BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Crisà A, Ferrè F, Chillemi G, Moioli B. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Vet Res 2016;12:264. [PMID: 27884183 DOI: 10.1186/s12917-016-0881-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Napolitano F, Grandoni F, Signorelli F, Annicchiarico G, Catillo G, Moioli B, Crisà A, Marchitelli C. Gelsolin expression in sheep milk somatic cells during lactation. Animal 2019;13:2297-304. [PMID: 30837031 DOI: 10.1017/S1751731119000399] [Reference Citation Analysis]
2 Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M. Detection of genetic variants between different Polish Landrace and Puławska pigs by means of RNA-seq analysis. Anim Genet 2018;49:215-25. [PMID: 29635698 DOI: 10.1111/age.12654] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
3 Xuan R, Chao T, Wang A, Zhang F, Sun P, Liu S, Guo M, Wang G, Ji Z, Wang J, Cheng M. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One 2020;15:e0234427. [PMID: 32511270 DOI: 10.1371/journal.pone.0234427] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Marziali S, Guerra E, Cerdán-garcia C, Segura-carretero A, Caboni MF, Verardo V. Effect of early lactation stage on goat colostrum: Assessment of lipid and oligosaccharide compounds. International Dairy Journal 2018;77:65-72. [DOI: 10.1016/j.idairyj.2017.09.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
5 Han Z, Fan Y, Yang Z, Loor JJ, Yang Y. Mammary Transcriptome Profile during Peak and Late Lactation Reveals Differentially Expression Genes Related to Inflammation and Immunity in Chinese Holstein. Animals (Basel) 2020;10:E510. [PMID: 32204353 DOI: 10.3390/ani10030510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Arora R, Sharma A, Sharma U, Girdhar Y, Kaur M, Kapoor P, Ahlawat S, Vijh RK. Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation. Sci Rep 2019;9:5993. [PMID: 30979954 DOI: 10.1038/s41598-019-42513-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
7 Yakan A, Özkan H, Çamdeviren B, Kaya U, Karaaslan İ, Dalkiran S. Expression patterns of major genes in fatty acid synthesis, inflammation, oxidative stress pathways from colostrum to milk in Damascus goats. Sci Rep 2021;11:9448. [PMID: 33941846 DOI: 10.1038/s41598-021-88976-0] [Reference Citation Analysis]
8 Rezvannejad E, Asadollahpour Nanaei H, Esmailizadeh A. Detection of candidate genes affecting milk production traits in sheep using whole-genome sequencing analysis. Vet Med Sci 2022. [PMID: 35014209 DOI: 10.1002/vms3.731] [Reference Citation Analysis]
9 Chen Y, Wang J, Yang S, Utturkar S, Crodian J, Cummings S, Thimmapuram J, San Miguel P, Kuang S, Gribskov M, Plaut K, Casey T. Effect of high-fat diet on secreted milk transcriptome in midlactation mice. Physiological Genomics 2017;49:747-62. [DOI: 10.1152/physiolgenomics.00080.2017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
10 Yu X, Fang C, Liu L, Zhao X, Liu W, Cao H, Lv S. Transcriptome study underling difference of milk yield during peak lactation of Kazakh horse. J Equine Vet Sci 2021;102:103424. [PMID: 34119198 DOI: 10.1016/j.jevs.2021.103424] [Reference Citation Analysis]
11 Lu X, Duan A, Liang S, Ma X, Deng T. Genomic Identification, Evolution, and Expression Analysis of Collagen Genes Family in Water Buffalo during Lactation. Genes (Basel) 2020;11:E515. [PMID: 32384775 DOI: 10.3390/genes11050515] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Sutera AM, Moscarelli A, Mastrangelo S, Sardina MT, Di Gerlando R, Portolano B, Tolone M. Genome-Wide Association Study Identifies New Candidate Markers for Somatic Cells Score in a Local Dairy Sheep. Front Genet 2021;12:643531. [PMID: 33828586 DOI: 10.3389/fgene.2021.643531] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Guan D, Landi V, Luigi-Sierra MG, Delgado JV, Such X, Castelló A, Cabrera B, Mármol-Sánchez E, Fernández-Alvarez J, de la Torre Casañas JLR, Martínez A, Jordana J, Amills M. Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. J Anim Sci Biotechnol 2020;11:35. [PMID: 32175082 DOI: 10.1186/s40104-020-00435-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Choudhary RK, Choudhary S, Mukhopadhyay CS, Pathak D, Verma R. Deciphering the transcriptome of prepubertal buffalo mammary glands using RNA sequencing. Funct Integr Genomics 2019;19:349-62. [DOI: 10.1007/s10142-018-0645-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 van Leeuwen SS, Te Poele EM, Chatziioannou AC, Benjamins E, Haandrikman A, Dijkhuizen L. Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. J Agric Food Chem 2020;68:13469-85. [PMID: 33141570 DOI: 10.1021/acs.jafc.0c03766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021:S0022-0302(21)00973-5. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Reference Citation Analysis]
17 Keel BN, Lindholm-Perry AK, Oliver WT, Wells JE, Jones SA, Rempel LA. Characterization and comparative analysis of transcriptional profiles of porcine colostrum and mature milk at different parities. BMC Genom Data 2021;22:25. [PMID: 34376140 DOI: 10.1186/s12863-021-00980-5] [Reference Citation Analysis]
18 Farhadian M, Rafat SA, Panahi B, Mayack C. Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Sci Rep 2021;11:2367. [PMID: 33504890 DOI: 10.1038/s41598-021-81888-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Li CM, Shapiro H, Tsiobikas C, Selfors LM, Chen H, Rosenbluth J, Moore K, Gupta KP, Gray GK, Oren Y, Steinbaugh MJ, Guerriero JL, Pinello L, Regev A, Brugge JS. Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020;33:108566. [PMID: 33378681 DOI: 10.1016/j.celrep.2020.108566] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
20 Michailidou S, Gelasakis A, Banos G, Arsenos G, Argiriou A. Comparative Transcriptome Analysis of Milk Somatic Cells During Lactation Between Two Intensively Reared Dairy Sheep Breeds. Front Genet 2021;12:700489. [PMID: 34349787 DOI: 10.3389/fgene.2021.700489] [Reference Citation Analysis]
21 Zhou C, Shen D, Li C, Cai W, Liu S, Yin H, Shi S, Cao M, Zhang S. Comparative Transcriptomic and Proteomic Analyses Identify Key Genes Associated With Milk Fat Traits in Chinese Holstein Cows. Front Genet 2019;10:672. [PMID: 31456815 DOI: 10.3389/fgene.2019.00672] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
22 Ahlawat S, Vijh RK, Sharma A, Sharma U, Girdhar Y, Kaur M, Chhabra P, Kumar A, Arora R. Milk somatic cell derived transcriptome analysis identifies regulatory genes and pathways during lactation in Indian Sahiwal cattle (Bos indicus). Mol Biol Rep 2020;47:7029-38. [PMID: 32880836 DOI: 10.1007/s11033-020-05764-1] [Reference Citation Analysis]
23 Jiangfeng F, Yuzhu L, Sijiu Y, Yan C, Gengquan X, Libin W, Yangyang P, Honghong H. Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing. PLoS One 2018;13:e0201628. [PMID: 30059556 DOI: 10.1371/journal.pone.0201628] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
24 Sun J, Zhang H, Hu B, Xie Y, Wang D, Zhang J, Chen T, Luo J, Wang S, Jiang Q, Xi Q, Chen Z, Zhang Y. Emerging Roles of Heat-Induced circRNAs Related to Lactogenesis in Lactating Sows. Front Genet 2019;10:1347. [PMID: 32117411 DOI: 10.3389/fgene.2019.01347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Farhadian M, Rafat SA, Panahi B, Ebrahimie E. Transcriptome signature of two lactation stages in Ghezel sheep identifies using RNA-Sequencing. Anim Biotechnol 2020;:1-11. [PMID: 32633600 DOI: 10.1080/10495398.2020.1784185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
26 Palombo V, Loor JJ, D'Andrea M, Vailati-Riboni M, Shahzad K, Krogh U, Theil PK. Transcriptional profiling of swine mammary gland during the transition from colostrogenesis to lactogenesis using RNA sequencing. BMC Genomics 2018;19:322. [PMID: 29724161 DOI: 10.1186/s12864-018-4719-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
27 Wang J, Zhou H, Hickford JGH, Hao Z, Shen J, Luo Y, Hu J, Liu X, Li S. Comparison of the Transcriptome of the Ovine Mammary Gland in Lactating and Non-lactating Small-Tailed Han Sheep. Front Genet 2020;11:472. [PMID: 32508880 DOI: 10.3389/fgene.2020.00472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Yu S, Zhao Y, Lai F, Chu M, Hao Y, Feng Y, Zhang H, Liu J, Cheng M, Li L, Shen W, Min L. LncRNA as ceRNAs may be involved in lactation process. Oncotarget 2017;8:98014-28. [PMID: 29228670 DOI: 10.18632/oncotarget.20439] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
29 Liu L, Fang C, Ma H, Yu X, Lv S, Liu W. Development and validation of KASP markers for the milk traits genes in Kazakh horse. Journal of Applied Animal Research 2020;48:293-9. [DOI: 10.1080/09712119.2020.1782218] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Choudhary RK, Choudhary S, Verma R. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat. Mol Biol Rep 2018;45:581-90. [DOI: 10.1007/s11033-018-4196-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
31 Xuan R, Chao T, Zhao X, Wang A, Chu Y, Li Q, Zhao Y, Ji Z, Wang J. Transcriptome profiling of the nonlactating mammary glands of dairy goats reveals the molecular genetic mechanism of mammary cell remodeling. Journal of Dairy Science 2022. [DOI: 10.3168/jds.2021-21039] [Reference Citation Analysis]
32 Sun S, Li C, Liu S, Luo J, Chen Z, Zhang C, Zhang T, Huang J, Xi L. RNA sequencing and differential expression reveals the effects of serial oestrus synchronisation on ovarian genes in dairy goats. Reprod Fertil Dev 2018;30:1622. [DOI: 10.1071/rd17511] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Crisà A, Claps S, Moioli B, Marchitelli C. Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis. BMC Vet Res 2019;15:457. [PMID: 31852463 DOI: 10.1186/s12917-019-2206-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Martín-Ortiz A, Barile D, Salcedo J, Moreno FJ, Clemente A, Ruiz-Matute AI, Sanz ML. Changes in Caprine Milk Oligosaccharides at Different Lactation Stages Analyzed by High Performance Liquid Chromatography Coupled to Mass Spectrometry. J Agric Food Chem 2017;65:3523-31. [PMID: 28393524 DOI: 10.1021/acs.jafc.6b05104] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
35 Valk-Weeber RL, Eshuis-de Ruiter T, Dijkhuizen L, van Leeuwen SS. Dynamic Temporal Variations in Bovine Lactoferrin Glycan Structures. J Agric Food Chem 2020;68:549-60. [PMID: 31829588 DOI: 10.1021/acs.jafc.9b06762] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
36 Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci 2021;104:5768-93. [PMID: 33685677 DOI: 10.3168/jds.2020-19534] [Reference Citation Analysis]
37 Hao Z, Zhou H, Hickford JGH, Gong H, Wang J, Hu J, Liu X, Li S, Zhao M, Luo Y. Transcriptome Profile Analysis of Mammary Gland Tissue from Two Breeds of Lactating Sheep. Genes (Basel) 2019;10:E781. [PMID: 31597369 DOI: 10.3390/genes10100781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]