BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen S, Wu Q, Zhong D, Li C, Du L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respir Res 2020;21:140. [PMID: 32513156 DOI: 10.1186/s12931-020-01403-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Sonny S, Yuan H, Chen S, Duncan MR, Chen P, Benny M, Young K, Park KK, Schmidt AF, Wu S. GSDMD deficiency ameliorates hyperoxia-induced BPD and ROP in neonatal mice. Sci Rep 2023;13:143. [PMID: 36599874 DOI: 10.1038/s41598-022-27201-y] [Reference Citation Analysis]
2 Wang X, Lv S, Sun J, Zhang M, Zhang L, Sun Y, Zhao Z, Wang D, Zhao X, Zhang J. Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Report 2022;27:270-278. [DOI: 10.1080/13510002.2022.2143114] [Reference Citation Analysis]
3 Deng X, Bao Z, Yang X, Mei Y, Zhou Q, Chen A, Yu R, Zhang Y. Molecular mechanisms of cell death in bronchopulmonary dysplasia. Apoptosis 2022. [DOI: 10.1007/s10495-022-01791-4] [Reference Citation Analysis]
4 Fan FS. Coffee reduces the risk of hepatocellular carcinoma probably through inhibition of NLRP3 inflammasome activation by caffeine. Front Oncol 2022;12:1029491. [DOI: 10.3389/fonc.2022.1029491] [Reference Citation Analysis]
5 Fan FS. Inhibition of NLRP3 inflammasome activation by caffeine might be a potential mechanism to reduce the risk of squamous cell carcinoma of the oral cavity and oropharynx with coffee drinking. Front Oral Health 2022;3:1017543. [PMID: 36325196 DOI: 10.3389/froh.2022.1017543] [Reference Citation Analysis]
6 Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol. [DOI: 10.1007/s10565-022-09773-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hu Z, Zhou G, Tang M. CREB1 Transcriptionally Activates LTBR to Promote the NF-κB Pathway and Apoptosis in Lung Epithelial Cells. Computational and Mathematical Methods in Medicine 2022;2022:1-14. [DOI: 10.1155/2022/9588740] [Reference Citation Analysis]
8 Vargas-pozada EE, Ramos-tovar E, Rodriguez-callejas JD, Cardoso-lezama I, Galindo-gómez S, Talamás-lara D, Vásquez-garzón VR, Arellanes-robledo J, Tsutsumi V, Villa-treviño S, Muriel P. Caffeine Inhibits NLRP3 Inflammasome Activation by Downregulating TLR4/MAPK/NF-κB Signaling Pathway in an Experimental NASH Model. IJMS 2022;23:9954. [DOI: 10.3390/ijms23179954] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Liu W, Han X, Li Q, Sun L, Wang J. Iguratimod ameliorates bleomycin-induced pulmonary fibrosis by inhibiting the EMT process and NLRP3 inflammasome activation. Biomedicine & Pharmacotherapy 2022;153:113460. [DOI: 10.1016/j.biopha.2022.113460] [Reference Citation Analysis]
10 Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022;9:924036. [DOI: 10.3389/fnut.2022.924036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tian C, Li D, Fu J. Molecular Mechanism of Caffeine in Preventing Bronchopulmonary Dysplasia in Premature Infants. Front Pediatr 2022;10:902437. [DOI: 10.3389/fped.2022.902437] [Reference Citation Analysis]
12 Wang X, Huo R, Liang Z, Xu C, Chen T, Lin J, Li L, Lin W, Pan B, Fu X, Chen S, Collino M. Simvastatin Inhibits NLRP3 Inflammasome Activation and Ameliorates Lung Injury in Hyperoxia-Induced Bronchopulmonary Dysplasia via the KLF2-Mediated Mechanism. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/8336070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Yuan Y, Yang Y, Lei X, Dong W. Caffeine and Bronchopulmonary Dysplasia: Clinical Benefits and the Mechanisms Involved. Pediatr Pulmonol 2022. [PMID: 35318830 DOI: 10.1002/ppul.25898] [Reference Citation Analysis]
14 Qing C, Ziyun L, Xuefei Y, Xinyi Z, Xindong X, Jianhua F. Protective Effects of 18β-Glycyrrhetinic Acid on Neonatal Rats with Hyperoxia Exposure. Inflammation 2022. [PMID: 34989920 DOI: 10.1007/s10753-021-01616-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Wu Y, Zhang Z, Li J, Zhong H, Yuan R, Deng Z, Wu X. Mechanism of Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying miR-21-5p in Hyperoxia-Induced Lung Injury. Stem Cell Rev Rep 2021. [PMID: 34882302 DOI: 10.1007/s12015-021-10311-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Jia D, Zheng J, Zhou Y, Jia J, Ye X, Zhou B, Chen X, Mo Y, Wang J. Ferroptosis is Involved in Hyperoxic Lung Injury in Neonatal Rats. J Inflamm Res 2021;14:5393-401. [PMID: 34703276 DOI: 10.2147/JIR.S335061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
17 Choi Y, Rekers L, Dong Y, Holzfurtner L, Goetz MJ, Shahzad T, Zimmer KP, Behnke J, Behnke J, Bellusci S, Ehrhardt H. Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021;22:11006. [PMID: 34681665 DOI: 10.3390/ijms222011006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021;10:e1322. [PMID: 34466225 DOI: 10.1002/cti2.1322] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Vyas-Read S, Logan JW, Cuna AC, Machry J, Leeman KT, Rose RS, Mikhael M, Wymore E, Ibrahim JW, DiGeronimo RJ, Yallapragada S, Haberman BE, Padula MA, Porta NF, Murthy K, Nelin LD, Coghill CH, Zaniletti I, Savani RC, Truog W, Engle WA, Lagatta JM. A comparison of newer classifications of bronchopulmonary dysplasia: findings from the Children's Hospitals Neonatal Consortium Severe BPD Group. J Perinatol 2021. [PMID: 34354227 DOI: 10.1038/s41372-021-01178-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Ozdemir R, Gokce IK, Taslidere AC, Tanbek K, Gul CC, Sandal S, Turgut H, Kaya H, Aslan M. Does Chrysin prevent severe lung damage in Hyperoxia-Induced lung injury Model? Int Immunopharmacol 2021;99:108033. [PMID: 34343938 DOI: 10.1016/j.intimp.2021.108033] [Reference Citation Analysis]
21 Liu B, He R, Zhang L, Hao B, Jiang W, Wang W, Geng Q. Inflammatory Caspases Drive Pyroptosis in Acute Lung Injury. Front Pharmacol 2021;12:631256. [PMID: 33613295 DOI: 10.3389/fphar.2021.631256] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
22 Zhang Q, Ran X, He Y, Ai Q, Shi Y. Acetate Downregulates the Activation of NLRP3 Inflammasomes and Attenuates Lung Injury in Neonatal Mice With Bronchopulmonary Dysplasia. Front Pediatr 2020;8:595157. [PMID: 33614540 DOI: 10.3389/fped.2020.595157] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
23 Chen CM, Hwang J, Chou HC, Chen C. Anti-Tn Monoclonal Antibody Attenuates Hyperoxia-Induced Lung Injury by Inhibiting Oxidative Stress and Inflammation in Neonatal Mice. Front Pharmacol 2020;11:568502. [PMID: 33013407 DOI: 10.3389/fphar.2020.568502] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]