1 |
Fujii W. Generation of Knock-In Mouse by Genome Editing. Methods Mol Biol 2023;2637:99-109. [PMID: 36773141 DOI: 10.1007/978-1-0716-3016-7_8] [Reference Citation Analysis]
|
2 |
Mathew SM. Strategies for generation of mice via CRISPR/HDR-mediated knock-in. Mol Biol Rep 2023. [PMID: 36701041 DOI: 10.1007/s11033-023-08278-8] [Reference Citation Analysis]
|
3 |
Demirci S, Essawi K, Germino-Watnick P, Liu X, Hakami W, Tisdale JF. Advances in CRISPR Delivery Methods: Perspectives and Challenges. CRISPR J 2022;5:660-76. [PMID: 36260301 DOI: 10.1089/crispr.2022.0051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022;14:1252. [PMID: 35745824 DOI: 10.3390/pharmaceutics14061252] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
5 |
Quintana-bustamante O, Fañanas-baquero S, Dessy-rodriguez M, Ojeda-pérez I, Segovia J. Gene Editing for Inherited Red Blood Cell Diseases. Front Physiol 2022;13:848261. [DOI: 10.3389/fphys.2022.848261] [Reference Citation Analysis]
|
6 |
Ashraf S, Munawar N, Zahoor MK, Jamil A, Hammad M, Ghaffar A, Ahmad A. Delivery Methods for CRISPR/Cas Reagents. The CRISPR/Cas Tool Kit for Genome Editing 2022. [DOI: 10.1007/978-981-16-6305-5_4] [Reference Citation Analysis]
|
7 |
Alghuthaymi MA, Ahmad A, Khan Z, Khan SH, Ahmed FK, Faiz S, Nepovimova E, Kuča K, Abd-Elsalam KA. Exosome/Liposome-like Nanoparticles: New Carriers for CRISPR Genome Editing in Plants. Int J Mol Sci 2021;22:7456. [PMID: 34299081 DOI: 10.3390/ijms22147456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
8 |
Hart-Johnson S, Mankelow K. Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab Anim 2021;:236772211007306. [PMID: 33847177 DOI: 10.1177/00236772211007306] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Aslam MA, Hammad M, Ahmad A, Altenbuchner J, Ali H. Delivery Methods, Resources and Design Tools in CRISPR/Cas. CRISPR Crops 2021. [DOI: 10.1007/978-981-15-7142-8_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
10 |
Saifaldeen M, Al-Ansari DE, Ramotar D, Aouida M. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering. Cells 2020;9:E2518. [PMID: 33233344 DOI: 10.3390/cells9112518] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Roohi Razlighi M, Davaran S, Khalilov R, Sugiyama M, Nosrati H, Kaboli S, Danafar H, Webster TJ. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today 2020;34:100895. [DOI: 10.1016/j.nantod.2020.100895] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
|
12 |
Takeo T, Nakao S, Nakagawa Y, Sztein JM, Nakagata N. Cryopreservation of mouse resources. Lab Anim Res 2020;36:33. [PMID: 32963977 DOI: 10.1186/s42826-020-00066-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
13 |
Smith LM, Hodara VL, Parodi LM, Callery JE, Giavedoni LD. Silencing integrated SIV proviral DNA with TAR-specific CRISPR tools. J Med Primatol 2020;49:269-79. [PMID: 32905624 DOI: 10.1111/jmp.12494] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
14 |
Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA. Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals (Basel) 2020;13:E158. [PMID: 32707857 DOI: 10.3390/ph13080158] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
15 |
Shindo R, Katagiri T, Komazawa-Sakon S, Ohmuraya M, Takeda W, Nakagawa Y, Nakagata N, Sakuma T, Yamamoto T, Nishiyama C, Nishina T, Yamazaki S, Kameda H, Nakano H. Regenerating islet-derived protein (Reg)3β plays a crucial role in attenuation of ileitis and colitis in mice. Biochem Biophys Rep 2020;21:100738. [PMID: 32072024 DOI: 10.1016/j.bbrep.2020.100738] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Ikeda A, Fujii W, Sugiura K, Naito K. High-fidelity endonuclease variant HypaCas9 facilitates accurate allele-specific gene modification in mouse zygotes. Commun Biol 2019;2:371. [PMID: 31633062 DOI: 10.1038/s42003-019-0627-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
|
17 |
Suenaga Y, Yamamoto M, Sakuma T, Sasada M, Fukai F, Ohira M, Yamaguchi Y, Yamamoto T, Ando K, Ozaki T, Nakagawara A. TAp63 represses transcription of MYCN/NCYM gene and its high levels of expression are associated with favorable outcome in neuroblastoma. Biochem Biophys Res Commun 2019;518:311-8. [PMID: 31427086 DOI: 10.1016/j.bbrc.2019.08.052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Carboni V, Maaliki C, Alyami M, Alsaiari S, Khashab N. Synthetic Vehicles for Encapsulation and Delivery of CRISPR/Cas9 Gene Editing Machinery. Adv Therap 2019;2:1800085. [DOI: 10.1002/adtp.201800085] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
|
19 |
Darwish M, Nishizono H, Uosaki H, Sawada H, Sadahiro T, Ieda M, Takao K. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. J Neurosci Methods 2019;317:149-56. [PMID: 30684509 DOI: 10.1016/j.jneumeth.2019.01.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
20 |
Singh B, Mal G, Gautam SK, Mukesh M. Transgenesis and Genetically Engineered Livestock as Live Bioreactors. Advances in Animal Biotechnology 2019. [DOI: 10.1007/978-3-030-21309-1_23] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
21 |
Kallimasioti-Pazi EM, Thelakkad Chathoth K, Taylor GC, Meynert A, Ballinger T, Kelder MJE, Lalevée S, Sanli I, Feil R, Wood AJ. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biol 2018;16:e2005595. [PMID: 30540740 DOI: 10.1371/journal.pbio.2005595] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 12.0] [Reference Citation Analysis]
|
22 |
Sakuma T, Yamamoto T. Acceleration of cancer science with genome editing and related technologies. Cancer Sci 2018;109:3679-85. [PMID: 30315615 DOI: 10.1111/cas.13832] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25:1234-1257. [PMID: 29801422 DOI: 10.1080/10717544.2018.1474964] [Cited by in Crossref: 507] [Cited by in F6Publishing: 414] [Article Influence: 101.4] [Reference Citation Analysis]
|
24 |
Deguchi Y, Nishina T, Asano K, Ohmuraya M, Nakagawa Y, Nakagata N, Sakuma T, Yamamoto T, Araki K, Mikami T, Tanaka M, Nakano H. Generation of and characterization of anti-IL-11 antibodies using newly established Il11-deficient mice. Biochem Biophys Res Commun 2018;505:453-9. [PMID: 30268501 DOI: 10.1016/j.bbrc.2018.09.128] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
|
25 |
Nakagawa Y, Sakuma T, Takeo T, Nakagata N, Yamamoto T. Electroporation-mediated genome editing in vitrified/warmed mouse zygotes created by IVF via ultra-superovulation. Exp Anim 2018;67:535-43. [PMID: 30012936 DOI: 10.1538/expanim.18-0062] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
|
26 |
Yoshida M, Yokota E, Sakuma T, Yamatsuji T, Takigawa N, Ushijima T, Yamamoto T, Fukazawa T, Naomoto Y. Development of an integrated CRISPRi targeting ΔNp63 for treatment of squamous cell carcinoma. Oncotarget 2018;9:29220-32. [PMID: 30018747 DOI: 10.18632/oncotarget.25678] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
|
27 |
Fujii W. Generation of Knock-in Mouse by Genome Editing. Methods Mol Biol 2017;1630:91-100. [PMID: 28643252 DOI: 10.1007/978-1-4939-7128-2_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017;266:17-26. [PMID: 28911805 DOI: 10.1016/j.jconrel.2017.09.012] [Cited by in Crossref: 273] [Cited by in F6Publishing: 291] [Article Influence: 45.5] [Reference Citation Analysis]
|
29 |
Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Takeo T, Nakagata N, Yamamoto T. Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice. Biol Open 2017;6:706-13. [PMID: 28396487 DOI: 10.1242/bio.025122] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
|
30 |
Daer RM, Cutts JP, Brafman DA, Haynes KA. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. ACS Synth Biol 2017;6:428-38. [PMID: 27783893 DOI: 10.1021/acssynbio.5b00299] [Cited by in Crossref: 95] [Cited by in F6Publishing: 99] [Article Influence: 15.8] [Reference Citation Analysis]
|
31 |
Motohashi K. Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods. Biochem Biophys Rep 2017;9:310-5. [PMID: 28956018 DOI: 10.1016/j.bbrep.2017.01.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
|
32 |
Cebrian-Serrano A, Zha S, Hanssen L, Biggs D, Preece C, Davies B. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models. PLoS One 2017;12:e0169887. [PMID: 28081254 DOI: 10.1371/journal.pone.0169887] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
|
33 |
Motohashi K. Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis. Methods in Molecular Biology 2017. [DOI: 10.1007/978-1-4939-6472-7_23] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
|
34 |
Sakuma T, Sakamoto T, Yamamoto T. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells. Methods Mol Biol 2017;1498:41-56. [PMID: 27709568 DOI: 10.1007/978-1-4939-6472-7_4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
|
35 |
Sakuma T, Masaki K, Abe-chayama H, Mochida K, Yamamoto T, Chayama K. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 2016;21:1253-62. [DOI: 10.1111/gtc.12437] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
|
36 |
Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary Animal Models For Human Gene Therapy Applications. Curr Gene Ther 2015;15:531-40. [PMID: 26415576 DOI: 10.2174/1566523215666150929110424] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
|
37 |
Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 2016;17:300-12. [PMID: 27087594 DOI: 10.1038/nrg.2016.28] [Cited by in Crossref: 307] [Cited by in F6Publishing: 317] [Article Influence: 43.9] [Reference Citation Analysis]
|
38 |
Daer RM, Cutts JP, Brafman DA, Haynes KA. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells.. [DOI: 10.1101/071464] [Reference Citation Analysis]
|
39 |
Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Yanaka N, Takeo T, Nakagata N, Yamamoto T. Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open 2016;5:1142-8. [PMID: 27387532 DOI: 10.1242/bio.019349] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
|
40 |
Low BE, Kutny PM, Wiles MV. Simple, Efficient CRISPR-Cas9-Mediated Gene Editing in Mice: Strategies and Methods. Methods Mol Biol 2016;1438:19-53. [PMID: 27150082 DOI: 10.1007/978-1-4939-3661-8_2] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
|
41 |
. 24th European Society for Animal Cell Technology (ESACT) Meeting: C2P2: Cells, Culture, Patients, Products. BMC Proc 2015;9 Suppl 9:O1-P9. [PMID: 28256971 DOI: 10.1186/1753-6561-9-s9-o1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
|