BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Baker LY, Hobby CR, Siv AW, Bible WC, Glennon MS, Anderson DM, Symes SJ, Giles DK. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence. BMC Microbiol 2018;18:117. [PMID: 30217149 DOI: 10.1186/s12866-018-1259-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Ugwuodo CJ, Colosimo F, Adhikari J, Shen Y, Badireddy AR, Mouser PJ. Salinity and hydraulic retention time induce membrane phospholipid acyl chain remodeling in Halanaerobium congolense WG10 and mixed cultures from hydraulically fractured shale wells. Front Microbiol 2022;13. [DOI: 10.3389/fmicb.2022.1023575] [Reference Citation Analysis]
2 Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. Membranes 2022;12:914. [DOI: 10.3390/membranes12100914] [Reference Citation Analysis]
3 Turgeson A, Morley L, Giles D, Harris B. Simulated Docking Predicts Putative Channels for the Transport of Long-Chain Fatty Acids in Vibrio cholerae. Biomolecules 2022;12:1269. [PMID: 36139109 DOI: 10.3390/biom12091269] [Reference Citation Analysis]
4 Mozaheb N, Van Der Smissen P, Opsomer T, Mignolet E, Terrasi R, Paquot A, Larondelle Y, Dehaen W, Muccioli GG, Mingeot-leclercq M, Ellermeier CD. Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. mSphere. [DOI: 10.1128/msphere.00187-22] [Reference Citation Analysis]
5 Mohamed H, Marusich E, Afanasev Y, Leonov S. Bacterial Outer Membrane Permeability Increase Underlies the Bactericidal Effect of Fatty Acids From Hermetia illucens (Black Soldier Fly) Larvae Fat Against Hypermucoviscous Isolates of Klebsiella pneumoniae. Front Microbiol 2022;13:844811. [DOI: 10.3389/fmicb.2022.844811] [Reference Citation Analysis]
6 Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022;298:101629. [PMID: 35085556 DOI: 10.1016/j.jbc.2022.101629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Turgeson A, Giles D, Harris B. Simulated docking reveals putative channels for the transport of long-chain fatty acids in Vibrio cholerae.. [DOI: 10.1101/2022.01.26.477967] [Reference Citation Analysis]
8 Al Ghaithi A, Al Bimani A, Al Maskari S. Investigating the Growth of Pseudomonas aeruginosa and Its Influence on Osteolysis in Human Bone: An In Vitro Study. Strategies in Trauma and Limb Reconstruction 2021;16:127-31. [DOI: 10.5005/jp-journals-10080-1534] [Reference Citation Analysis]
9 Smith DS, Houck C, Lee A, Simmons TB, Chester ON, Esdaile A, Symes SJK, Giles DK. Polyunsaturated fatty acids cause physiological and behavioral changes in Vibrio alginolyticus and Vibrio fischeri. Microbiologyopen 2021;10:e1237. [PMID: 34713610 DOI: 10.1002/mbo3.1237] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE.. [DOI: 10.1101/2021.10.19.465045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021;22:7634. [PMID: 34299266 DOI: 10.3390/ijms22147634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
12 Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021;70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Maitra R, Fogel E, Parakrama R, Goel S. Molecular Tools for Metastatic Colorectal Cancer Characterization. J Cell Immunol 2020;2:359-63. [PMID: 33426543 DOI: 10.33696/immunology.2.067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Olivera ER, Luengo JM. Engineering Strategies for Efficient and Sustainable Production of Medium-Chain Length Polyhydroxyalkanoates in Pseudomonads. Bioplastics for Sustainable Development 2021. [DOI: 10.1007/978-981-16-1823-9_21] [Reference Citation Analysis]
15 Alvares DS, Monti MR, Ruggiero Neto J, Wilke N. The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol. BBA Advances 2021;1:100002. [DOI: 10.1016/j.bbadva.2021.100002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
16 Joshi AS, Singh P, Mijakovic I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int J Mol Sci 2020;21:E7658. [PMID: 33081366 DOI: 10.3390/ijms21207658] [Cited by in Crossref: 57] [Cited by in F6Publishing: 63] [Article Influence: 28.5] [Reference Citation Analysis]
17 Herndon JL, Peters RE, Hofer RN, Simmons TB, Symes SJ, Giles DK. Exogenous polyunsaturated fatty acids (PUFAs) promote changes in growth, phospholipid composition, membrane permeability and virulence phenotypes in Escherichia coli. BMC Microbiol 2020;20:305. [PMID: 33046008 DOI: 10.1186/s12866-020-01988-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
18 Vidaillac C, Yong VFL, Aschtgen MS, Qu J, Yang S, Xu G, Seng ZJ, Brown AC, Ali MK, Jaggi TK, Sankaran J, Foo YH, Righetti F, Nedumaran AM, Mac Aogáin M, Roizman D, Richard JA, Rogers TR, Toyofuku M, Luo D, Loh E, Wohland T, Czarny B, Horvat JC, Hansbro PM, Yang L, Li L, Normark S, Henriques Normark B, Chotirmall SH. Sex Steroids Induce Membrane Stress Responses and Virulence Properties in Pseudomonas aeruginosa. mBio 2020;11:e01774-20. [PMID: 32994320 DOI: 10.1128/mBio.01774-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Deschamps E, Schaumann A, Schmitz-Afonso I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Membrane phospholipid composition of Pseudomonas aeruginosa grown in a cystic fibrosis mucus-mimicking medium. Biochim Biophys Acta Biomembr 2021;1863:183482. [PMID: 33002450 DOI: 10.1016/j.bbamem.2020.183482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Kim HS, Cha E, Ham SY, Park JH, Nam S, Kwon H, Byun Y, Park HD. Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnol Bioeng 2021;118:82-93. [PMID: 32880907 DOI: 10.1002/bit.27552] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
21 Munsch-Alatossava P, Alatossava T. Potential of N2 Gas Flushing to Hinder Dairy-Associated Biofilm Formation and Extension. Front Microbiol 2020;11:1675. [PMID: 32849349 DOI: 10.3389/fmicb.2020.01675] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Paredes SD, Kim S, Rooney MT, Greenwood AI, Hristova K, Cotten ML. Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020;1862:183236. [DOI: 10.1016/j.bbamem.2020.183236] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Wheelock CE, Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot Essent Fatty Acids 2020;160:102156. [PMID: 32750662 DOI: 10.1016/j.plefa.2020.102156] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Perczyk P, Wójcik A, Hachlica N, Wydro P, Broniatowski M. The composition of phospholipid model bacterial membranes determines their endurance to secretory phospholipase A2 attack – The role of cardiolipin. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020;1862:183239. [DOI: 10.1016/j.bbamem.2020.183239] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Mangiarotti A, Genovese DM, Naumann CA, Monti MR, Wilke N. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019;1861:183060. [DOI: 10.1016/j.bbamem.2019.183060] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
26 Al-Bakri AG, Mahmoud NN. Photothermal-Induced Antibacterial Activity of Gold Nanorods Loaded into Polymeric Hydrogel against Pseudomonas aeruginosa Biofilm. Molecules 2019;24:E2661. [PMID: 31340472 DOI: 10.3390/molecules24142661] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
27 Moossavi S, Atakora F, Miliku K, Sepehri S, Robertson B, Duan QL, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Lefebvre DL, Sears MR, Subbarao P, Field CJ, Bode L, Khafipour E, Azad MB. Integrated Analysis of Human Milk Microbiota With Oligosaccharides and Fatty Acids in the CHILD Cohort. Front Nutr 2019;6:58. [PMID: 31157227 DOI: 10.3389/fnut.2019.00058] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]