BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu H, Cao Z, Li M, Wang S. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genomics 2020;21:597. [PMID: 32859150 DOI: 10.1186/s12864-020-06978-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Dong B, Li M, Jiang B, Gao B, Li D, Zhang T. Antimicrobial Peptides Prediction method based on sequence multidimensional feature embedding. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.1069558] [Reference Citation Analysis]
2 García-Jacas CR, García-González LA, Martinez-Rios F, Tapia-Contreras IP, Brizuela CA. Handcrafted versus non-handcrafted (self-supervised) features for the classification of antimicrobial peptides: complementary or redundant? Brief Bioinform 2022:bbac428. [PMID: 36215083 DOI: 10.1093/bib/bbac428] [Reference Citation Analysis]
3 Jiang Y, Luo J, Huang D, Liu Y, Li D. Machine Learning Advances in Microbiology: A Review of Methods and Applications. Front Microbiol 2022;13:925454. [DOI: 10.3389/fmicb.2022.925454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sequeira AM, Lousa D, Rocha M. ProPythia: A Python package for protein classification based on machine and deep learning. Neurocomputing 2022;484:172-82. [DOI: 10.1016/j.neucom.2021.07.102] [Reference Citation Analysis]
5 García-Jacas CR, Pinacho-Castellanos SA, García-González LA, Brizuela CA. Do deep learning models make a difference in the identification of antimicrobial peptides? Brief Bioinform 2022:bbac094. [PMID: 35380616 DOI: 10.1093/bib/bbac094] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
6 Söylemez ÜG, Yousef M, Kesmen Z, Erdem Büyükkiraz ME, Bakir-gungor B. Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models. Applied Sciences 2022;12:3631. [DOI: 10.3390/app12073631] [Reference Citation Analysis]
7 Wang G, Vaisman II, van Hoek ML. Machine Learning Prediction of Antimicrobial Peptides. Methods Mol Biol 2022;2405:1-37. [PMID: 35298806 DOI: 10.1007/978-1-0716-1855-4_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Dong S, Wang S. Assembled graph neural network using graph transformer with edges for protein model quality assessment. J Mol Graph Model 2022;110:108053. [PMID: 34773871 DOI: 10.1016/j.jmgm.2021.108053] [Reference Citation Analysis]
9 Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021;22:11691. [PMID: 34769122 DOI: 10.3390/ijms222111691] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
10 Yadav V, Misra R. A review emphasizing on utility of heptad repeat sequence as a tool to design pharmacologically safe peptide-based antibiotics. Biochimie 2021;191:126-39. [PMID: 34492334 DOI: 10.1016/j.biochi.2021.09.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Yang H, Wang S, Xia X. iEnhancer-RD: Identification of enhancers and their strength using RKPK features and deep neural networks. Anal Biochem 2021;630:114318. [PMID: 34364858 DOI: 10.1016/j.ab.2021.114318] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Singh O, Hsu WL, Su EC. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics 2021;22:389. [PMID: 34330209 DOI: 10.1186/s12859-021-04305-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Li Z, Wang S. DNA protein binding motif prediction based on fusion of expectation pooling and LSTM. 2021 13th International Conference on Advanced Computational Intelligence (ICACI) 2021. [DOI: 10.1109/icaci52617.2021.9435861] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wang X, Wang S. RNA-binding protein sequence prediction method based on ensemble learning and data over-sampling. 2021 13th International Conference on Advanced Computational Intelligence (ICACI) 2021. [DOI: 10.1109/icaci52617.2021.9435903] [Reference Citation Analysis]
15 夏 新. Predicting Subcellular Localization of Apoptotic Proteins Using Kernel Svm and Segmentation Pssm Method. CSA 2021;11:710-719. [DOI: 10.12677/csa.2021.113073] [Reference Citation Analysis]