BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10. [PMID: 24817998 DOI: 10.1186/2045-8118-11-10] [Cited by in Crossref: 372] [Cited by in F6Publishing: 321] [Article Influence: 46.5] [Reference Citation Analysis]
Number Citing Articles
1 Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017;8:51. [PMID: 28377744 DOI: 10.3389/fendo.2017.00051] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
2 Lindstrøm EK, Ringstad G, Mardal KA, Eide PK. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. Neuroimage Clin 2018;20:731-41. [PMID: 30238917 DOI: 10.1016/j.nicl.2018.09.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
3 Eide PK, Pripp AH. The prevalence of cardiovascular disease in non-communicating hydrocephalus. Clin Neurol Neurosurg 2016;149:33-8. [PMID: 27455422 DOI: 10.1016/j.clineuro.2016.07.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
4 Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M. Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discov Today 2019;24:1166-75. [PMID: 30898661 DOI: 10.1016/j.drudis.2019.02.007] [Reference Citation Analysis]
5 Zhang L, Hussain Z, Ren Z. Recent Advances in Rational Diagnosis and Treatment of Normal Pressure Hydrocephalus: A Critical Appraisal on Novel Diagnostic, Therapy Monitoring and Treatment Modalities. Curr Drug Targets 2019;20:1041-57. [PMID: 30767741 DOI: 10.2174/1389450120666190214121342] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tullis GE, Spears K, Kirk MD. Immunological barriers to stem cell therapy in the central nervous system. Stem Cells Int 2014;2014:507905. [PMID: 25165476 DOI: 10.1155/2014/507905] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
7 Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016;13:19. [PMID: 27799072 DOI: 10.1186/s12987-016-0040-3] [Cited by in Crossref: 105] [Cited by in F6Publishing: 92] [Article Influence: 17.5] [Reference Citation Analysis]
8 Ducros A, Biousse V. Headache arising from idiopathic changes in CSF pressure. The Lancet Neurology 2015;14:655-68. [DOI: 10.1016/s1474-4422(15)00015-0] [Cited by in Crossref: 49] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
9 Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2018;9:3062. [PMID: 30740109 DOI: 10.3389/fimmu.2018.03062] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
10 Keable A, O'Neill R, MacGregor Sharp M, Gatherer M, Yuen HM, Johnston DA, Weller RO, Carare RO. ApoE4 Astrocytes Secrete Basement Membranes Rich in Fibronectin and Poor in Laminin Compared to ApoE3 Astrocytes. Int J Mol Sci 2020;21:E4371. [PMID: 32575521 DOI: 10.3390/ijms21124371] [Reference Citation Analysis]
11 Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, Herod SG, Knopp J, Setliff JC, Lupi AL, Da Mesquita S, Frost EL, Gaultier A, Harris TH, Cao R, Hu S, Lukens JR, Smirnov I, Overall CC, Oliver G, Kipnis J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 2018;21:1380-91. [PMID: 30224810 DOI: 10.1038/s41593-018-0227-9] [Cited by in Crossref: 228] [Cited by in F6Publishing: 202] [Article Influence: 57.0] [Reference Citation Analysis]
12 Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2019;65:106-19. [PMID: 29996134 DOI: 10.1159/000490349] [Cited by in Crossref: 96] [Cited by in F6Publishing: 89] [Article Influence: 24.0] [Reference Citation Analysis]
13 Simats A, García-Berrocoso T, Ramiro L, Giralt D, Gill N, Penalba A, Bustamante A, Rosell A, Montaner J. Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology. Sci Rep 2018;8:7899. [PMID: 29784938 DOI: 10.1038/s41598-018-26237-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
14 Nakatsuka Y, Kawakita F, Yasuda R, Umeda Y, Toma N, Sakaida H, Suzuki H; on behalf of the Prospective Registry for Searching Mediators of Neurovascular Events After Aneurysmal Subarachnoid Hemorrhage (pSEED) Group. Preventive effects of cilostazol against the development of shunt-dependent hydrocephalus after subarachnoid hemorrhage. J Neurosurg 2017;127:319-26. [PMID: 27494819 DOI: 10.3171/2016.5.JNS152907] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
15 Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. Biochim Biophys Acta Biomembr 2020;1862:183430. [PMID: 32750317 DOI: 10.1016/j.bbamem.2020.183430] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Bert RJ, Settipalle N, Tiwana E, Muddasani D, Nath R, Wellman B, Mihlon F, Negahdar M, Amini A, Boakye M. The relationships among spinal CSF flows, spinal cord geometry, and vascular correlations: evidence of intrathecal sources and sinks. Am J Physiol Regul Integr Comp Physiol 2019;317:R470-84. [PMID: 31242020 DOI: 10.1152/ajpregu.00101.2018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
17 Diwakar L, Gowaikar R, Chithanathan K, Gnanabharathi B, Tomar DS, Ravindranath V. Endothelin-1 mediated vasoconstriction leads to memory impairment and synaptic dysfunction. Sci Rep 2021;11:4868. [PMID: 33649479 DOI: 10.1038/s41598-021-84258-x] [Reference Citation Analysis]
18 Fu BM. Transport Across the Blood-Brain Barrier. Adv Exp Med Biol 2018;1097:235-59. [PMID: 30315549 DOI: 10.1007/978-3-319-96445-4_13] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
19 Raybaud C. MR assessment of pediatric hydrocephalus: a road map. Childs Nerv Syst 2016;32:19-41. [PMID: 26337698 DOI: 10.1007/s00381-015-2888-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
20 Lametschwandtner A, Minnich B. Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts. J Morphol 2018;279:950-69. [PMID: 29693258 DOI: 10.1002/jmor.20824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
21 Kelly KK, MacPherson AM, Grewal H, Strnad F, Jones JW, Yu J, Pierzchalski K, Kane MA, Herson PS, Siegenthaler JA. Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neurosci 2016;17:49. [PMID: 27422020 DOI: 10.1186/s12868-016-0284-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
22 Tanner K. Perspective: The role of mechanobiology in the etiology of brain metastasis. APL Bioeng 2018;2:031801. [PMID: 31069312 DOI: 10.1063/1.5024394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
23 Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, Holtzman MJ, De Schutter E, Herzel H, Bordyugov G, Takumi T. The choroid plexus is an important circadian clock component. Nat Commun 2018;9:1062. [PMID: 29540683 DOI: 10.1038/s41467-018-03507-2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 11.3] [Reference Citation Analysis]
24 Kratz SV. Case report: Manual therapies promote resolution of persistent post-concussion symptoms in a 24-year-old athlete. SAGE Open Med Case Rep 2021;9:2050313X20952224. [PMID: 33628444 DOI: 10.1177/2050313X20952224] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ozoner B, Kilic M, Aydin L, Aydin S, Arslan YK, Musluman AM, Yilmaz A. Early cranioplasty associated with a lower rate of post-traumatic hydrocephalus after decompressive craniectomy for traumatic brain injury. Eur J Trauma Emerg Surg 2020;46:919-26. [PMID: 32494837 DOI: 10.1007/s00068-020-01409-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Sepúlveda V, Maurelia F, González M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 2021;18:45. [PMID: 34600566 DOI: 10.1186/s12987-021-00277-w] [Reference Citation Analysis]
27 Podkovik S, Kashyap S, Wiginton J 4th, Kang C, Mo K, Goodrich M, Wolberg A, Wacker MR, Miulli DE. Comparison of Ventricular and Lumbar Cerebrospinal Fluid Composition. Cureus 2020;12:e9315. [PMID: 32850195 DOI: 10.7759/cureus.9315] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Eide PK, Valnes LM, Lindstrøm EK, Mardal KA, Ringstad G. Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases. Fluids Barriers CNS 2021;18:16. [PMID: 33794929 DOI: 10.1186/s12987-021-00251-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kampondeni S, Seydel KB, Zhang B, Small DS, Birbeck GL, Hammond CA, Chilingulo C, Taylor TE, Potchen MJ. Amount of Brain Edema Correlates With Neurologic Recovery in Pediatric Cerebral Malaria. Pediatr Infect Dis J 2020;39:277-82. [PMID: 32168246 DOI: 10.1097/INF.0000000000002573] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Chan SM, Chodakiewitz YG, Maya MM, Schievink WI, Moser FG. Intracranial Hypotension and Cerebrospinal Fluid Leak. Neuroimaging Clinics of North America 2019;29:213-26. [DOI: 10.1016/j.nic.2019.01.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
31 Maloveská M, Humeník F, Vikartovská Z, Hudáková N, Almášiová V, Krešáková L, Čížková D. Brain Fluid Channels for Metabolite Removal. Physiol Res 2022. [DOI: 10.33549/physiolres.934802] [Reference Citation Analysis]
32 Chini B, Verhage M, Grinevich V. The Action Radius of Oxytocin Release in the Mammalian CNS: From Single Vesicles to Behavior. Trends Pharmacol Sci 2017;38:982-91. [PMID: 28899620 DOI: 10.1016/j.tips.2017.08.005] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 12.6] [Reference Citation Analysis]
33 Korbecki A, Zimny A, Podgórski P, Sąsiadek M, Bladowska J. Imaging of cerebrospinal fluid flow: fundamentals, techniques, and clinical applications of phase-contrast magnetic resonance imaging. Pol J Radiol 2019;84:e240-50. [PMID: 31481996 DOI: 10.5114/pjr.2019.86881] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
34 Benninghaus A, Balédent O, Lokossou A, Castelar C, Leonhardt S, Radermacher K. Enhanced in vitro model of the CSF dynamics. Fluids Barriers CNS 2019;16:11. [PMID: 31039805 DOI: 10.1186/s12987-019-0131-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
35 Eide PK, Pripp AH. Increased prevalence of cardiovascular disease in idiopathic normal pressure hydrocephalus patients compared to a population-based cohort from the HUNT3 survey. Fluids Barriers CNS 2014;11:19. [PMID: 25180074 DOI: 10.1186/2045-8118-11-19] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
36 Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017;156:107-48. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 9.6] [Reference Citation Analysis]
37 Sullivan JM, Mazur C, Wolf DA, Horky L, Currier N, Fitzsimmons B, Hesterman J, Pauplis R, Haller S, Powers B, Tayefeh L, DeBrosse-Serra B, Hoppin J, Kordasiewicz H, Swayze EE, Verma A. Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system. J Transl Med 2020;18:309. [PMID: 32771027 DOI: 10.1186/s12967-020-02461-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Khang M, Bindra RS, Mark Saltzman W. Intrathecal Delivery and its Applications in Leptomeningeal Disease. Adv Drug Deliv Rev 2022;:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Reference Citation Analysis]
39 Boren RA, Cloy CD, Gupta AS, Dewan VN, Hogan RN. Retrolaminar Migration of Intraocular Silicone Oil. J Neuroophthalmol 2016;36:439-47. [PMID: 27636746 DOI: 10.1097/WNO.0000000000000440] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
40 Rasmussen MK, Mestre H, Nedergaard M. Fluid Transport in the Brain. Physiol Rev 2021. [PMID: 33949874 DOI: 10.1152/physrev.00031.2020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
41 Constanzo J, Masson-Côté L, Tremblay L, Fouquet JP, Sarret P, Geha S, Whittingstall K, Paquette B, Lepage M. Understanding the continuum of radionecrosis and vascular disorders in the brain following gamma knife irradiation: An MRI study. Magn Reson Med 2017;78:1420-31. [PMID: 27851877 DOI: 10.1002/mrm.26546] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
42 Raper D, Louveau A, Kipnis J. How Do Meningeal Lymphatic Vessels Drain the CNS? Trends Neurosci 2016;39:581-6. [PMID: 27460561 DOI: 10.1016/j.tins.2016.07.001] [Cited by in Crossref: 91] [Cited by in F6Publishing: 81] [Article Influence: 15.2] [Reference Citation Analysis]
43 Rasmussen JC, Kwon S, Pinal A, Bareis A, Velasquez FC, Janssen CF, Morrow JR, Fife CE, Karni RJ, Sevick-Muraca EM. Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head-down tilt using near-infrared fluorescence imaging. Physiol Rep 2020;8:e14375. [PMID: 32097544 DOI: 10.14814/phy2.14375] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
44 Xie H, Luo P, Li Z, Li R, Sun H, Wu D. Continuous intrathecal administration of liposomal amphotericin B for treatment of refractory Cryptococcus neoformans encephalitis: A case report. Exp Ther Med 2017;14:780-4. [PMID: 28672999 DOI: 10.3892/etm.2017.4554] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
45 Garland J, Philcox W, Kesha K, Morrow P, Lam L, Spark A, Palmiere C, Elstub H, Cala AD, Stables S, Tse R. Differences in Sampling Site on Postmortem Cerebrospinal Fluid Biochemistry: A Preliminary Study. Am J Forensic Med Pathol 2018;39:304-8. [DOI: 10.1097/paf.0000000000000420] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
46 Novielli-Kuntz NM, Press ER, Barr K, Prado MAM, Laird DW. Mutant Cx30-A88V mice exhibit hydrocephaly and sex-dependent behavioral abnormalities, implicating a functional role for Cx30 in the brain. Dis Model Mech 2021;14:dmm046235. [PMID: 33735099 DOI: 10.1242/dmm.046235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Klarica M, Orešković D. Enigma of cerebrospinal fluid dynamics. Croat Med J 2014;55:287-90. [PMID: 25165043 DOI: 10.3325/cmj.2014.55.287] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
48 Orešković D, Klarica M. A new look at cerebrospinal fluid movement. Fluids Barriers CNS 2014;11:16. [PMID: 25089184 DOI: 10.1186/2045-8118-11-16] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
49 Khasawneh AH, Garling RJ, Harris CA. Cerebrospinal fluid circulation: What do we know and how do we know it? Brain Circ 2018;4:14-8. [PMID: 30276331 DOI: 10.4103/bc.bc_3_18] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
50 Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021;12:4730. [PMID: 34354063 DOI: 10.1038/s41467-021-24775-5] [Reference Citation Analysis]
51 Chen JC, Luu AR, Wise N, Angelis R, Agrawal V, Mangini L, Vincelette J, Handyside B, Sterling H, Lo MJ, Wong H, Galicia N, Pacheco G, Van Vleet J, Giaramita A, Fong S, Roy SM, Hague C, Lawrence R, Bullens S, Christianson TM, d'Azzo A, Crawford BE, Bunting S, LeBowitz JH, Yogalingam G. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. J Biol Chem 2020;295:13532-55. [PMID: 31481471 DOI: 10.1074/jbc.RA119.009811] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
52 Kerr H, Bakken B, House G. Future Directions in Sports-Related Concussion Management. Clin Sports Med 2021;40:199-211. [PMID: 33187610 DOI: 10.1016/j.csm.2020.08.009] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Ngo-Thanh H, Sasaki T, Suzue K, Yokoo H, Isoda K, Kamitani W, Shimokawa C, Hisaeda H, Imai T. Blood-cerebrospinal fluid barrier: another site disrupted during experimental cerebral malaria caused by Plasmodium berghei ANKA. Int J Parasitol 2020;50:1167-75. [PMID: 32882285 DOI: 10.1016/j.ijpara.2020.07.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
54 Morris AW, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, Weller RO, Carare RO. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 2016;131:725-36. [PMID: 26975356 DOI: 10.1007/s00401-016-1555-z] [Cited by in Crossref: 156] [Cited by in F6Publishing: 144] [Article Influence: 26.0] [Reference Citation Analysis]
55 Pircher A, Montali M, Wostyn P, Pircher J, Berberat J, Remonda L, Killer HE. Impaired cerebrospinal fluid dynamics along the entire optic nerve in normal-tension glaucoma. Acta Ophthalmol 2018;96:e562-9. [DOI: 10.1111/aos.13647] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
56 Ferris CF. Rethinking the Conditions and Mechanism for Glymphatic Clearance. Front Neurosci 2021;15:624690. [PMID: 33897347 DOI: 10.3389/fnins.2021.624690] [Reference Citation Analysis]
57 Smith R, Myers K, Ravits J, Bowser R. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015;85:576-83. [PMID: 26220261 DOI: 10.1016/j.mehy.2015.07.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
58 Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015;12:180. [PMID: 26407958 DOI: 10.1186/s12974-015-0397-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
59 Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang YJ, Chau KF, Springel MW, Malesz A, Sousa AM, Pletikos M, Adelita T, Calicchio ML, Zhang Y, Holtzman MJ, Lidov HG, Sestan N, Steen H, Monuki ES, Lehtinen MK. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 2015;35:4903-16. [PMID: 25810521 DOI: 10.1523/JNEUROSCI.3081-14.2015] [Cited by in Crossref: 88] [Cited by in F6Publishing: 55] [Article Influence: 12.6] [Reference Citation Analysis]
60 Orešković D, Maraković J, Varda R, Radoš M, Jurjević I, Klarica M. New Insight into the Mechanism of Mannitol Effects on Cerebrospinal Fluid Pressure Decrease and Craniospinal Fluid Redistribution. Neuroscience 2018;392:164-71. [DOI: 10.1016/j.neuroscience.2018.09.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
61 Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, Martínez-Gómez PA, Campa-Córdoba BB, Apátiga-Pérez R, Corniel-Taveras CN, Dominguez-García JJ, Blanco-Alvarez VM, Luna-Muñoz J. Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Front Neurol 2021;12:660087. [PMID: 33912129 DOI: 10.3389/fneur.2021.660087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
62 Ruiz-Viroga V, Urbanavicius J, Torterolo P, Lagos P. In vivo uptake of a fluorescent conjugate of melanin-concentrating hormone in the rat brain. J Chem Neuroanat 2021;114:101959. [PMID: 33848617 DOI: 10.1016/j.jchemneu.2021.101959] [Reference Citation Analysis]
63 Gasparini S, Ferlazzo E, Sabatini U, Sueri C, Aguglia U. The journey of a floating fat: from suprasellar dermoid cyst to lateral ventricles. Neurol Sci 2018;39:381-2. [PMID: 28948375 DOI: 10.1007/s10072-017-3126-z] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
64 Chen S, Shao L, Ma L. Cerebral Edema Formation After Stroke: Emphasis on Blood-Brain Barrier and the Lymphatic Drainage System of the Brain. Front Cell Neurosci 2021;15:716825. [PMID: 34483842 DOI: 10.3389/fncel.2021.716825] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Spector R, Robert Snodgrass S, Johanson CE. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Experimental Neurology 2015;273:57-68. [DOI: 10.1016/j.expneurol.2015.07.027] [Cited by in Crossref: 164] [Cited by in F6Publishing: 136] [Article Influence: 23.4] [Reference Citation Analysis]
66 Garland J, Philcox W, Mccarthy S, Kesha K, Lam L, Spark A, Palmiere C, Elstub H, Cala A, Stables S, Tse R. Post-mortem biochemistry differences between vitreous humour and cerebrospinal fluid. Australian Journal of Forensic Sciences 2020;52:518-28. [DOI: 10.1080/00450618.2019.1597920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
67 Leinonen V, Vanninen R, Rauramaa T. Cerebrospinal fluid circulation and hydrocephalus. Handb Clin Neurol 2017;145:39-50. [PMID: 28987185 DOI: 10.1016/B978-0-12-802395-2.00005-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
68 Quarleri J, Delpino MV. SARS-CoV-2 interacts with renin-angiotensin system: impact on the central nervous system in elderly patients. Geroscience 2022. [PMID: 35157210 DOI: 10.1007/s11357-022-00528-0] [Reference Citation Analysis]
69 Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019;16:9. [PMID: 30967147 DOI: 10.1186/s12987-019-0129-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
70 Spaide RF. RETINAL VASCULAR CYSTOID MACULAR EDEMA: Review and New Theory. Retina 2016;36:1823-42. [PMID: 27328171 DOI: 10.1097/IAE.0000000000001158] [Cited by in Crossref: 89] [Cited by in F6Publishing: 42] [Article Influence: 17.8] [Reference Citation Analysis]
71 Nakagawa Y, Yamada S. Metal homeostasis disturbances in neurodegenerative disorders, with special emphasis on Creutzfeldt-Jakob disease - Potential pathogenetic mechanism and therapeutic implications. Pharmacol Ther 2020;207:107455. [PMID: 31863817 DOI: 10.1016/j.pharmthera.2019.107455] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Beidler PG, Novokhodko A, Prolo LM, Browd S, Lutz BR. Fluidic Considerations of Measuring Intracranial Pressure Using an Open External Ventricular Drain. Cureus 2021;13:e15324. [PMID: 34221772 DOI: 10.7759/cureus.15324] [Reference Citation Analysis]
73 Li Y, Rusinek H, Butler T, Glodzik L, Pirraglia E, Babich J, Mozley PD, Nehmeh S, Pahlajani S, Wang X, Tanzi EB, Zhou L, Strauss S, Carare RO, Theise N, Okamura N, de Leon MJ. Decreased CSF clearance and increased brain amyloid in Alzheimer's disease. Fluids Barriers CNS 2022;19:21. [PMID: 35287702 DOI: 10.1186/s12987-022-00318-y] [Reference Citation Analysis]
74 Ransohoff RM. Good barriers make good neighbors. Science 2014;346:36-7. [DOI: 10.1126/science.1260705] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
75 Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol 2015;267:78-86. [PMID: 25747036 DOI: 10.1016/j.expneurol.2015.02.032] [Cited by in Crossref: 116] [Cited by in F6Publishing: 88] [Article Influence: 16.6] [Reference Citation Analysis]
76 Huang H, Yang J, Luciano M, Shriver LP. Longitudinal Metabolite Profiling of Cerebrospinal Fluid in Normal Pressure Hydrocephalus Links Brain Metabolism with Exercise-Induced VEGF Production and Clinical Outcome. Neurochem Res 2016;41:1713-22. [PMID: 27084769 DOI: 10.1007/s11064-016-1887-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
77 Olsson M, Ärlig J, Hedner J, Blennow K, Zetterberg H. Sleep deprivation and plasma biomarkers for Alzheimer's disease. Sleep Med 2019;57:92-3. [PMID: 30953929 DOI: 10.1016/j.sleep.2018.12.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
78 Matsumae M, Sato O, Hirayama A, Hayashi N, Takizawa K, Atsumi H, Sorimachi T. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System. Neurol Med Chir (Tokyo) 2016;56:416-41. [PMID: 27245177 DOI: 10.2176/nmc.ra.2016-0020] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
79 Van Gennip JLM, Boswell CW, Ciruna B. Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis. Sci Adv 2018;4:eaav1781. [PMID: 30547092 DOI: 10.1126/sciadv.aav1781] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
80 Schön M, Kovaničová Z, Košutzká Z, Nemec M, Tomková M, Jacková L, Máderová D, Slobodová L, Valkovič P, Ukropec J, Ukropcová B. Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals. Sci Rep 2019;9:1959. [PMID: 30760755 DOI: 10.1038/s41598-018-38201-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
81 Zhou X, Ballou ER. The Cryptococcus neoformans Titan Cell: From In Vivo Phenomenon to In Vitro Model. Curr Clin Micro Rpt 2018;5:252-60. [DOI: 10.1007/s40588-018-0107-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 3.8] [Reference Citation Analysis]
82 Alarfaj A, Sankar T, Bhargava R, Tyler J, Walji A, Fox R, Sagga A, Ishaque A, Aronyk K. Magnetic resonance imaging analysis of human skull diploic venous anatomy. Surg Neurol Int 2021;12:249. [PMID: 34221580 DOI: 10.25259/SNI_532_2020] [Reference Citation Analysis]
83 Liu KC, Fleischman D, Lee AG, Killer HE, Chen JJ, Bhatti MT. Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease. Survey of Ophthalmology 2020;65:48-66. [DOI: 10.1016/j.survophthal.2019.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
84 Agarwal N, Carare RO. Cerebral Vessels: An Overview of Anatomy, Physiology, and Role in the Drainage of Fluids and Solutes. Front Neurol 2020;11:611485. [PMID: 33519691 DOI: 10.3389/fneur.2020.611485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
85 Eide PK, Valnes LM, Pripp AH, Mardal KA, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2020;40:1849-58. [PMID: 31495299 DOI: 10.1177/0271678X19874790] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
86 Zhao C, Li Y, Cao W, Xiang K, Zhang H, Yang J, Gan Y. Diffusion tensor imaging detects early brain microstructure changes before and after ventriculoperitoneal shunt in children with high intracranial pressure hydrocephalus. Medicine (Baltimore) 2016;95:e5063. [PMID: 27759635 DOI: 10.1097/MD.0000000000005063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
87 Guerra MM, González C, Caprile T, Jara M, Vío K, Muñoz RI, Rodríguez S, Rodríguez EM. Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis. Front Cell Neurosci 2015;9:480. [PMID: 26778959 DOI: 10.3389/fncel.2015.00480] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
88 Muñoz-montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022;9:801652. [DOI: 10.3389/fcell.2021.801652] [Reference Citation Analysis]
89 Tomioka NH, Tamura Y, Takada T, Shibata S, Suzuki H, Uchida S, Hosoyamada M. Immunohistochemical and in situ hybridization study of urate transporters GLUT9/URATv1, ABCG2, and URAT1 in the murine brain. Fluids Barriers CNS 2016;13:22. [PMID: 27955673 DOI: 10.1186/s12987-016-0046-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
90 Yamaguchi T, Hamada T, Matsuzaki T, Iijima N. Characterization of the circadian oscillator in the choroid plexus of rats. Biochemical and Biophysical Research Communications 2020;524:497-501. [DOI: 10.1016/j.bbrc.2020.01.125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
91 Zakaria Z, Badhan R. Development of a Region-Specific Physiologically Based Pharmacokinetic Brain Model to Assess Hippocampus and Frontal Cortex Pharmacokinetics. Pharmaceutics 2018;10:E14. [PMID: 29342085 DOI: 10.3390/pharmaceutics10010014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
92 Khoonsari PE, Musunri S, Herman S, Svensson CI, Tanum L, Gordh T, Kultima K. Systematic analysis of the cerebrospinal fluid proteome of fibromyalgia patients. Journal of Proteomics 2019;190:35-43. [DOI: 10.1016/j.jprot.2018.04.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
93 Bothwell SW, Omileke D, Patabendige A, Spratt NJ. CSF Secretion Is Not Altered by NKCC1 Nor TRPV4 Antagonism in Healthy Rats. Brain Sci 2021;11:1117. [PMID: 34573139 DOI: 10.3390/brainsci11091117] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Román GC, Jackson RE, Fung SH, Zhang YJ, Verma AK. Sleep-Disordered Breathing and Idiopathic Normal-Pressure Hydrocephalus: Recent Pathophysiological Advances. Curr Neurol Neurosci Rep 2019;19:39. [PMID: 31144048 DOI: 10.1007/s11910-019-0952-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
95 Gallina P, Scollato A, Conti R, Di Lorenzo N, Porfirio B. Aβ Clearance, "hub" of Multiple Deficiencies Leading to Alzheimer Disease. Front Aging Neurosci 2015;7:200. [PMID: 26539110 DOI: 10.3389/fnagi.2015.00200] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
96 Peters K, Herman S, Khoonsari PE, Burman J, Neumann S, Kultima K. Metabolic drift in the aging nervous system is reflected in human cerebrospinal fluid. Sci Rep 2021;11:18822. [PMID: 34552125 DOI: 10.1038/s41598-021-97491-1] [Reference Citation Analysis]
97 Zhu L, Stein LR, Kim D, Ho K, Yu GQ, Zhan L, Larsson TE, Mucke L. Klotho controls the brain-immune system interface in the choroid plexus. Proc Natl Acad Sci U S A 2018;115:E11388-96. [PMID: 30413620 DOI: 10.1073/pnas.1808609115] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
98 Gänger S, Schindowski K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018;10:E116. [PMID: 30081536 DOI: 10.3390/pharmaceutics10030116] [Cited by in Crossref: 100] [Cited by in F6Publishing: 81] [Article Influence: 25.0] [Reference Citation Analysis]
99 Pardo E, Barake F, Godoy JA, Oyanadel C, Espinoza S, Metz C, Retamal C, Massardo L, Tapia-Rojas C, Inestrosa NC, Soza A, González A. GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Mol Neurobiol 2019;56:7774-88. [PMID: 31119556 DOI: 10.1007/s12035-019-1621-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
100 Bito Y, Harada K, Ochi H, Kudo K. Low b-value diffusion tensor imaging for measuring pseudorandom flow of cerebrospinal fluid. Magn Reson Med 2021;86:1369-82. [PMID: 33893650 DOI: 10.1002/mrm.28806] [Reference Citation Analysis]
101 Schuster J, Koulov A, Mahler H, Detampel P, Huwyler J, Singh S, Mathaes R. In Vivo Stability of Therapeutic Proteins. Pharm Res 2020;37. [DOI: 10.1007/s11095-019-2689-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
102 Noé FM, Marchi N. Central nervous system lymphatic unit, immunity, and epilepsy: Is there a link? Epilepsia Open 2019;4:30-9. [PMID: 30868113 DOI: 10.1002/epi4.12302] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
103 Benveniste H, Lee H, Ozturk B, Chen X, Koundal S, Vaska P, Tannenbaum A, Volkow ND. Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging. Neuroscience 2020:S0306-4522(20)30730-2. [PMID: 33248153 DOI: 10.1016/j.neuroscience.2020.11.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
104 Suzuki J, Dezawa M, Kitada M. Prolonged but non-permanent expression of a transgene in ependymal cells of adult rats using an adenovirus-mediated transposon gene transfer system. Brain Research 2017;1675:20-7. [DOI: 10.1016/j.brainres.2017.08.033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
105 Nassar BR, Lippa CF. Idiopathic Normal Pressure Hydrocephalus: A Review for General Practitioners. Gerontol Geriatr Med 2016;2:2333721416643702. [PMID: 28138494 DOI: 10.1177/2333721416643702] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
106 Kyrtsos CR, Baras JS. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis. PLoS One 2015;10:e0139574. [PMID: 26448331 DOI: 10.1371/journal.pone.0139574] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 7.1] [Reference Citation Analysis]
107 Lindstrøm EK, Ringstad G, Sorteberg A, Sorteberg W, Mardal KA, Eide PK. Magnitude and direction of aqueductal cerebrospinal fluid flow: large variations in patients with intracranial aneurysms with or without a previous subarachnoid hemorrhage. Acta Neurochir (Wien) 2019;161:247-56. [PMID: 30443816 DOI: 10.1007/s00701-018-3730-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
108 Agnati LF, Marcoli M, Leo G, Maura G, Guidolin D. Homeostasis and the concept of 'interstitial fluids hierarchy': Relevance of cerebrospinal fluid sodium concentrations and brain temperature control (Review). Int J Mol Med 2017;39:487-97. [PMID: 28204813 DOI: 10.3892/ijmm.2017.2874] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
109 Stieger B, Gao B. Drug Transporters in the Central Nervous System. Clin Pharmacokinet 2015;54:225-42. [DOI: 10.1007/s40262-015-0241-y] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
110 Horie T, Kajihara N, Matsumae M, Obara M, Hayashi N, Hirayama A, Takizawa K, Takahara T, Yatsushiro S, Kuroda K. Magnetic Resonance Imaging Technique for Visualization of Irregular Cerebrospinal Fluid Motion in the Ventricular System and Subarachnoid Space. World Neurosurg 2017;97:523-31. [PMID: 27474454 DOI: 10.1016/j.wneu.2016.07.062] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
111 Abdelhak A, Foschi M, Abu-Rumeileh S, Yue JK, D'Anna L, Huss A, Oeckl P, Ludolph AC, Kuhle J, Petzold A, Manley GT, Green AJ, Otto M, Tumani H. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Reference Citation Analysis]
112 Surer E, Rossi C, Becker AS, Finkenstaedt T, Wurnig MC, Valavanis A, Winklhofer S. Cardiac-gated intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for the investigation of intracranial cerebrospinal fluid dynamics in the lateral ventricle: a feasibility study. Neuroradiology 2018;60:413-9. [PMID: 29470603 DOI: 10.1007/s00234-018-1995-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
113 Mitsuyama T, Aihara Y, Taira T, Eguchi S, Chiba K, Okada Y, Kawamata T. Re-evaluation of foramen magnum decompression with dura left open for Chiari I malformation. Interdisciplinary Neurosurgery 2017;10:150-4. [DOI: 10.1016/j.inat.2017.09.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
114 Zhao L, Taso M, Dai W, Press DZ, Alsop DC. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling. Fluids Barriers CNS 2020;17:58. [PMID: 32962708 DOI: 10.1186/s12987-020-00218-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
115 Sainz LV, Zipfel J, Kerscher SR, Weichselbaum A, Bevot A, Schuhmann MU. Cerebro-venous hypertension: a frequent cause of so-called “external hydrocephalus” in infants. Childs Nerv Syst 2019;35:251-6. [DOI: 10.1007/s00381-018-4007-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
116 Tominaga M, Michiue T, Ishikawa T, Inamori-Kawamoto O, Oritani S, Maeda H. Evaluation of postmortem drug concentrations in cerebrospinal fluid compared with blood and pericardial fluid. Forensic Sci Int 2015;254:118-25. [PMID: 26218406 DOI: 10.1016/j.forsciint.2015.07.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
117 Wolf DA, Hesterman JY, Sullivan JM, Orcutt KD, Silva MD, Lobo M, Wellman T, Hoppin J, Verma A. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery. JCI Insight 2016;1:e85311. [PMID: 27699254 DOI: 10.1172/jci.insight.85311] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
118 Kuroda T, Honma M, Mori Y, Futamura A, Sugimoto A, Kasai H, Yano S, Hieda S, Kasuga K, Ikeuchi T, Ono K. White Matter Lesions May Aid in Differentiating Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease. J Alzheimers Dis 2021. [PMID: 34864676 DOI: 10.3233/JAD-215187] [Reference Citation Analysis]
119 Yatsushiro S, Sunohara S, Matsumae M, Atsumi H, Horie T, Kajihara N, Kuroda K. Evaluation of Cardiac- and Respiratory-driven Cerebrospinal Fluid Motions by Applying the S-transform to Steady-state Free Precession Phase Contrast Imaging. Magn Reson Med Sci 2022. [PMID: 35173115 DOI: 10.2463/mrms.mp.2021-0126] [Reference Citation Analysis]
120 Pearson A, Ajoy R, Crynen G, Reed JM, Algamal M, Mullan M, Purohit D, Crawford F, Ojo JO. Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients. BMC Neurol 2020;20:317. [PMID: 32854643 DOI: 10.1186/s12883-020-01849-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
121 Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2015;40:317-28. [PMID: 24996934 DOI: 10.1007/s11064-014-1374-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 8.4] [Reference Citation Analysis]
122 Trimmel NE, Podgoršak A, Oertel MF, Jucker S, Arras M, Schmid Daners M, Weisskopf M. The Sheep as a Comprehensive Animal Model to Investigate Interdependent Physiological Pressure Propagation and Multiparameter Influence on Cerebrospinal Fluid Dynamics. Front Neurosci 2022;16:868567. [DOI: 10.3389/fnins.2022.868567] [Reference Citation Analysis]
123 Klarica M, Jukić T, Miše B, Kudelić N, Radoš M, Orešković D. Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development. Brain Pathol 2016;26:701-12. [PMID: 26549012 DOI: 10.1111/bpa.12337] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
124 Asgari M, de Zélicourt DA, Kurtcuoglu V. Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase. Fluids Barriers CNS 2017;14:14. [PMID: 28521764 DOI: 10.1186/s12987-017-0063-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
125 Barten DM, Cadelina GW, Weed MR. Dosing, collection, and quality control issues in cerebrospinal fluid research using animal models. Handb Clin Neurol 2017;146:47-64. [PMID: 29110779 DOI: 10.1016/B978-0-12-804279-3.00004-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
126 Salimi H, Klein RS. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. In: Mitoma H, Manto M, editors. Neuroimmune Diseases. Cham: Springer International Publishing; 2019. pp. 195-234. [DOI: 10.1007/978-3-030-19515-1_7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
127 Pizzichelli G, Kehlet B, Evju Ø, Martin BA, Rognes ME, Mardal KA, Sinibaldi E. Numerical study of intrathecal drug delivery to a permeable spinal cord: effect of catheter position and angle. Computer Methods in Biomechanics and Biomedical Engineering 2017;20:1599-608. [DOI: 10.1080/10255842.2017.1393805] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
128 Khani M, Fu AQ, Pluid J, Gibbs CP, Oshinski JN, Xing T, Stewart GR, Zeller JR, Martin BA. Intrathecal catheter implantation decreases cerebrospinal fluid dynamics in cynomolgus monkeys. PLoS One 2020;15:e0244090. [PMID: 33378399 DOI: 10.1371/journal.pone.0244090] [Reference Citation Analysis]
129 Yamada S, Ishikawa M, Iwamuro Y, Yamamoto K. Choroidal fissure acts as an overflow device in cerebrospinal fluid drainage: morphological comparison between idiopathic and secondary normal-pressure hydrocephalus. Sci Rep 2016;6:39070. [PMID: 27941913 DOI: 10.1038/srep39070] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
130 Metzger F, Mischek D, Stoffers F. The Connected Steady State Model and the Interdependence of the CSF Proteome and CSF Flow Characteristics. Front Neurosci 2017;11:241. [PMID: 28579938 DOI: 10.3389/fnins.2017.00241] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
131 Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci 2021;78:2429-57. [PMID: 33427948 DOI: 10.1007/s00018-020-03706-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
132 Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol 2018;135:387-407. [PMID: 29428972 DOI: 10.1007/s00401-018-1812-4] [Cited by in Crossref: 201] [Cited by in F6Publishing: 174] [Article Influence: 50.3] [Reference Citation Analysis]
133 Zetchi A, Labeyrie MA, Nicolini E, Fantoni M, Eliezer M, Houdart E. Empty Sella Is a Sign of Symptomatic Lateral Sinus Stenosis and Not Intracranial Hypertension. AJNR Am J Neuroradiol 2019;40:1695-700. [PMID: 31537518 DOI: 10.3174/ajnr.A6210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
134 Cain MD, Salimi H, Diamond MS, Klein RS. Mechanisms of Pathogen Invasion into the Central Nervous System. Neuron 2019;103:771-83. [PMID: 31487528 DOI: 10.1016/j.neuron.2019.07.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
135 Doron O, Hemphill JC 3rd, Manley G, Rosenthal G. Improved Pressure Equalization Ratio Following Mannitol Administration in Patients With Severe TBI: A Preliminary Study of a Potential Bedside Marker for Response to Therapy. Neurocrit Care 2021. [PMID: 34498204 DOI: 10.1007/s12028-021-01332-y] [Reference Citation Analysis]
136 Giménez Á, Galarza M, Thomale U, Schuhmann MU, Valero J, Amigó JM. Pulsatile flow in ventricular catheters for hydrocephalus. Philos Trans A Math Phys Eng Sci 2017;375:20160294. [PMID: 28507239 DOI: 10.1098/rsta.2016.0294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
137 Kaushik MK, Aritake K, Imanishi A, Kanbayashi T, Ichikawa T, Shimizu T, Urade Y, Yanagisawa M. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy. Proc Natl Acad Sci U S A 2018;115:6046-51. [PMID: 29784823 DOI: 10.1073/pnas.1722686115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
138 Riew TR, Jin X, Kim HL, Kim S, Lee MY. Ultrastructural and Molecular Characterization of Platelet-derived growth factor Beta-Positive Leptomeningeal Cells in the Adult Rat Brain. Mol Neurobiol 2020;57:1484-501. [PMID: 31773411 DOI: 10.1007/s12035-019-01793-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
139 Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017;9:1204-29. [DOI: 10.1039/c7mt00010c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 5.6] [Reference Citation Analysis]
140 Dalla Corte A, de Souza CFM, Anés M, Giugliani R. Hydrocephalus and mucopolysaccharidoses: what do we know and what do we not know? Childs Nerv Syst 2017;33:1073-80. [PMID: 28593554 DOI: 10.1007/s00381-017-3476-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
141 Lee S, Kwok N, Holsapple J, Heldt T, Bourouiba L. Enhanced wall shear stress prevents obstruction by astrocytes in ventricular catheters. J R Soc Interface 2020;17:20190884. [PMID: 32603649 DOI: 10.1098/rsif.2019.0884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
142 Leskowitz E. Integrative Medicine for PTSD and TBI: Two Innovative Approaches. Medical Acupuncture 2016;28:181-3. [DOI: 10.1089/acu.2016.1168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
143 Oliveira LM, Nitrini R, Román GC. Normal-pressure hydrocephalus: A critical review. Dement Neuropsychol 2019;13:133-43. [PMID: 31285787 DOI: 10.1590/1980-57642018dn13-020001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
144 Gates PC. Resolution of idiopathic intracranial hypertension after sustained lowering of cerebrospinal fluid pressure. World J Neurol 2015; 5(1): 47-51 [DOI: 10.5316/wjn.v5.i1.47] [Cited by in CrossRef: 2] [Article Influence: 0.3] [Reference Citation Analysis]
145 Matsumoto K, Chiba Y, Fujihara R, Kubo H, Sakamoto H, Ueno M. Immunohistochemical analysis of transporters related to clearance of amyloid-β peptides through blood–cerebrospinal fluid barrier in human brain. Histochem Cell Biol 2015;144:597-611. [DOI: 10.1007/s00418-015-1366-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
146 Miyan J, Cains S, Larcombe S, Naz N, Jimenez AR, Bueno D, Gato A. Subarachnoid cerebrospinal fluid is essential for normal development of the cerebral cortex. Semin Cell Dev Biol 2020;102:28-39. [PMID: 31786096 DOI: 10.1016/j.semcdb.2019.11.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
147 Wilson R, Osborne C, Halsey C. The Use of Ommaya Reservoirs to Deliver Central Nervous System-Directed Chemotherapy in Childhood Acute Lymphoblastic Leukaemia. Paediatr Drugs 2018;20:293-301. [PMID: 29850985 DOI: 10.1007/s40272-018-0298-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
148 Melo GD, Grano FG, Silva JE, Kremer BE, Lima VM, Machado GF. Blood-brain barrier disruption during spontaneous canine visceral leishmaniasis. Parasite Immunol 2015;37:635-45. [PMID: 26434684 DOI: 10.1111/pim.12285] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
149 Evans PG, Sokolska M, Alves A, Harrison IF, Ohene Y, Nahavandi P, Ismail O, Miranda E, Lythgoe MF, Thomas DL, Wells JA. Non-Invasive MRI of Blood-Cerebrospinal Fluid Barrier Function. Nat Commun 2020;11:2081. [PMID: 32350278 DOI: 10.1038/s41467-020-16002-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
150 Liu S, Lam MA, Sial A, Hemley SJ, Bilston LE, Stoodley MA. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways. Fluids Barriers CNS 2018;15:13. [PMID: 29704892 DOI: 10.1186/s12987-018-0098-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
151 Leng G, Ludwig M. Intranasal Oxytocin: Myths and Delusions. Biol Psychiatry 2016;79:243-50. [PMID: 26049207 DOI: 10.1016/j.biopsych.2015.05.003] [Cited by in Crossref: 345] [Cited by in F6Publishing: 330] [Article Influence: 49.3] [Reference Citation Analysis]
152 Torralva R, Janowsky A. Noradrenergic Mechanisms in Fentanyl-Mediated Rapid Death Explain Failure of Naloxone in the Opioid Crisis. J Pharmacol Exp Ther 2019;371:453-75. [PMID: 31492824 DOI: 10.1124/jpet.119.258566] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
153 Chang HY, Wu S, Meno-Tetang G, Shah DK. A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn 2019;46:319-38. [PMID: 31115858 DOI: 10.1007/s10928-019-09641-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
154 Chang HY, Morrow K, Bonacquisti E, Zhang W, Shah DK. Antibody pharmacokinetics in rat brain determined using microdialysis. MAbs 2018;10:843-53. [PMID: 29944439 DOI: 10.1080/19420862.2018.1473910] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
155 Li Q, Aalling NN, Förstera B, Ertürk A, Nedergaard M, Møllgård K, Xavier ALR. Aquaporin 1 and the Na+/K+/2Cl- cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS 2020;17:15. [PMID: 32046744 DOI: 10.1186/s12987-020-0176-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
156 Zhang LF, Hargens AR. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiol Rev 2018;98:59-87. [PMID: 29167331 DOI: 10.1152/physrev.00017.2016] [Cited by in Crossref: 90] [Cited by in F6Publishing: 70] [Article Influence: 18.0] [Reference Citation Analysis]
157 Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020;12:E963. [PMID: 33066423 DOI: 10.3390/pharmaceutics12100963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
158 Livingston AJ, Laing B, Zwagerman NT, Harris MS. Lumbar drains: Practical understanding and application for the otolaryngologist. Am J Otolaryngol 2020;41:102740. [PMID: 32979671 DOI: 10.1016/j.amjoto.2020.102740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
159 Papadopoulos Z, Herz J, Kipnis J. Meningeal Lymphatics: From Anatomy to Central Nervous System Immune Surveillance. J Immunol 2020;204:286-93. [PMID: 31907271 DOI: 10.4049/jimmunol.1900838] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
160 Illes S. More than a drainage fluid: the role of CSF in signaling in the brain and other effects on brain tissue. Handb Clin Neurol 2017;146:33-46. [PMID: 29110778 DOI: 10.1016/B978-0-12-804279-3.00003-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
161 Di Stadio A, Ralli M, Roccamatisi D, Scarpa A, Della Volpe A, Cassandro C, Ricci G, Greco A, Bernitsas E. Hearing loss and dementia: radiologic and biomolecular basis of their shared characteristics. A systematic review. Neurol Sci 2021;42:579-88. [PMID: 33409831 DOI: 10.1007/s10072-020-04948-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
162 Brøchner CB, Holst CB, Møllgård K. Outer brain barriers in rat and human development. Front Neurosci 2015;9:75. [PMID: 25852456 DOI: 10.3389/fnins.2015.00075] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 5.9] [Reference Citation Analysis]
163 Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018;9:4878. [PMID: 30451853 DOI: 10.1038/s41467-018-07318-3] [Cited by in Crossref: 189] [Cited by in F6Publishing: 163] [Article Influence: 47.3] [Reference Citation Analysis]
164 Choi H, Mun S, Joo EJ, Lee KY, Kang HG, Lee J. Serum proteomic analysis of major depressive disorder patients and their remission status: Novel biomarker set of zinc-alpha-2-glycoprotein and keratin type II cytoskeletal 1. Int J Biol Macromol 2021;183:2001-8. [PMID: 34052271 DOI: 10.1016/j.ijbiomac.2021.05.172] [Reference Citation Analysis]
165 Flanagan MF. The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions. Neurol Res Int 2015;2015:794829. [PMID: 26770824 DOI: 10.1155/2015/794829] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
166 Sfera A, Osorio C, Price AI, Gradini R, Cummings M. Delirium from the gliocentric perspective. Front Cell Neurosci 2015;9:171. [PMID: 26029046 DOI: 10.3389/fncel.2015.00171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
167 Garland J, Mccarthy S, Hensby-bennett S, Philcox W, O'regan T, Rousseau G, Palmiere C, Elstub H, Cala A, Clifton L, Lam L, Barker C, Ondruschka B, Woydt L, Spark A, Kesha K, Morrow P, Glenn C, Stables S, Tse R. Elevation of Postmortem Cerebrospinal Fluid Sodium and Chloride Levels Is a Potential Adjunct Test in the Diagnosis of Salt Water Drowning. Am J Forensic Med Pathol 2019;40:251-7. [DOI: 10.1097/paf.0000000000000488] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
168 Franco-Bourland RE, Reyes-Alva HJ, Quintana-Armenta A, Martinez-Cruz A, Madrazo I, Guizar-Sahagun G. Temporal changes of spinal subarachnoid space patency after graded spinal cord injury in rats. Injury 2015;46:634-7. [PMID: 25616676 DOI: 10.1016/j.injury.2015.01.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
169 Soldozy S, Yağmurlu K, Kumar J, Elarjani T, Burks J, Jamshidi A, Luther E, Liu KC, Benjamin CG, Starke RM, Park MS, Syed HR, Shaffrey ME, Komotar RJ. Interplay between vascular hemodynamics and the glymphatic system in the pathogenesis of idiopathic normal pressure hydrocephalus, exploring novel neuroimaging diagnostics. Neurosurg Rev 2021. [PMID: 34773535 DOI: 10.1007/s10143-021-01690-3] [Reference Citation Analysis]
170 Eide PK, Mariussen E, Uggerud H, Pripp AH, Lashkarivand A, Hassel B, Christensen H, Hovd MH, Ringstad G. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 2021;6:147063. [PMID: 33822769 DOI: 10.1172/jci.insight.147063] [Reference Citation Analysis]
171 Best MG, Sol N, Zijl S, Reijneveld JC, Wesseling P, Wurdinger T. Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 2015;129:849-65. [PMID: 25720744 DOI: 10.1007/s00401-015-1399-y] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 7.6] [Reference Citation Analysis]
172 Willemse EA, Teunissen CE. Biobanking of Cerebrospinal Fluid for Biomarker Analysis in Neurological Diseases. Adv Exp Med Biol 2015;864:79-93. [PMID: 26420615 DOI: 10.1007/978-3-319-20579-3_7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
173 Solár P, Zamani A, Lakatosová K, Joukal M. The blood–brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022;19. [DOI: 10.1186/s12987-022-00312-4] [Reference Citation Analysis]
174 Cao D, Kang N, Pillai JJ, Miao X, Paez A, Xu X, Xu J, Li X, Qin Q, Van Zijl PCM, Barker P, Hua J. Fast whole brain MR imaging of dynamic susceptibility contrast changes in the cerebrospinal fluid (cDSC MRI). Magn Reson Med 2020;84:3256-70. [PMID: 32621291 DOI: 10.1002/mrm.28389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
175 Orešković D, Radoš M, Klarica M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 2017;354:69-87. [DOI: 10.1016/j.neuroscience.2017.04.025] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
176 Trillo-contreras JL, Ramírez-lorca R, Villadiego J, Echevarría M. Cellular Distribution of Brain Aquaporins and Their Contribution to Cerebrospinal Fluid Homeostasis and Hydrocephalus. Biomolecules 2022;12:530. [DOI: 10.3390/biom12040530] [Reference Citation Analysis]
177 Joseph CR, Benhatzel CM, Stern LJ, Hopper OM, Lockwood MD. Pilot study utilizing MRI 3D TGSE PASL (arterial spin labeling) differentiating clearance rates of labeled protons in the CNS of patients with early Alzheimer disease from normal subjects. Magn Reson Mater Phy 2020;33:559-68. [DOI: 10.1007/s10334-019-00818-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
178 Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS. 2016;13:3. [PMID: 26846184 DOI: 10.1186/s12987-016-0025-2] [Cited by in Crossref: 52] [Cited by in F6Publishing: 31] [Article Influence: 8.7] [Reference Citation Analysis]
179 Khani M, Lawrence BJ, Sass LR, Gibbs CP, Pluid JJ, Oshinski JN, Stewart GR, Zeller JR, Martin BA. Characterization of intrathecal cerebrospinal fluid geometry and dynamics in cynomolgus monkeys (macaca fascicularis) by magnetic resonance imaging. PLoS One 2019;14:e0212239. [PMID: 30811449 DOI: 10.1371/journal.pone.0212239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
180 Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson's disease. Neurosci Biobehav Rev 2019;103:305-15. [PMID: 31132378 DOI: 10.1016/j.neubiorev.2019.05.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
181 Blomqvist KJ, Skogster MOB, Kurkela MJ, Rosenholm MP, Ahlström FHG, Airavaara MT, Backman JT, Rauhala PV, Kalso EA, Lilius TO. Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. J Control Release 2022:S0168-3659(22)00148-1. [PMID: 35301056 DOI: 10.1016/j.jconrel.2022.03.022] [Reference Citation Analysis]
182 Brun G, Reyre A, Scavarda D, Girard N, Brunel H. Diagnostica per immagini dell’idrocefalo del bambino. EMC - Neurologia 2020;20:1-16. [DOI: 10.1016/s1634-7072(20)43300-8] [Reference Citation Analysis]
183 Liu G, Mestre H, Sweeney AM, Sun Q, Weikop P, Du T, Nedergaard M. Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Rep 2020;33:108524. [PMID: 33357428 DOI: 10.1016/j.celrep.2020.108524] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
184 Eide PK, Ringstad G. Intracranial Pulsatility, Cerebrospinal Fluid Flow, and Glymphatic Function in Idiopathic Normal Pressure Hydrocephalus. In: Limbrick DD, Leonard JR, editors. Cerebrospinal Fluid Disorders. Cham: Springer International Publishing; 2019. pp. 71-84. [DOI: 10.1007/978-3-319-97928-1_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
185 Baghbani R. An Electrical Model of Hydrocephalus Shunt Incorporating the CSF Dynamics. Sci Rep 2019;9:9751. [PMID: 31278327 DOI: 10.1038/s41598-019-46328-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
186 Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014;11:26. [PMID: 25678956 DOI: 10.1186/2045-8118-11-26] [Cited by in Crossref: 278] [Cited by in F6Publishing: 246] [Article Influence: 34.8] [Reference Citation Analysis]
187 Householder KT, Dharmaraj S, Sandberg DI, Wechsler-Reya RJ, Sirianni RW. Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. Sci Rep 2019;9:12587. [PMID: 31467368 DOI: 10.1038/s41598-019-49028-w] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
188 Trumbore CN. Shear-Induced Amyloid Formation in the Brain: IV. Effects on Synapses Surrounding Senile Plaque and in Plaque-Free Regions. J Alzheimers Dis 2018;66:57-73. [PMID: 30223395 DOI: 10.3233/JAD-171080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
189 Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta 2016;1862:442-51. [PMID: 26499397 DOI: 10.1016/j.bbadis.2015.10.014] [Cited by in Crossref: 134] [Cited by in F6Publishing: 115] [Article Influence: 19.1] [Reference Citation Analysis]
190 Teunissen CE, Verheul C, Willemse EAJ. The use of cerebrospinal fluid in biomarker studies. Handb Clin Neurol 2017;146:3-20. [PMID: 29110777 DOI: 10.1016/B978-0-12-804279-3.00001-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
191 Faraji AH, Jaquins-gerstl AS, Valenta AC, Ou Y, Weber SG. Electrokinetic Convection-Enhanced Delivery of Solutes to the Brain. ACS Chem Neurosci 2020;11:2085-93. [DOI: 10.1021/acschemneuro.0c00037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
192 Kampondeni SD, Birbeck GL, Seydel KB, Beare NA, Glover SJ, Hammond CA, Chilingulo CA, Taylor TE, Potchen MJ. Noninvasive measures of brain edema predict outcome in pediatric cerebral malaria. Surg Neurol Int 2018;9:53. [PMID: 29576904 DOI: 10.4103/sni.sni_297_17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
193 Angiulli F, Conti E, Zoia CP, Da Re F, Appollonio I, Ferrarese C, Tremolizzo L. Blood-Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery? Diagnostics (Basel) 2021;11:1525. [PMID: 34573867 DOI: 10.3390/diagnostics11091525] [Reference Citation Analysis]
194 Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T, Holtzman DM, Nedergaard M, Deane R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 2016;11:74. [PMID: 27931262 DOI: 10.1186/s13024-016-0138-8] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 14.2] [Reference Citation Analysis]
195 Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawińska G, Szymankiewicz M. Role of endothelial nitric oxide synthase and endothelin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Sci Rep 2017;7:42541. [PMID: 28211916 DOI: 10.1038/srep42541] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
196 Spiegelberg A, Preuß M, Kurtcuoglu V. B-waves revisited. Interdisciplinary Neurosurgery 2016;6:13-7. [DOI: 10.1016/j.inat.2016.03.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
197 Stine CA, Munson JM. Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Front Oncol 2019;9:966. [PMID: 31632905 DOI: 10.3389/fonc.2019.00966] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
198 Attier-Zmudka J, Sérot JM, Valluy J, Saffarini M, Macaret AS, Diouf M, Dao S, Douadi Y, Malinowski KP, Balédent O. Decreased Cerebrospinal Fluid Flow Is Associated With Cognitive Deficit in Elderly Patients. Front Aging Neurosci 2019;11:87. [PMID: 31114494 DOI: 10.3389/fnagi.2019.00087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
199 Sepp A, Meno-Tetang G, Weber A, Sanderson A, Schon O, Berges A. Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats. J Pharmacokinet Pharmacodyn 2019;46:339-59. [PMID: 31079322 DOI: 10.1007/s10928-019-09640-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
200 Sawamoto K, Stapleton M, Alméciga-Díaz CJ, Espejo-Mojica AJ, Losada JC, Suarez DA, Tomatsu S. Therapeutic Options for Mucopolysaccharidoses: Current and Emerging Treatments. Drugs 2019;79:1103-34. [PMID: 31209777 DOI: 10.1007/s40265-019-01147-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
201 Gorlé N, Van Cauwenberghe C, Libert C, Vandenbroucke RE. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm Genome 2016;27:407-20. [DOI: 10.1007/s00335-016-9637-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
202 Buishas J, Gould IG, Linninger AA. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces. Croat Med J. 2014;55:481-497. [PMID: 25358881 DOI: 10.3325/cmj.2014.55.481] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
203 Lee JH, Lee JH, Lee JM. All-Trans Retinoic Acid-Induced Ototoxicity during Chemotherapy in Pediatric Acute Promyelocytic Leukemia. Children (Basel) 2021;8:27. [PMID: 33419229 DOI: 10.3390/children8010027] [Reference Citation Analysis]
204 Schmidt MJ, Rummel C, Hauer J, Kolecka M, Ondreka N, McClure V, Roth J. Increased CSF aquaporin-4, and interleukin-6 levels in dogs with idiopathic communicating internal hydrocephalus and a decrease after ventriculo-peritoneal shunting. Fluids Barriers CNS 2016;13:12. [PMID: 27357498 DOI: 10.1186/s12987-016-0034-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
205 Heidarzadeh M, Sokullu E, Saghati S, Karimipour M, Rahbarghazi R. Insights into the Critical Role of Exosomes in the Brain; from Neuronal Activity to Therapeutic Effects. Mol Neurobiol. [DOI: 10.1007/s12035-022-02853-z] [Reference Citation Analysis]
206 Kaur J, Fahmy LM, Davoodi-Bojd E, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Waste Clearance in the Brain. Front Neuroanat 2021;15:665803. [PMID: 34305538 DOI: 10.3389/fnana.2021.665803] [Reference Citation Analysis]
207 Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020;42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
208 Abdullah M, Kimura N, Akatsu H, Hashizume Y, Ferdous T, Tachita T, Iida S, Zou K, Matsubara E, Michikawa M. Flotillin is a Novel Diagnostic Blood Marker of Alzheimer’s Disease. JAD 2019;72:1165-76. [DOI: 10.3233/jad-190908] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
209 Trumbore CN. Shear-induced amyloid formation of IDPs in the brain. Dancing protein clouds: Intrinsically disordered proteins in health and disease, Part A. Elsevier; 2019. pp. 225-309. [DOI: 10.1016/bs.pmbts.2019.05.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
210 Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Progress in Neurobiology 2017;157:230-46. [DOI: 10.1016/j.pneurobio.2015.12.007] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 15.8] [Reference Citation Analysis]
211 Fowler MJ, Cotter JD, Knight BE, Sevick-Muraca EM, Sandberg DI, Sirianni RW. Intrathecal drug delivery in the era of nanomedicine. Adv Drug Deliv Rev 2020;165-166:77-95. [PMID: 32142739 DOI: 10.1016/j.addr.2020.02.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
212 Monaco S, Nicholas R, Reynolds R, Magliozzi R. Intrathecal Inflammation in Progressive Multiple Sclerosis. Int J Mol Sci 2020;21:E8217. [PMID: 33153042 DOI: 10.3390/ijms21218217] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
213 Kim YK, Nam KI, Song J. The Glymphatic System in Diabetes-Induced Dementia. Front Neurol 2018;9:867. [PMID: 30429819 DOI: 10.3389/fneur.2018.00867] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
214 Pan Y, Long W, Liu Q. Current Advances and Future Perspectives of Cerebrospinal Fluid Biopsy in Midline Brain Malignancies. Curr Treat Options Oncol 2019;20:88. [PMID: 31784837 DOI: 10.1007/s11864-019-0689-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
215 Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017;29:e12513. [DOI: 10.1111/jne.12513] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
216 Eide PK, Sorteberg A, Sorteberg W, Lindstrøm EK, Mardal KA, Ringstad G. "Bucket" cerebrospinal fluid bulk flow: when the terrain disagrees with the map. Acta Neurochir (Wien) 2019;161:259-61. [PMID: 30560378 DOI: 10.1007/s00701-018-3775-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
217 Trumbore CN. Shear-Induced Amyloid Formation in the Brain: II. An Experimental System for Monitoring Amyloid Shear Processes and Investigating Potential Spinal Tap Problems. J Alzheimers Dis 2017;59:543-57. [PMID: 28671126 DOI: 10.3233/JAD-170259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
218 Deng P, Halmai JANM, Beitnere U, Cameron D, Martinez ML, Lee CC, Waldo JJ, Thongphanh K, Adhikari A, Copping N, Petkova SP, Lee RD, Lock S, Palomares M, O’geen H, Carter J, Gonzalez CE, Buchanan FKB, Anderson JD, Fierro FA, Nolta JA, Tarantal AF, Silverman JL, Segal DJ, Fink KD. An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Front Mol Neurosci 2022;14:789913. [DOI: 10.3389/fnmol.2021.789913] [Reference Citation Analysis]
219 Alshehri Y, Salem I, Alamri Z, Alharbi A, Alshehri A, Alqurashi A, Alsaeedi A, Alotaibi A, Sabbagh AJ. Knowledge and attitude towards hydrocephalus among healthcare providers and the general population in Saudi Arabia. J Family Med Prim Care 2020;9:6240-8. [PMID: 33681071 DOI: 10.4103/jfmpc.jfmpc_916_20] [Reference Citation Analysis]
220 Ding G, Chopp M, Li L, Zhang L, Davoodi-Bojd E, Li Q, Zhang Z, Jiang Q. MRI investigation of glymphatic responses to Gd-DTPA infusion rates. J Neurosci Res 2018;96:1876-86. [PMID: 30272825 DOI: 10.1002/jnr.24325] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
221 Julian J, Punsoni M, Donahue J, Stopa E, Klinge PM. Surgical treatment results and pathological features in pediatric occult tight filum syndrome. Fluids Barriers CNS 2015;12. [DOI: 10.1186/2045-8118-12-s1-p21] [Reference Citation Analysis]
222 Trumbore CN. Shear-Induced Amyloid Formation in the Brain: III. The Roles of Shear Energy and Seeding in a Proposed Shear Model. J Alzheimers Dis 2018;65:47-70. [PMID: 30040710 DOI: 10.3233/JAD-171003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
223 Sokołowski W, Barszcz K, Kupczyńska M, Czopowicz M, Czubaj N, Kinda W, Kiełbowicz Z. Morphometry and morphology of rostral cranial fossa in brachycephalic dogs - CT studies. PLoS One 2020;15:e0240091. [PMID: 33002083 DOI: 10.1371/journal.pone.0240091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
224 Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Reference Citation Analysis]
225 Drewes LR, Jones HC, Keep RF. News from the editors of Fluids and Barriers of the CNS. Fluids Barriers CNS 2014;11:13. [PMID: 24940481 DOI: 10.1186/2045-8118-11-13] [Reference Citation Analysis]
226 Robert SM, Reeves BC, Marlier A, Duy PQ, DeSpenza T, Kundishora A, Kiziltug E, Singh A, Allington G, Alper SL, Kahle KT. Inflammatory hydrocephalus. Childs Nerv Syst 2021. [PMID: 34164718 DOI: 10.1007/s00381-021-05255-z] [Reference Citation Analysis]
227 Podgoršak A, Trimmel NE, Oertel MF, Qvarlander S, Arras M, Eklund A, Weisskopf M, Schmid Daners M. Intercompartmental communication between the cerebrospinal and adjacent spaces during intrathecal infusions in an acute ovine in-vivo model. Fluids Barriers CNS 2022;19:2. [PMID: 34983575 DOI: 10.1186/s12987-021-00300-0] [Reference Citation Analysis]
228 Toma AK. Hydrocephalus. Surgery (Oxford) 2015;33:384-9. [DOI: 10.1016/j.mpsur.2015.05.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
229 Gakuba C, Gaberel T, Goursaud S, Bourges J, Di Palma C, Quenault A, Martinez de Lizarrondo S, Vivien D, Gauberti M. General Anesthesia Inhibits the Activity of the "Glymphatic System". Theranostics 2018;8:710-22. [PMID: 29344300 DOI: 10.7150/thno.19154] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 13.3] [Reference Citation Analysis]
230 Guy AH, Wiggs JL, Turalba A, Pasquale LR. Translating the Low Translaminar Cribrosa Pressure Gradient Hypothesis into the Clinical Care of Glaucoma. Semin Ophthalmol 2016;31:131-9. [PMID: 26959138 DOI: 10.3109/08820538.2015.1114855] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
231 [DOI: 10.1101/2020.07.15.204545] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
232 Wostyn P, De Groot V, Van Dam D, Audenaert K, Killer HE, De Deyn PP. The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease. Biomed Res Int 2017;2017:5123148. [PMID: 28948167 DOI: 10.1155/2017/5123148] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
233 Monzio-Compagnoni N, Romani F, Mondino MG, Rampoldi AG, Trimarchi S, Tolva VS. Oxygen Partial Pressure in Cerebrospinal Fluid as a Potential Parameter to Identify Spinal Cord Ischaemia. Eur J Vasc Endovasc Surg 2021:S1078-5884(21)00762-0. [PMID: 34774374 DOI: 10.1016/j.ejvs.2021.09.023] [Reference Citation Analysis]
234 Bert RJ, Hayek SM, Yaksh TL. Modeling Spinal Intrathecal Drug Distribution: The Challenge of Defining and Predicting Cerebrospinal Fluid Dynamics. Anesthesia & Analgesia 2017;124:1403-6. [DOI: 10.1213/ane.0000000000002071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
235 Peeler DJ, Luera N, Horner PJ, Pun SH, Sellers DL. Polyplex transfection from intracerebroventricular delivery is not significantly affected by traumatic brain injury. J Control Release 2020;322:149-56. [PMID: 32198024 DOI: 10.1016/j.jconrel.2020.03.025] [Reference Citation Analysis]
236 Whitehead MT, Lee B, McCarron A, Fricke ST, Vezina G. Reduced subarachnoid fluid diffusion in enlarged subarachnoid spaces of infancy. Neuroradiol J 2017;30:418-24. [PMID: 28195509 DOI: 10.1177/1971400916689803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
237 Santos CR, Duarte AC, Quintela T, Tomás J, Albuquerque T, Marques F, Palha JA, Gonçalves I. The choroid plexus as a sex hormone target: Functional implications. Frontiers in Neuroendocrinology 2017;44:103-21. [DOI: 10.1016/j.yfrne.2016.12.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
238 Silvero-Isidre A, Morínigo-Guayuán S, Meza-Ojeda A, Mongelós-Cardozo M, Centurión-Wenninger C, Figueredo-Thiel S, Sanchez DF, Acosta N. Protective effect of aspirin treatment on mouse behavior in the acute phase of experimental infection with Trypanosoma cruzi. Parasitol Res 2018;117:189-200. [PMID: 29196837 DOI: 10.1007/s00436-017-5693-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
239 Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Handb Clin Neurol 2017;146:21-32. [PMID: 29110772 DOI: 10.1016/B978-0-12-804279-3.00002-2] [Cited by in Crossref: 53] [Cited by in F6Publishing: 25] [Article Influence: 13.3] [Reference Citation Analysis]
240 Konjikusic MJ, Yeetong P, Boswell CW, Lee C, Roberson EC, Ittiwut R, Suphapeetiporn K, Ciruna B, Gurnett CA, Wallingford JB, Shotelersuk V, Gray RS. Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet 2018;14:e1007817. [PMID: 30475797 DOI: 10.1371/journal.pgen.1007817] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
241 Simats A, Ramiro L, Montaner J, García-Berrocoso T. Application of an Aptamer-Based Proteomics Assay (SOMAscan™) in Rat Cerebrospinal Fluid. Methods Mol Biol 2019;2044:221-31. [PMID: 31432415 DOI: 10.1007/978-1-4939-9706-0_13] [Reference Citation Analysis]
242 Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016;36:513-38. [PMID: 26661240 DOI: 10.1177/0271678X15617172] [Cited by in Crossref: 239] [Cited by in F6Publishing: 120] [Article Influence: 34.1] [Reference Citation Analysis]
243 Cognat E, Koehl B, Lilamand M, Goutagny S, Belbachir A, de Charentenay L, Guiddir T, Zetlaoui P, Roos C, Paquet C. Preventing Post-Lumbar Puncture Headache. Ann Emerg Med 2021;78:443-50. [PMID: 33966935 DOI: 10.1016/j.annemergmed.2021.02.019] [Reference Citation Analysis]
244 Drewes LR, Jones HC, Keep RF. Advances in brain barriers and brain fluid research and news from Fluids and Barriers of the CNS. Fluids Barriers CNS 2016;13:1. [PMID: 26822521 DOI: 10.1186/s12987-016-0026-1] [Reference Citation Analysis]
245 Candanedo C, Doron O, Hemphill JC 3rd, Ramirez de Noriega F, Manley GT, Patal R, Rosenthal G. Characterizing the Response to Cerebrospinal Fluid Drainage in Patients with an External Ventricular Drain: The Pressure Equalization Ratio. Neurocrit Care 2019;30:340-7. [PMID: 30251075 DOI: 10.1007/s12028-018-0612-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
246 Scelsi CL, Rahim TA, Morris JA, Kramer GJ, Gilbert BC, Forseen SE. The Lateral Ventricles: A Detailed Review of Anatomy, Development, and Anatomic Variations. AJNR Am J Neuroradiol 2020;41:566-72. [PMID: 32079598 DOI: 10.3174/ajnr.A6456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
247 Ludwig HC, Bock HC, Gärtner J, Schiller S, Frahm J, Dreha-Kulaczewski S. Hydrocephalus Revisited: New Insights into Dynamics of Neurofluids on Macro- and Microscales. Neuropediatrics 2021;52:233-41. [PMID: 34192788 DOI: 10.1055/s-0041-1731981] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
248 Spodzieja M, Rodziewicz-motowidło S, Szymanska A. Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis. CMC 2019;26:104-20. [DOI: 10.2174/0929867324666171003113019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
249 Pizzo ME, Thorne RG. The Extracellular and Perivascular Spaces of the Brain. Brain Edema. Elsevier; 2017. pp. 105-27. [DOI: 10.1016/b978-0-12-803196-4.00006-0] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
250 Ozoner B. Cranioplasty Following Severe Traumatic Brain Injury: Role in Neurorecovery. Curr Neurol Neurosci Rep 2021;21:62. [PMID: 34674047 DOI: 10.1007/s11910-021-01147-6] [Reference Citation Analysis]
251 Ferrante E, Trimboli M, Rubino F. Spontaneous intracranial hypotension: review and expert opinion. Acta Neurol Belg 2020;120:9-18. [DOI: 10.1007/s13760-019-01166-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
252 Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019;316:H1124-40. [PMID: 30848677 DOI: 10.1152/ajpheart.00776.2018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
253 Toma M, Chan-akeley R, Lipari C, Kuo S. Mechanism of Coup and Contrecoup Injuries Induced by a Knock-Out Punch. MCA 2020;25:22. [DOI: 10.3390/mca25020022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
254 Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018;169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
255 Orozco GA, Smith JH, García JJ. Three-dimensional nonlinear finite element model to estimate backflow during flow-controlled infusions into the brain. Proc Inst Mech Eng H 2020;234:1018-28. [DOI: 10.1177/0954411920937220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
256 Braun C, Sakamoto A, Fuchs H, Ishiguro N, Suzuki S, Cui Y, Klinder K, Watanabe M, Terasaki T, Sauer A. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates. Mol Pharm 2017;14:3436-47. [PMID: 28880093 DOI: 10.1021/acs.molpharmaceut.7b00449] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
257 Mcalpine H, Adamides AA. Acute cervical cord syrinx after aneurysmal subarachnoid haemorrhage. Journal of Clinical Neuroscience 2016;32:143-5. [DOI: 10.1016/j.jocn.2016.03.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
258 Lizano P, Lutz O, Ling G, Lee AM, Eum S, Bishop JR, Kelly S, Pasternak O, Clementz B, Pearlson G, Sweeney JA, Gershon E, Tamminga C, Keshavan M. Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum. Am J Psychiatry 2019;176:564-72. [PMID: 31164007 DOI: 10.1176/appi.ajp.2019.18070825] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
259 Esposito E, Ahn BJ, Shi J, Nakamura Y, Park JH, Mandeville ET, Yu Z, Chan SJ, Desai R, Hayakawa A, Ji X, Lo EH, Hayakawa K. Brain-to-cervical lymph node signaling after stroke. Nat Commun 2019;10:5306. [PMID: 31757960 DOI: 10.1038/s41467-019-13324-w] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
260 Ringstad G, Emblem KE, Eide PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 2016;124:1850-7. [PMID: 26636385 DOI: 10.3171/2015.6.JNS15496] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
261 Gruszecki M, Lancaster G, Stefanovska A, Neary JP, Dech RT, Guminski W, Frydrychowski AF, Kot J, Winklewski PJ. Human subarachnoid space width oscillations in the resting state. Sci Rep 2018;8:3057. [PMID: 29449606 DOI: 10.1038/s41598-018-21038-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
262 Doron O, Zadka Y, Barnea O, Rosenthal G. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema. Fluids Barriers CNS 2021;18:42. [PMID: 34530863 DOI: 10.1186/s12987-021-00274-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
263 Zhang C, Lin J, Wei F, Song J, Chen W, Shan L, Xue R, Wang G, Tao J, Zhang G, Xu GY, Wang L. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci 2018;201:150-60. [PMID: 29605446 DOI: 10.1016/j.lfs.2018.03.057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
264 Cliver RN, Ayers B, Brady A, Firestein BL, Vazquez M. Cerebrospinal fluid replacement solutions promote neuroglia migratory behaviors and spinal explant outgrowth in microfluidic culture. J Tissue Eng Regen Med 2021;15:176-88. [PMID: 33274811 DOI: 10.1002/term.3164] [Reference Citation Analysis]
265 Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. Int Rev Neurobiol 2020;154:413-36. [PMID: 32739013 DOI: 10.1016/bs.irn.2020.02.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
266 Cai X, Harding IC, Sadaka AH, Colarusso B, Kulkarni P, Ebong E, Qiao J, O'Hare NR, Ferris CF. Mild repetitive head impacts alter perivascular flow in the midbrain dopaminergic system in awake rats. Brain Commun 2021;3:fcab265. [PMID: 34806002 DOI: 10.1093/braincomms/fcab265] [Reference Citation Analysis]
267 Wostyn P, Van Dam D, Audenaert K, Killer HE, De Deyn PP, De Groot V. A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids Barriers CNS 2015;12:16. [PMID: 26118970 DOI: 10.1186/s12987-015-0012-z] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 8.6] [Reference Citation Analysis]
268 Emami A, Tepper J, Short B, Yaksh TL, Bendele AM, Ramani T, Cisternas AF, Chang JH, Mellon RD. Toxicology Evaluation of Drugs Administered via Uncommon Routes: Intranasal, Intraocular, Intrathecal/Intraspinal, and Intra-Articular. Int J Toxicol 2018;37:4-27. [PMID: 29264927 DOI: 10.1177/1091581817741840] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
269 Lester McCully CM, Rodgers LT, Garica RC, Thomas ML, Peer CJ, Figg WD, Barnard DE, Warren KE. Flow Rate and Apparent Volume of Cerebrospinal Fluid in Rhesus Macaques (Macaca mulatta) Based on the Pharmacokinetics of Intrathecally Administered Inulin. Comp Med 2020;70:526-31. [PMID: 33046181 DOI: 10.30802/AALAS-CM-99-990010] [Reference Citation Analysis]
270 Luu KT, Norris DA, Gunawan R, Henry S, Geary R, Wang Y. Population Pharmacokinetics of Nusinersen in the Cerebral Spinal Fluid and Plasma of Pediatric Patients With Spinal Muscular Atrophy Following Intrathecal Administrations. J Clin Pharmacol 2017;57:1031-41. [PMID: 28369979 DOI: 10.1002/jcph.884] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
271 Anto-Ocrah M, Jones CMC, Diacovo D, Bazarian JJ. Blood-Based Biomarkers for the Identification of Sports-Related Concussion. Neurol Clin 2017;35:473-85. [PMID: 28673410 DOI: 10.1016/j.ncl.2017.03.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
272 Olstad EW, Ringers C, Hansen JN, Wens A, Brandt C, Wachten D, Yaksi E, Jurisch-Yaksi N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr Biol 2019;29:229-241.e6. [PMID: 30612902 DOI: 10.1016/j.cub.2018.11.059] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 23.7] [Reference Citation Analysis]
273 Farhat NS, Theiss R, Santini T, Ibrahim TS, Aizenstein HJ. Neuroimaging of Small Vessel Disease in Late-Life Depression. Adv Exp Med Biol 2019;1192:95-115. [PMID: 31705491 DOI: 10.1007/978-981-32-9721-0_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
274 Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015;50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
275 Haddad G, Alam R, Atweh LA, Hourani M. What provokes a disappearing arachnoid cyst? - Case study and literature review. Clin Imaging 2021;82:193-7. [PMID: 34875551 DOI: 10.1016/j.clinimag.2021.11.001] [Reference Citation Analysis]
276 Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016;7:246. [PMID: 27540379 DOI: 10.3389/fimmu.2016.00246] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 11.5] [Reference Citation Analysis]
277 Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis 2020;11:200-11. [PMID: 32010493 DOI: 10.14336/AD.2020.0103] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
278 Manconi B, Liori B, Cabras T, Vincenzoni F, Iavarone F, Lorefice L, Cocco E, Castagnola M, Messana I, Olianas A. Top-down proteomic profiling of human saliva in multiple sclerosis patients. J Proteomics 2018;187:212-22. [PMID: 30086402 DOI: 10.1016/j.jprot.2018.07.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
279 Martinac AD, Bilston LE. Computational modelling of fluid and solute transport in the brain. Biomech Model Mechanobiol 2020;19:781-800. [DOI: 10.1007/s10237-019-01253-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
280 Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP, Galanzha EI. New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells 2019;8:E1195. [PMID: 31581745 DOI: 10.3390/cells8101195] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
281 Onderwater GL, Van Dongen RM, Zielman R, Terwindt GM, Ferrari MD. Primary headaches. Cerebrospinal Fluid in Neurologic Disorders. Elsevier; 2018. pp. 267-84. [DOI: 10.1016/b978-0-12-804279-3.00016-2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
282 Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SS, Emblem KE, Mardal KA, Eide PK. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018;3:121537. [PMID: 29997300 DOI: 10.1172/jci.insight.121537] [Cited by in Crossref: 119] [Cited by in F6Publishing: 109] [Article Influence: 29.8] [Reference Citation Analysis]
283 Thomas JH. Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J R Soc Interface 2019;16:20190572. [PMID: 31640500 DOI: 10.1098/rsif.2019.0572] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
284 van de Walle T, Vaccaro A, Ramachandran M, Pietilä I, Essand M, Dimberg A. Tertiary Lymphoid Structures in the Central Nervous System: Implications for Glioblastoma. Front Immunol 2021;12:724739. [PMID: 34539661 DOI: 10.3389/fimmu.2021.724739] [Reference Citation Analysis]
285 Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, Rice H, DiLuna ML, Gerzanich V, Marc Simard J, Kahle KT. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2016;41:E10. [PMID: 27798982 DOI: 10.3171/2016.8.FOCUS16278] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
286 Dolzhikov AA, Shevchenko OA, Pobeda AS, Peresypkina AA, Dolzhikova IN, Zhunusov NS, Lugovskoy SS. Review of a new concept of glaucoma pathogenesis based on the glymphatic theory of cerebrospinal fluid circulation. RRP 2020;6:1-7. [DOI: 10.3897/rrpharmacology.6.53634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
287 Bedussi B, van Lier MG, Bartstra JW, de Vos J, Siebes M, VanBavel E, Bakker EN. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS 2015;12:23. [PMID: 26435380 DOI: 10.1186/s12987-015-0019-5] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 8.0] [Reference Citation Analysis]
288 Kang K, Yoon U, Hong J, Jeong S, Ko P, Lee S, Lee H. Amyloid Deposits and Idiopathic Normal-Pressure Hydrocephalus: An 18F-Florbetaben Study. Eur Neurol 2018;79:192-9. [DOI: 10.1159/000487133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
289 Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2018;163-164:118-43. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 12.2] [Reference Citation Analysis]
290 Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Shao A, Tang J, Chen S, Zhang J, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cereb Blood Flow Metab 2021;:271678X211045748. [PMID: 34806932 DOI: 10.1177/0271678X211045748] [Reference Citation Analysis]
291 Barami K, Sood S. The cerebral venous system and the postural regulation of intracranial pressure: implications in the management of patients with cerebrospinal fluid diversion. Childs Nerv Syst 2016;32:599-607. [PMID: 26767844 DOI: 10.1007/s00381-015-3010-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
292 Akiguchi I, Pallàs M, Budka H, Akiyama H, Ueno M, Han J, Yagi H, Nishikawa T, Chiba Y, Sugiyama H, Takahashi R, Unno K, Higuchi K, Hosokawa M. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology 2017;37:293-305. [PMID: 28261874 DOI: 10.1111/neup.12373] [Cited by in Crossref: 71] [Cited by in F6Publishing: 69] [Article Influence: 14.2] [Reference Citation Analysis]
293 Khachatryan T, Robinson JS. The possible impact of cervical stenosis on cephalad neuronal dysfunction. Med Hypotheses 2018;118:13-8. [PMID: 30037601 DOI: 10.1016/j.mehy.2018.06.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
294 Karimy JK, Kahle KT, Kurland DB, Yu E, Gerzanich V, Simard JM. A novel method to study cerebrospinal fluid dynamics in rats. J Neurosci Methods 2015;241:78-84. [PMID: 25554415 DOI: 10.1016/j.jneumeth.2014.12.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
295 Liu KC, Bhatti MT, Chen JJ, Fairbanks AM, Foroozan R, McClelland CM, Lee MS, Satija CE, Francis CE, Wildes MT, Subramanian PS, Williams ZR, El-Dairi MA. Presentation and Progression of Papilledema in Cerebral Venous Sinus Thrombosis. Am J Ophthalmol 2020;213:1-8. [PMID: 31926886 DOI: 10.1016/j.ajo.2019.12.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
296 Coutu JP, Goldblatt A, Rosas HD, Salat DH; Alzheimer's Disease Neuroimaging Initiative (ADNI). White Matter Changes are Associated with Ventricular Expansion in Aging, Mild Cognitive Impairment, and Alzheimer's Disease. J Alzheimers Dis 2016;49:329-42. [PMID: 26444767 DOI: 10.3233/JAD-150306] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
297 Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 2019;14:42. [PMID: 31744522 DOI: 10.1186/s13024-019-0341-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
298 Mogensen FL, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021;22:7491. [PMID: 34299111 DOI: 10.3390/ijms22147491] [Reference Citation Analysis]
299 Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 2016;126:4674-89. [PMID: 27841763 DOI: 10.1172/JCI86950] [Cited by in Crossref: 125] [Cited by in F6Publishing: 79] [Article Influence: 20.8] [Reference Citation Analysis]
300 Bedussi B, Almasian M, de Vos J, VanBavel E, Bakker EN. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. J Cereb Blood Flow Metab 2018;38:719-26. [PMID: 29039724 DOI: 10.1177/0271678X17737984] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 12.6] [Reference Citation Analysis]
301 Wang Q, Delva L, Weinreb PH, Pepinsky RB, Graham D, Veizaj E, Cheung AE, Chen W, Nestorov I, Rohde E, Caputo R, Kuesters GM, Bohnert T, Gan LS. Monoclonal antibody exposure in rat and cynomolgus monkey cerebrospinal fluid following systemic administration. Fluids Barriers CNS 2018;15:10. [PMID: 29558954 DOI: 10.1186/s12987-018-0093-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
302 Egorova N, Gottlieb E, Khlif MS, Spratt NJ, Brodtmann A. Choroid plexus volume after stroke. Int J Stroke 2019;14:923-30. [PMID: 31096870 DOI: 10.1177/1747493019851277] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
303 Rodrigues FB, Byrne LM, De Vita E, Johnson EB, Hobbs NZ, Thornton JS, Scahill RI, Wild EJ. Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast MRI. Eur J Neurosci 2019;49:1632-9. [PMID: 30687961 DOI: 10.1111/ejn.14356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
304 Sainz LV, Schuhmann MV. Subarachnomegaly-venous congestion of infancy. Childs Nerv Syst 2021;37:3455-63. [PMID: 34687332 DOI: 10.1007/s00381-021-05328-z] [Reference Citation Analysis]
305 Frič R, Pripp AH, Eide PK. Cardiovascular risk factors in Chiari malformation and idiopathic intracranial hypertension. Brain Behav 2017;7:e00677. [PMID: 28523220 DOI: 10.1002/brb3.677] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
306 Kalinina J, Ahn J, Devi NS, Wang L, Li Y, Olson JJ, Glantz M, Smith T, Kim EL, Giese A, Jensen RL, Chen CC, Carter BS, Mao H, He M, Van Meir EG. Selective Detection of the D-enantiomer of 2-Hydroxyglutarate in the CSF of Glioma Patients with Mutated Isocitrate Dehydrogenase. Clin Cancer Res 2016;22:6256-65. [PMID: 27340277 DOI: 10.1158/1078-0432.CCR-15-2965] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
307 Liang Z, Yang Y, Jia F, Sai K, Ullah S, Fidelis C, Lin Z, Li F. Intrathecal Delivery of Folate Conjugated near-Infrared Quantum Dots for Targeted in Vivo Imaging of Gliomas in Mice Brains. ACS Appl Bio Mater 2019;2:1432-9. [DOI: 10.1021/acsabm.8b00629] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
308 Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ. The blood-brain barrier in psychosis. Lancet Psychiatry. 2018;5:79-92. [PMID: 28781208 DOI: 10.1016/s2215-0366(17)30293-6] [Cited by in Crossref: 92] [Cited by in F6Publishing: 52] [Article Influence: 18.4] [Reference Citation Analysis]
309 Trumbore CN. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes. J Alzheimers Dis 2016;54:457-70. [PMID: 27567812 DOI: 10.3233/JAD-160027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
310 Blinkouskaya Y, Caçoilo A, Gollamudi T, Jalalian S, Weickenmeier J. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev 2021;200:111575. [PMID: 34600936 DOI: 10.1016/j.mad.2021.111575] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
311 Close LN, Zanaty M, Kirby P, Dlouhy BJ. Acute Hydrocephalus Resulting from Neuromyelitis Optica: A Case Report and Review of the Literature. World Neurosurg 2019;129:367-71. [PMID: 31200081 DOI: 10.1016/j.wneu.2019.05.177] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
312 Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 2021;127:171-83. [PMID: 33930471 DOI: 10.1016/j.neubiorev.2021.04.025] [Reference Citation Analysis]
313 Atchley TJ, Vukic B, Vukic M, Walters BC. Review of Cerebrospinal Fluid Physiology and Dynamics: A Call for Medical Education Reform. Neurosurgery 2022. [PMID: 35522666 DOI: 10.1227/neu.0000000000002000] [Reference Citation Analysis]
314 Lu S, Brusic A, Gaillard F. Arachnoid Membranes: Crawling Back into Radiologic Consciousness. AJNR Am J Neuroradiol 2021. [PMID: 34711549 DOI: 10.3174/ajnr.A7309] [Reference Citation Analysis]
315 Brandhonneur N, Noury F, Bruyère A, Saint-Jalmes H, Le Corre P. PBPK model of methotrexate in cerebrospinal fluid ventricles using a combined microdialysis and MRI acquisition. Eur J Pharm Biopharm 2016;104:117-30. [PMID: 27142258 DOI: 10.1016/j.ejpb.2016.04.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
316 Lobzin VY, Kolmakova KA, Emelin AY. A novel view on Alzheimer’s disease pathogenesis: modern conceptof amyloid clearance. V M BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY 2018. [DOI: 10.31363/2313-7053-2018-2-22-28] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
317 Vendel E, Rottschäfer V, de Lange ECM. The need for mathematical modelling of spatial drug distribution within the brain. Fluids Barriers CNS 2019;16:12. [PMID: 31092261 DOI: 10.1186/s12987-019-0133-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 9.7] [Reference Citation Analysis]
318 Keep RF, Jones HC, Drewes LR. This was the year that was: brain barriers and brain fluid research in 2019. Fluids Barriers CNS 2020;17:20. [PMID: 32138786 DOI: 10.1186/s12987-020-00181-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
319 Bernardi G, Cecchetti L, Siclari F, Buchmann A, Yu X, Handjaras G, Bellesi M, Ricciardi E, Kecskemeti SR, Riedner BA, Alexander AL, Benca RM, Ghilardi MF, Pietrini P, Cirelli C, Tononi G. Sleep reverts changes in human gray and white matter caused by wake-dependent training. Neuroimage 2016;129:367-77. [PMID: 26812659 DOI: 10.1016/j.neuroimage.2016.01.020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
320 Kroksveen AC, Opsahl JA, Guldbrandsen A, Myhr KM, Oveland E, Torkildsen Ø, Berven FS. Cerebrospinal fluid proteomics in multiple sclerosis. Biochim Biophys Acta 2015;1854:746-56. [PMID: 25526888 DOI: 10.1016/j.bbapap.2014.12.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
321 Benveniste H, Lee H, Volkow ND. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 2017;23:454-65. [PMID: 28466758 DOI: 10.1177/1073858417691030] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 10.6] [Reference Citation Analysis]
322 Bacyinski A, Xu M, Wang W, Hu J. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy. Front Neuroanat 2017;11:101. [PMID: 29163074 DOI: 10.3389/fnana.2017.00101] [Cited by in Crossref: 66] [Cited by in F6Publishing: 57] [Article Influence: 13.2] [Reference Citation Analysis]
323 Marshall-Goebel K, Terlević R, Gerlach DA, Kuehn S, Mulder E, Rittweger J. Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt. J Appl Physiol (1985) 2017;123:1139-44. [PMID: 28818998 DOI: 10.1152/japplphysiol.00256.2017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
324 Hale AT, Bastarache L, Morales DM, Wellons JC 3rd, Limbrick DD Jr, Gamazon ER. Multi-omic analysis elucidates the genetic basis of hydrocephalus. Cell Rep 2021;35:109085. [PMID: 33951428 DOI: 10.1016/j.celrep.2021.109085] [Reference Citation Analysis]
325 Corbo CP, Fulop ZL. Regional differences in the ependyma of the optic tectal ventricle of adult zebrafish with structures referring to brain hydrodynamics. Microsc Res Tech 2020;83:667-75. [PMID: 32048782 DOI: 10.1002/jemt.23457] [Reference Citation Analysis]
326 Rodgers J, Bradley B, Kennedy PGE. Delineating neuroinflammation, parasite CNS invasion, and blood-brain barrier dysfunction in an experimental murine model of human African trypanosomiasis. Methods 2017;127:79-87. [PMID: 28636879 DOI: 10.1016/j.ymeth.2017.06.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
327 Knirsch W, Mayer KN, Scheer I, Tuura R, Schranz D, Hahn A, Wetterling K, Beck I, Latal B, Reich B. Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure. Eur J Cardiothorac Surg 2017;51:740-6. [PMID: 28013288 DOI: 10.1093/ejcts/ezw399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.2] [Reference Citation Analysis]
328 Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020;12:272. [PMID: 32982716 DOI: 10.3389/fnagi.2020.00272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
329 Tao XX, Li GF, Wu YL, Liu YS, Zhao Y, Shi YH, Zhuang MT, Hou TY, Zhao R, Liu FD, Wang XM, Shen Y, Cui GH, Su JJ, Chen W, Tang XM, Sun J, Liu JR. Relationship between intracranial internal carotid artery calcification and enlarged cerebral perivascular space. Neuroradiology 2017;59:577-86. [PMID: 28501949 DOI: 10.1007/s00234-017-1838-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
330 Schirinzi T, Di Lazzaro G, Sancesario GM, Colona VL, Scaricamazza E, Mercuri NB, Martorana A, Sancesario G. Levels of amyloid-beta-42 and CSF pressure are directly related in patients with Alzheimer's disease. J Neural Transm (Vienna) 2017;124:1621-5. [PMID: 28866757 DOI: 10.1007/s00702-017-1786-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
331 Lis-Bartos A, Szarek D, Krok-Borkowicz M, Marycz K, Jarmundowicz W, Laska J. Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers (Basel) 2020;12:E2693. [PMID: 33207553 DOI: 10.3390/polym12112693] [Reference Citation Analysis]
332 Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018;15:30. [PMID: 30340614 DOI: 10.1186/s12987-018-0113-6] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 15.3] [Reference Citation Analysis]
333 Spassky N, Meunier A. The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol. 2017;18:423-436. [PMID: 28400610 DOI: 10.1038/nrm.2017.21] [Cited by in Crossref: 160] [Cited by in F6Publishing: 143] [Article Influence: 32.0] [Reference Citation Analysis]
334 Chen Y, O'Shaughnessy TJ, Kamimori GH, Horner DM, Egnoto MJ, Bagchi A. Role of Interfacial Conditions on Blast Overpressure Propagation Into the Brain. Front Neurol 2020;11:323. [PMID: 32411085 DOI: 10.3389/fneur.2020.00323] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
335 Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017;15:149-59. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 19.0] [Reference Citation Analysis]
336 Wang H, Nie ZY, Liu M, Li RR, Huang LH, Lu Z, Jin LJ, Li YX. Clinical characteristics of perivascular space and brain CT perfusion in stroke-free patients with intracranial and extracranial atherosclerosis of different extents. Ann Transl Med 2020;8:215. [PMID: 32309362 DOI: 10.21037/atm.2020.01.35] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
337 Longatti P, Fiorindi A, Peruzzo P, Basaldella L, Susin FM. Form follows function: estimation of CSF flow in the third ventricle-aqueduct-fourth ventricle complex modeled as a diffuser/nozzle pump. J Neurosurg 2019;:1-8. [PMID: 31419793 DOI: 10.3171/2019.5.JNS19276] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
338 Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021;173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
339 Taoka T, Naganawa S. Imaging for central nervous system (CNS) interstitial fluidopathy: disorders with impaired interstitial fluid dynamics. Jpn J Radiol 2021;39:1-14. [PMID: 32653987 DOI: 10.1007/s11604-020-01017-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
340 Jost G, Lenhard DC, Sieber MA, Lohrke J, Frenzel T, Pietsch H. Signal Increase on Unenhanced T1-Weighted Images in the Rat Brain After Repeated, Extended Doses of Gadolinium-Based Contrast Agents: Comparison of Linear and Macrocyclic Agents. Invest Radiol 2016;51:83-9. [PMID: 26606548 DOI: 10.1097/RLI.0000000000000242] [Cited by in Crossref: 117] [Cited by in F6Publishing: 47] [Article Influence: 19.5] [Reference Citation Analysis]
341 Klarica M, Radoš M, Orešković D. The Movement of Cerebrospinal Fluid and Its Relationship with Substances Behavior in Cerebrospinal and Interstitial Fluid. Neuroscience 2019;414:28-48. [PMID: 31279048 DOI: 10.1016/j.neuroscience.2019.06.032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
342 Barkovits K, Linden A, Galozzi S, Schilde L, Pacharra S, Mollenhauer B, Stoepel N, Steinbach S, May C, Uszkoreit J, Eisenacher M, Marcus K. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2018;17:3418-30. [PMID: 30207155 DOI: 10.1021/acs.jproteome.8b00308] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
343 Winklewski PJ, Wolf J, Gruszecki M, Wszedybyl-winklewska M, Narkiewicz K. Current understanding of the effects of inspiratory resistance on the interactions between systemic blood pressure, cerebral perfusion, intracranial pressure, and cerebrospinal fluid dynamics. Journal of Applied Physiology 2019;127:1206-14. [DOI: 10.1152/japplphysiol.00058.2019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
344 Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cell Mol Neurobiol 2016;36:181-94. [PMID: 26993512 DOI: 10.1007/s10571-015-0273-8] [Cited by in Crossref: 191] [Cited by in F6Publishing: 181] [Article Influence: 31.8] [Reference Citation Analysis]
345 Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol 2021;12:698169. [PMID: 34248921 DOI: 10.3389/fmicb.2021.698169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
346 Keep RF, Jones HC, Drewes LR. Brain barriers and brain fluid research in 2016: advances, challenges and controversies. Fluids Barriers CNS 2017;14:4. [PMID: 28153044 DOI: 10.1186/s12987-017-0052-7] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
347 Obermeier B, Verma A, Ransohoff RM. The blood–brain barrier. Autoimmune Neurology. Elsevier; 2016. pp. 39-59. [DOI: 10.1016/b978-0-444-63432-0.00003-7] [Cited by in Crossref: 83] [Cited by in F6Publishing: 46] [Article Influence: 13.8] [Reference Citation Analysis]
348 Libien J, Kupersmith MJ, Blaner W, McDermott MP, Gao S, Liu Y, Corbett J, Wall M; NORDIC Idiopathic Intracranial Hypertension Study Group. Role of vitamin A metabolism in IIH: Results from the idiopathic intracranial hypertension treatment trial. J Neurol Sci 2017;372:78-84. [PMID: 28017254 DOI: 10.1016/j.jns.2016.11.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
349 Wostyn P, Mader TH, Gibson CR, Killer HE. The escape of retrobulbar cerebrospinal fluid in the astronaut's eye: mission impossible? Eye (Lond) 2019;33:1519-24. [PMID: 31065103 DOI: 10.1038/s41433-019-0453-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
350 Gholampour S, Bahmani M, Shariati A. Comparing the Efficiency of Two Treatment Methods of Hydrocephalus: Shunt Implantation and Endoscopic Third Ventriculostomy. Basic Clin Neurosci 2019;10:185-98. [PMID: 31462974 DOI: 10.32598/bcn.9.10.285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
351 Ko PW, Lee HW, Lee M, Youn YC, Kim S, Kim JH, Kang K, Suk K. Increased plasma levels of chitinase 3-like 1 (CHI3L1) protein in patients with idiopathic normal-pressure hydrocephalus. J Neurol Sci 2021;423:117353. [PMID: 33652290 DOI: 10.1016/j.jns.2021.117353] [Reference Citation Analysis]
352 Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 2019;316:C525-44. [PMID: 30576237 DOI: 10.1152/ajpcell.00026.2018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
353 Hansen EA, Romanova L, Janson C, Lam CH. The effects of blood and blood products on the arachnoid cell. Exp Brain Res 2017;235:1749-58. [PMID: 28285405 DOI: 10.1007/s00221-017-4927-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
354 Deer TR, Pope JE, Hayek SM, Bux A, Buchser E, Eldabe S, De Andrés JA, Erdek M, Patin D, Grider JS, Doleys DM, Jacobs MS, Yaksh TL, Poree L, Wallace MS, Prager J, Rauck R, Deleon O, Diwan S, Falowski SM, Gazelka HM, Kim P, Leong M, Levy RM, Mcdowell Ii G, Mcroberts P, Naidu R, Narouze S, Perruchoud C, Rosen SM, Rosenberg WS, Saulino M, Staats P, Stearns LJ, Willis D, Krames E, Huntoon M, Mekhail N. The Polyanalgesic Consensus Conference (PACC): Recommendations on Intrathecal Drug Infusion Systems Best Practices and Guidelines: INTRATHECAL THERAPY BEST PRACTICES AND GUIDELINES. Neuromodulation: Technology at the Neural Interface 2017;20:96-132. [DOI: 10.1111/ner.12538] [Cited by in Crossref: 133] [Cited by in F6Publishing: 86] [Article Influence: 26.6] [Reference Citation Analysis]
355 Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 2021;69:715-28. [PMID: 33075175 DOI: 10.1002/glia.23923] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
356 Zebhauser PT, Berthele A, Franz MS, Goldhardt O, Diehl-Schmid J, Priller J, Ortner M, Grimmer T. Age-Dependency of Total Tau in the Cerebrospinal Fluid Is Corrected by Amyloid-β 1-40: A Correlational Study in Healthy Adults. J Alzheimers Dis 2021;83:155-62. [PMID: 34250938 DOI: 10.3233/JAD-210286] [Reference Citation Analysis]
357 Galarza M, Giménez A, Amigó JM, Schuhmann M, Gazzeri R, Thomale U, Mcallister JP. Next generation of ventricular catheters for hydrocephalus based on parametric designs. Childs Nerv Syst 2018;34:267-76. [DOI: 10.1007/s00381-017-3565-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
358 Harrison IF, Siow B, Akilo AB, Evans PG, Ismail O, Ohene Y, Nahavandi P, Thomas DL, Lythgoe MF, Wells JA. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. Elife 2018;7:e34028. [PMID: 30063207 DOI: 10.7554/eLife.34028] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
359 Plata KS, Cruz G, Lezcano H. Cine phase-contrast magnetic resonance imaging evaluation of cerebrospinal fluid flow dynamics in healthy pediatric subjects. Radiol Bras. [DOI: 10.1590/0100-3984.2021.0120] [Reference Citation Analysis]
360 Fame RM, Chang JT, Hong A, Aponte-Santiago NA, Sive H. Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids Barriers CNS 2016;13:11. [PMID: 27329482 DOI: 10.1186/s12987-016-0036-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]