018;55:2577-90. [DOI: 10.1007/s12035-017-0509-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
52 Shi Z, Pan B, Feng S. The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 2018;22:2055-61. [PMID: 29392896 DOI: 10.1111/jcmm.13515] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
53 Jiang W, Li M, He F, Bian Z, He Q, Wang X, Yao W, Zhu L. Neuroprotective effect of asiatic acid against spinal cord injury in rats. Life Sci 2016;157:45-51. [PMID: 27153777 DOI: 10.1016/j.lfs.2016.05.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
54 Yokota K, Saito T, Kobayakawa K, Kubota K, Hara M, Murata M, Ohkawa Y, Iwamoto Y, Okada S. The feasibility of in vivo imaging of infiltrating blood cells for predicting the functional prognosis after spinal cord injury. Sci Rep 2016;6:25673. [PMID: 27156468 DOI: 10.1038/srep25673] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
55 El Waly B, Buttigieg E, Karakus C, Brustlein S, Debarbieux F. Longitudinal Intravital Microscopy Reveals Axon Degeneration Concomitant With Inflammatory Cell Infiltration in an LPC Model of Demyelination. Front Cell Neurosci 2020;14:165. [PMID: 32655371 DOI: 10.3389/fncel.2020.00165] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
56 David S, Kroner A, Greenhalgh AD, Zarruk JG, López-vales R. Myeloid cell responses after spinal cord injury. Journal of Neuroimmunology 2018;321:97-108. [DOI: 10.1016/j.jneuroim.2018.06.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]