BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lamers D, van Biezen N, Martens D, Peters L, van de Zilver E, Jacobs-van Dreumel N, Wijffels RH, Lokman C. Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol 2016;16:45. [PMID: 27233820 DOI: 10.1186/s12896-016-0276-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Shi N, Mao W, He X, Chi Z, Chi Z, Liu G. Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin. Appl Biochem Biotechnol 2018;185:334-46. [PMID: 29150774 DOI: 10.1007/s12010-017-2659-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
2 Bardhan P, Gupta K, Mandal M. Microbes as Bio-Resource for Sustainable Production of Biofuels and Other Bioenergy Products. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2019. pp. 205-22. [DOI: 10.1016/b978-0-444-64191-5.00015-8] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
3 Gientka I, Aleksandrzak-piekarczyk T, Bzducha-wróbel A, Synowiec A, Błażejak S. Deproteinated Potato Wastewater as a Sustainable Nitrogen Source in Trichosporon domesticum Yeast Lipids Biosynthesis—a Concept of Valorization of Wastewater from Starch Industry. Potato Res 2019;62:221-37. [DOI: 10.1007/s11540-018-9408-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
4 Funk I, Sieber V, Schmid J. Effects of glucose concentration on 1,18-cis-octadec-9-enedioic acid biotransformation efficiency and lipid body formation in Candida tropicalis. Sci Rep 2017;7:13842. [PMID: 29062119 DOI: 10.1038/s41598-017-14173-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
5 Bhutada G, Kavšcek M, Ledesma-Amaro R, Thomas S, Rechberger GN, Nicaud JM, Natter K. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res 2017;17. [PMID: 28475761 DOI: 10.1093/femsyr/fox020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
6 Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017;8:2185. [PMID: 29167664 DOI: 10.3389/fmicb.2017.02185] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 9.8] [Reference Citation Analysis]
7 Bardhan P, Gupta K, Kishor S, Chattopadhyay P, Chaliha C, Kalita E, Goud VV, Mandal M. Oleaginous yeasts isolated from traditional fermented foods and beverages of Manipur and Mizoram, India, as a potent source of microbial lipids for biodiesel production. Ann Microbiol 2020;70. [DOI: 10.1186/s13213-020-01562-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Infanzón B, Cesarini S, Martínez J, Pastor FIJ, Diaz P. Alternative Oils Tested as Feedstocks for Enzymatic FAMEs Synthesis: Toward a More Sustainable Process. Biotechnol Progress 2017;33:1209-17. [DOI: 10.1002/btpr.2558] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
9 Heshof R, Visscher B, van de Zilver E, van de Vondervoort R, van Keulen F, Delahaije RJBM, Wind RD. Production of tailor-made enzymes to facilitate lipid extraction from the oleaginous yeast Schwanniomyces occidentalis. AMB Express 2020;10:41. [PMID: 32112299 DOI: 10.1186/s13568-020-00974-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bardhan P, Baruah J, Raj GB, Kalita E, Mandal M. Optimization of culture conditions for biomass and lipid production by oleaginous fungus Penicillium citrinum PKB20 using response surface methodology (RSM). Biocatalysis and Agricultural Biotechnology 2021;37:102169. [DOI: 10.1016/j.bcab.2021.102169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Antimanon S, Anantayanon J, Wannawilai S, Khongto B, Laoteng K. Physiological Traits of Dihomo-γ-Linolenic Acid Production of the Engineered Aspergillus oryzae by Comparing Mathematical Models. Front Microbiol 2020;11:546230. [PMID: 33224108 DOI: 10.3389/fmicb.2020.546230] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA. Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications. Appl Microbiol Biotechnol 2019;103:3651-67. [DOI: 10.1007/s00253-019-09742-x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 13.7] [Reference Citation Analysis]
13 Deeba F, Pruthi V, Negi YS. Production of Oleaginous Organisms or Lipids Using Sewage Water and Industrial Wastewater. Methods Mol Biol 2019;1995:405-18. [PMID: 31148142 DOI: 10.1007/978-1-4939-9484-7_24] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Shapaval V, Brandenburg J, Blomqvist J, Tafintseva V, Passoth V, Sandgren M, Kohler A. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnol Biofuels 2019;12:140. [PMID: 31178928 DOI: 10.1186/s13068-019-1481-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
15 Gao B, Wang F, Huang L, Liu H, Zhong Y, Zhang C. Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources. Biotechnol Biofuels 2021;14:4. [PMID: 33407769 DOI: 10.1186/s13068-020-01868-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Sànchez i Nogué V, Black BA, Kruger JS, Singer CA, Ramirez KJ, Reed ML, Cleveland NS, Singer ER, Yi X, Yeap RY, Linger JG, Beckham GT. Integrated diesel production from lignocellulosic sugars via oleaginous yeast. Green Chem 2018;20:4349-65. [DOI: 10.1039/c8gc01905c] [Cited by in Crossref: 25] [Article Influence: 6.3] [Reference Citation Analysis]
17 Bergenholm D, Gossing M, Wei Y, Siewers V, Nielsen J. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter‐like lipids. Biotechnol Bioeng 2018;115:932-42. [DOI: 10.1002/bit.26518] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
18 Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021;20:221. [PMID: 34876155 DOI: 10.1186/s12934-021-01712-1] [Reference Citation Analysis]
19 Caporusso A, Capece A, De Bari I. Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Fermentation 2021;7:50. [DOI: 10.3390/fermentation7020050] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
20 Osman ME, Abdel-razik AB, Zaki KI, Mamdouh N, El-sayed H. Isolation, molecular identification of lipid-producing Rhodotorula diobovata: optimization of lipid accumulation for biodiesel production. J Genet Eng Biotechnol 2022;20. [DOI: 10.1186/s43141-022-00304-9] [Reference Citation Analysis]
21 Le RK, Mahan KM, Ragauskas AJ. Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues. Methods Mol Biol 2019;1995:103-20. [PMID: 31148123 DOI: 10.1007/978-1-4939-9484-7_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kochan K, Peng H, Wood BR, Haritos VS. Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging. Biotechnol Biofuels 2018;11:106. [PMID: 29643936 DOI: 10.1186/s13068-018-1108-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
23 Kamineni A, Shaw J. Engineering triacylglycerol production from sugars in oleaginous yeasts. Current Opinion in Biotechnology 2020;62:239-47. [DOI: 10.1016/j.copbio.2019.12.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
24 Isarankura Na Ayudhya N, Laoteng K, Song Y, Meechai A, Vongsangnak W. Metabolic traits specific for lipid-overproducing strain of Mucor circinelloides WJ11 identified by genome-scale modeling approach. PeerJ 2019;7:e7015. [PMID: 31316868 DOI: 10.7717/peerj.7015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020;8:E434. [PMID: 32204542 DOI: 10.3390/microorganisms8030434] [Cited by in Crossref: 45] [Cited by in F6Publishing: 24] [Article Influence: 22.5] [Reference Citation Analysis]
26 Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biol Trace Elem Res 2019;187:316-27. [PMID: 29675568 DOI: 10.1007/s12011-018-1342-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
27 Lamers D, Visscher B, Weusthuis RA, Francke C, Wijffels RH, Lokman C. Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid. Bioresource Technology 2019;289:121672. [DOI: 10.1016/j.biortech.2019.121672] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Bhutada G, Kavšček M, Ledesma-amaro R, Thomas S, Rechberger GN, Nicaud J, Natter K. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Research 2017;17. [DOI: 10.1093/femsle/fox020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]