BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Ji R, Li J, Gu Q, Zhao X, Sun T, Wang J, Li J, Du Q, Sun B. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J Exp Clin Cancer Res. 2010;29:16. [PMID: 20181250 DOI: 10.1186/1756-9966-29-16] [Cited by in Crossref: 77] [Cited by in F6Publishing: 83] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Cunningham HD, Shannon LA, Calloway PA, Fassold BC, Dunwiddie I, Vielhauer G, Zhang M, Vines CM. Expression of the C-C chemokine receptor 7 mediates metastasis of breast cancer to the lymph nodes in mice. Transl Oncol 2010;3:354-61. [PMID: 21151474 DOI: 10.1593/tlo.10178] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 4.9] [Reference Citation Analysis]
2 Clift IC, Bamidele AO, Rodriguez-Ramirez C, Kremer KN, Hedin KE. β-Arrestin1 and distinct CXCR4 structures are required for stromal derived factor-1 to downregulate CXCR4 cell-surface levels in neuroblastoma. Mol Pharmacol 2014;85:542-52. [PMID: 24452472 DOI: 10.1124/mol.113.089714] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
3 Del Molino Del Barrio I, Meeson A, Cooke K, Malki MI, Barron-Millar B, Kirby JA, Ali S. Contribution of Heparan Sulphate Binding in CCL21-Mediated Migration of Breast Cancer Cells. Cancers (Basel) 2021;13:3462. [PMID: 34298676 DOI: 10.3390/cancers13143462] [Reference Citation Analysis]
4 Rizeq B, Malki MI. The Role of CCL21/CCR7 Chemokine Axis in Breast Cancer Progression. Cancers (Basel) 2020;12:E1036. [PMID: 32340161 DOI: 10.3390/cancers12041036] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
5 Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines in tumor progression and metastasis. Oncotarget. 2013;4:2171-2185. [PMID: 24259307 DOI: 10.18632/oncotarget.1426] [Cited by in Crossref: 202] [Cited by in F6Publishing: 206] [Article Influence: 28.9] [Reference Citation Analysis]
6 Tutunea-Fatan E, Majumder M, Xin X, Lala PK. The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis. Mol Cancer 2015;14:35. [PMID: 25744065 DOI: 10.1186/s12943-015-0306-4] [Cited by in Crossref: 59] [Cited by in F6Publishing: 66] [Article Influence: 9.8] [Reference Citation Analysis]
7 Ahmed M, Basheer HA, Ayuso JM, Ahmet D, Mazzini M, Patel R, Shnyder SD, Vinader V, Afarinkia K. Agarose Spot as a Comparative Method for in situ Analysis of Simultaneous Chemotactic Responses to Multiple Chemokines. Sci Rep 2017;7:1075. [PMID: 28432337 DOI: 10.1038/s41598-017-00949-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
8 Li RH, Huang WH, Wu JD, Du CW, Zhang GJ. EGFR expression is associated with cytoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas. Oncol Lett 2017;13:695-703. [PMID: 28356948 DOI: 10.3892/ol.2016.5489] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
9 Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2021;1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
10 Lee YS, Kim SY, Song SJ, Hong HK, Lee Y, Oh BY, Lee WY, Cho YB. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget 2016;7:36842-53. [PMID: 27167205 DOI: 10.18632/oncotarget.9209] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
11 Nicolini A, Ferrari P, Diodati L, Carpi A. Alterations of Signaling Pathways Related to the Immune System in Breast Cancer: New Perspectives in Patient Management. Int J Mol Sci 2018;19:E2733. [PMID: 30213113 DOI: 10.3390/ijms19092733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
12 Hossain JA, Latif MA, Ystaas LAR, Ninzima S, Riecken K, Muller A, Azuaje F, Joseph JV, Talasila KM, Ghimire J, Fehse B, Bjerkvig R, Miletic H. Long-term treatment with valganciclovir improves lentiviral suicide gene therapy of glioblastoma. Neuro Oncol 2019;21:890-900. [PMID: 30958558 DOI: 10.1093/neuonc/noz060] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
13 Cirillo F, Lappano R, Bruno L, Rizzuti B, Grande F, Guzzi R, Briguori S, Miglietta AM, Nakajima M, Di Martino MT, Maggiolini M. AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs). J Exp Clin Cancer Res 2019;38:335. [PMID: 31370872 DOI: 10.1186/s13046-019-1337-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
14 Wu W, He Q, Li X, Zhang X, Lu A, Ge R, Zhen H, Chang AE, Li Q, Shen L. Long-term cultured human neural stem cells undergo spontaneous transformation to tumor-initiating cells. Int J Biol Sci 2011;7:892-901. [PMID: 21814484 DOI: 10.7150/ijbs.7.892] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
15 Gao Z, Xue K, Zhang L, Wei M. Over-Expression of POU Class 1 Homeobox 1 Transcription Factor (Pit-1) Predicts Poor Prognosis for Breast Cancer Patients. Med Sci Monit 2016;22:4121-5. [PMID: 27798557 DOI: 10.12659/msm.896107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
16 Yan JD, Liu Y, Zhang ZY, Liu GY, Xu JH, Liu LY, Hu YM. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract 2015;211:539-43. [PMID: 25976977 DOI: 10.1016/j.prp.2015.04.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
17 Gong W, Sun B, Zhao X, Zhang D, Sun J, Liu T, Gu Q, Dong X, Liu F, Wang Y, Lin X, Li Y. Nodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway. Oncotarget 2016;7:70152-67. [PMID: 27659524 DOI: 10.18632/oncotarget.12161] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
18 Li X, Kuang Y, Huang X, Zou L, Huang L, Yang T, Li W, Yang Y. Preparation and characterization of a new monoclonal antibody against CXCR4 using lentivirus vector. International Immunopharmacology 2016;36:100-5. [DOI: 10.1016/j.intimp.2016.04.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Feng Y, Wang L, Wang T, Li Y, Xun Q, Zhang R, Liu L, Li L, Wang W, Tian Y, Yang L, Zhi X, Zhou B, Chen X, Sun T, Liu Y. Tumor cell-secreted exosomal miR-22-3p inhibits transgelin and induces vascular abnormalization to promote tumor budding. Mol Ther 2021;29:2151-66. [PMID: 33578038 DOI: 10.1016/j.ymthe.2021.02.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Zheng T, Wang A, Hu D, Wang Y. Molecular mechanisms of breast cancer metastasis by gene expression profile analysis. Mol Med Rep. 2017;16:4671-4677. [PMID: 28791367 DOI: 10.3892/mmr.2017.7157] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
21 Gurgel DC, Wong DVT, Bandeira AM, Pereira JFB, Gomes-Filho JV, Pereira AC, Barros Silva PG, Távora FRF, Pereira AF, Lima-Júnior RCP, Almeida PRC. Cytoplasmic CCR7 (CCR7c) immunoexpression is associated with local tumor recurrence in triple-negative breast cancer. Pathol Res Pract 2020;216:153265. [PMID: 33181406 DOI: 10.1016/j.prp.2020.153265] [Reference Citation Analysis]
22 Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α. Mol Cell Biol 2016;36:2011-26. [PMID: 27185877 DOI: 10.1128/MCB.00180-16] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
23 Jacot W, Fiche M, Zaman K, Wolfer A, Lamy PJ. The HER2 amplicon in breast cancer: Topoisomerase IIA and beyond. Biochim Biophys Acta 2013;1836:146-57. [PMID: 23628726 DOI: 10.1016/j.bbcan.2013.04.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 23] [Article Influence: 0.5] [Reference Citation Analysis]
24 Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget 2015;6:5022-40. [PMID: 25669980 DOI: 10.18632/oncotarget.3217] [Cited by in Crossref: 112] [Cited by in F6Publishing: 123] [Article Influence: 22.4] [Reference Citation Analysis]
25 Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. Biomed Res Int 2014;2014:751392. [PMID: 25110692 DOI: 10.1155/2014/751392] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
26 Chen J, Alexander JS, Orr AW. Integrins and their extracellular matrix ligands in lymphangiogenesis and lymph node metastasis. Int J Cell Biol 2012;2012:853703. [PMID: 22505936 DOI: 10.1155/2012/853703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
27 Reynolds F, Panneer N, Tutino CM, Wu M, Skrabal WR, Moskaluk C, Kelly KA. A functional proteomic method for biomarker discovery. PLoS One 2011;6:e22471. [PMID: 21811618 DOI: 10.1371/journal.pone.0022471] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
28 Senkus E, Szade J, Pieczyńska B, Żaczek A, Brożek I, Radecka B, Kowalczyk A, Wełnicka-Jaśkiewicz M, Jassem J. Are bilateral breast cancers different from breast cancers coexisting with ovarian cancer? An immunohistochemical analysis aimed at intrinsic tumor phenotype. Breast 2013;22:425-30. [PMID: 23642527 DOI: 10.1016/j.breast.2013.04.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
29 Kennedy KC, Qurollo BA, Rose BJ, Thamm DH. Epidermal growth factor enhances the malignant phenotype in canine mammary carcinoma cell lines. Vet Comp Oncol 2011;9:196-206. [PMID: 21848622 DOI: 10.1111/j.1476-5829.2010.00248.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
30 Sonbul SN, Gorringe KL, Aleskandarany MA, Mukherjee A, Green AR, Ellis IO, Rakha EA. Chemokine (C-C motif) receptor 7 (CCR7) associates with the tumour immune microenvironment but not progression in invasive breast carcinoma. J Pathol Clin Res 2017;3:105-14. [PMID: 28451459 DOI: 10.1002/cjp2.65] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Shim B, Jin MS, Moon JH, Park IA, Ryu HS. High Cytoplasmic CXCR4 Expression Predicts Prolonged Survival in Triple-Negative Breast Cancer Patients Treated with Adjuvant Chemotherapy. J Pathol Transl Med 2018;52:369-77. [PMID: 30269472 DOI: 10.4132/jptm.2018.09.19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
32 Jin W, Li QZ, Zuo YC, Cao YN, Zhang LQ, Hou R, Su WX. Relationship Between DNA Methylation in Key Region and the Differential Expressions of Genes in Human Breast Tumor Tissue. DNA Cell Biol 2019;38:49-62. [PMID: 30346835 DOI: 10.1089/dna.2018.4276] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
33 Kuil J, Buckle T, van Leeuwen FW. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev 2012;41:5239-61. [PMID: 22743644 DOI: 10.1039/c2cs35085h] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 6.6] [Reference Citation Analysis]
34 Ma J, Su H, Yu B, Guo T, Gong Z, Qi J, Zhao X, Du J. CXCL12 gene silencing down-regulates metastatic potential via blockage of MAPK/PI3K/AP-1 signaling pathway in colon cancer. Clin Transl Oncol 2018;20:1035-45. [PMID: 29305742 DOI: 10.1007/s12094-017-1821-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
35 Ferrari A, Petterino C, Ratto A, Campanella C, Wurth R, Thellung S, Vito G, Barbieri F, Florio T. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis. BMC Vet Res 2012;8:27. [PMID: 22417013 DOI: 10.1186/1746-6148-8-27] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
36 Toyozawa S, Kaminaka C, Furukawa F, Nakamura Y, Matsunaka H, Yamamoto Y. Chemokine receptor CXCR4 is a novel marker for the progression of cutaneous malignant melanomas. Acta Histochem Cytochem 2012;45:293-9. [PMID: 23209338 DOI: 10.1267/ahc.12004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
37 Vinader V, Afarinkia K. The emerging role of CXC chemokines and their receptors in cancer. Future Med Chem. 2012;4:853-867. [PMID: 22571611 DOI: 10.4155/fmc.12.48] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
38 Zhao X, Sun B, Li Y, Liu Y, Zhang D, Wang X, Gu Q, Zhao J, Dong X, Liu Z, Che N. Dual effects of collagenase-3 on melanoma: metastasis promotion and disruption of vasculogenic mimicry. Oncotarget 2015;6:8890-9. [PMID: 25749207 DOI: 10.18632/oncotarget.3189] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
39 Daggett RN, Kurata M, Abe S, Onishi I, Miura K, Sawada Y, Tanizawa T, Kitagawa M. Expression dynamics of CXCL12 and CXCR4 during the progression of mycosis fungoides. Br J Dermatol 2014;171:722-31. [PMID: 24725174 DOI: 10.1111/bjd.13054] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
40 Basheer HA, Pakanavicius E, Cooper PA, Shnyder SD, Martin L, Hunter KD, Vinader V, Afarinkia K. Hypoxia modulates CCR7 expression in head and neck cancers. Oral Oncol 2018;80:64-73. [PMID: 29706190 DOI: 10.1016/j.oraloncology.2018.03.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Hung CS, Su HY, Liang HH, Lai CW, Chang YC, Ho YS, Wu CH, Ho JD, Wei PL, Chang YJ. High-level expression of CXCR4 in breast cancer is associated with early distant and bone metastases. Tumour Biol 2014;35:1581-8. [PMID: 24101191 DOI: 10.1007/s13277-013-1218-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
42 Berndt B, Haverkampf S, Reith G, Keil S, Niggemann B, Zänker KS, Dittmar T. Fusion of CCL21 non-migratory active breast epithelial and breast cancer cells give rise to CCL21 migratory active tumor hybrid cell lines. PLoS One 2013;8:e63711. [PMID: 23667660 DOI: 10.1371/journal.pone.0063711] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
43 Popple A, Durrant LG, Spendlove I, Rolland P, Scott IV, Deen S, Ramage JM. The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer. Br J Cancer. 2012;106:1306-1313. [PMID: 22415233 DOI: 10.1038/bjc.2012.49] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 7.7] [Reference Citation Analysis]
44 Lefort ÉC, Blay J. Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 2013;57:126-44. [PMID: 23197449 DOI: 10.1002/mnfr.201200424] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 7.4] [Reference Citation Analysis]
45 Shao GL, Wang MC, Fan XL, Zhong L, Ji SF, Sang G, Wang S. Correlation Between Raf/MEK/ERK Signaling Pathway and Clinicopathological Features and Prognosis for Patients With Breast Cancer Having Axillary Lymph Node Metastasis. Technol Cancer Res Treat 2018;17:1533034617754024. [PMID: 29529946 DOI: 10.1177/1533034617754024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
46 Zu G, Luo B, Yang Y, Tan Y, Tang T, Zhang Y, Chen X, Sun D. Meta-analysis of the prognostic value of C-C chemokine receptor type 7 in patients with solid tumors. Cancer Manag Res 2019;11:1881-92. [PMID: 30881115 DOI: 10.2147/CMAR.S190510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zhang J, Zhou Y, Yang Y. CCR7 pathway induces epithelial-mesenchymal transition through up-regulation of Snail signaling in gastric cancer. Med Oncol. 2015;32:467. [PMID: 25572817 DOI: 10.1007/s12032-014-0467-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 0.5] [Reference Citation Analysis]
48 Kuźnar-Kamińska B, Mikuła-Pietrasik J, Sosińska P, Książek K, Batura-Gabryel H. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21. Int J Chron Obstruct Pulmon Dis 2016;11:1061-6. [PMID: 27307721 DOI: 10.2147/COPD.S96490] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
49 Jing M, Mao X, Li C, Wei J, Liu C, Jin F. Estrogen receptor-alpha promoter methylation in sporadic basal-like breast cancer of Chinese women. Tumor Biol 2011;32:713-9. [DOI: 10.1007/s13277-011-0172-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
50 Zhang L, Wang D, Li Y, Liu Y, Xie X, Wu Y, Zhou Y, Ren J, Zhang J, Zhu H, Su Z. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway. PLoS One 2016;11:e0158529. [PMID: 27505247 DOI: 10.1371/journal.pone.0158529] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
51 Hwang TL, Lee LY, Wang CC, Liang Y, Huang SF, Wu CM. CCL7 and CCL21 overexpression in gastric cancer is associated with lymph node metastasis and poor prognosis. World J Gastroenterol 2012; 18(11): 1249-1256 [PMID: 22468089 DOI: 10.3748/wjg.v18.i11.1249] [Cited by in CrossRef: 38] [Cited by in F6Publishing: 35] [Article Influence: 4.2] [Reference Citation Analysis]
52 Yates TJ, Knapp J, Gosalbez M, Lokeshwar SD, Gomez CS, Benitez A, Ekwenna OO, Young EE, Manoharan M, Lokeshwar VB. C-X-C chemokine receptor 7: a functionally associated molecular marker for bladder cancer. Cancer. 2013;119:61-71. [PMID: 22736438 DOI: 10.1002/cncr.27661] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
53 Kazanietz MG, Barrio-Real L, Casado-Medrano V, Baker MJ, Lopez-Haber C. The P-Rex1/Rac signaling pathway as a point of convergence for HER/ErbB receptor and GPCR responses. Small GTPases 2018;9:297-303. [PMID: 27588611 DOI: 10.1080/21541248.2016.1221273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
54 Weitzenfeld P, Kossover O, Körner C, Meshel T, Wiemann S, Seliktar D, Legler DF, Ben-Baruch A. Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. J Leukoc Biol 2016;99:1009-25. [PMID: 26936935 DOI: 10.1189/jlb.3MA0815-373R] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
55 Ren ZQ, Yan WJ, Zhang XZ, Zhang PB, Zhang C, Chen SK. CUL1 Knockdown Attenuates the Adhesion, Invasion, and Migration of Triple-Negative Breast Cancer Cells via Inhibition of Epithelial-Mesenchymal Transition. Pathol Oncol Res 2020;26:1153-63. [PMID: 31175550 DOI: 10.1007/s12253-019-00681-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Adams A, van Brussel AS, Vermeulen JF, Mali WP, van der Wall E, van Diest PJ, Elias SG. The potential of hypoxia markers as target for breast molecular imaging--a systematic review and meta-analysis of human marker expression. BMC Cancer 2013;13:538. [PMID: 24206539 DOI: 10.1186/1471-2407-13-538] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
57 Yang X, Zhu CH, Cao R, Hao J, Wu XZ. Sublingual Nodules: Diagnostic Markers of Metastatic Breast Cancer. Chin J Integr Med 2018;24:741-5. [PMID: 29667148 DOI: 10.1007/s11655-018-2837-1] [Reference Citation Analysis]
58 Izumi D, Ishimoto T, Yoshida N, Nakamura K, Kosumi K, Tokunaga R, Sugihara H, Sawayama H, Karashima R, Imamura Y, Ida S, Hiyoshi Y, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Watanabe M, Baba H. A clinicopathological analysis of primary mucosal malignant melanoma. Surg Today 2015;45:886-91. [DOI: 10.1007/s00595-014-1041-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
59 Wu J, Li L, Liu J, Wang Y, Wang Z, Wang Y, Liu W, Zhou Z, Chen C, Liu R, Yang R. CC chemokine receptor 7 promotes triple-negative breast cancer growth and metastasis. Acta Biochimica et Biophysica Sinica 2018;50:835-42. [DOI: 10.1093/abbs/gmy077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
60 Jiang W, Liang YL, Liu Y, Chen YY, Yang ST, Li BR, Yu YX, Lyu Y, Wang R. MeCP2 inhibits proliferation and migration of breast cancer via suppression of epithelial-mesenchymal transition. J Cell Mol Med 2020;24:7959-67. [PMID: 32510753 DOI: 10.1111/jcmm.15428] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Pérez-Cárdenas E, Taja-Chayeb L, Trejo-Becerril C, Chanona-Vilchis J, Chávez-Blanco A, Domínguez-Gómez G, Langley E, García-Carrancá A, Dueñas-González A. Antimetastatic effect of epigenetic drugs, hydralazine and valproic acid, in Ras-transformed NIH 3T3 cells. Onco Targets Ther 2018;11:8823-33. [PMID: 30584338 DOI: 10.2147/OTT.S187306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Wang F, Li S, Zhao Y, Yang K, Chen M, Niu H, Yang J, Luo Y, Tang W, Sheng M. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: A meta-analysis. Breast 2016;28:45-53. [PMID: 27214240 DOI: 10.1016/j.breast.2016.04.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
63 Xu TP, Shen H, Liu LX, Shu YQ. The impact of chemokine receptor CXCR4 on breast cancer prognosis: a meta-analysis. Cancer Epidemiol 2013;37:725-31. [PMID: 23763828 DOI: 10.1016/j.canep.2013.04.017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
64 Aversa I, Zolea F, Ieranò C, Bulotta S, Trotta AM, Faniello MC, De Marco C, Malanga D, Biamonte F, Viglietto G, Cuda G, Scala S, Costanzo F. Epithelial-to-mesenchymal transition in FHC-silenced cells: the role of CXCR4/CXCL12 axis. J Exp Clin Cancer Res 2017;36:104. [PMID: 28774348 DOI: 10.1186/s13046-017-0571-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
65 Gonzalez-conchas GA, Rodriguez-romo L, Hernandez-barajas D, Gonzalez-guerrero JF, Rodriguez-fernandez IA, Verdines-perez A, Templeton AJ, Ocana A, Seruga B, Tannock IF, Amir E, Vera-badillo FE. Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis. Cancer Treatment Reviews 2018;62:1-8. [DOI: 10.1016/j.ctrv.2017.10.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
66 Wang X, Liu Z, Sun J, Song X, Bian M, Wang F, Yan F, Yu Z. Inhibition of NADPH oxidase 4 attenuates lymphangiogenesis and tumor metastasis in breast cancer. FASEB J 2021;35:e21531. [PMID: 33769605 DOI: 10.1096/fj.202002533R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Noh MG, Kim SS, Kim YJ, Jung TY, Jung S, Rhee JH, Lee JH, Lee JS, Cho JH, Moon KS, Park H, Lee KH. Evolution of the Tumor Microenvironment toward Immune-Suppressive Seclusion during Brain Metastasis of Breast Cancer: Implications for Targeted Therapy. Cancers (Basel) 2021;13:4895. [PMID: 34638378 DOI: 10.3390/cancers13194895] [Reference Citation Analysis]
68 Zhang X, Jiang G, Sun M, Zhou H, Miao Y, Liang M, Wang E, Zhang Y. Cytosolic THUMPD1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-Snail pathway. Oncotarget 2017;8:13357-66. [PMID: 28076326 DOI: 10.18632/oncotarget.14528] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
69 Tai CJ, Hsu CH, Shen SC, Lee WR, Jiang MC. Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis. J Exp Clin Cancer Res 2010;29:110. [PMID: 20701792 DOI: 10.1186/1756-9966-29-110] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
70 Zhang Z, Ni C, Chen W, Wu P, Wang Z, Yin J, Huang J, Qiu F. Expression of CXCR4 and breast cancer prognosis: a systematic review and meta-analysis. BMC Cancer 2014;14:49. [PMID: 24475985 DOI: 10.1186/1471-2407-14-49] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
71 Xiao XS, Cai MY, Chen JW, Guan XY, Kung HF, Zeng YX, Xie D. High Expression of p300 in Human Breast Cancer Correlates with Tumor Recurrence and Predicts Adverse Prognosis. Chin J Cancer Res 2011;23:201-7. [PMID: 23467396 DOI: 10.1007/s11670-011-0201-5] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
72 Hernandez L, Magalhaes MA, Coniglio SJ, Condeelis JS, Segall JE. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res. 2011;13:R128. [PMID: 22152016 DOI: 10.1186/bcr3074] [Cited by in Crossref: 91] [Cited by in F6Publishing: 95] [Article Influence: 9.1] [Reference Citation Analysis]
73 Ponda MP, Breslow JL. Serum stimulation of CCR7 chemotaxis due to coagulation factor XIIa-dependent production of high-molecular-weight kininogen domain 5. Proc Natl Acad Sci U S A 2016;113:E7059-68. [PMID: 27791187 DOI: 10.1073/pnas.1615671113] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
74 Zhang G, Jing X, Wang X, Shi W, Sun P, Su C, Zhu M, Yang Z, Yao Z, Yang J. Contribution of the proinflammatory cytokine IL-18 in the formation of human nasal polyps. Anat Rec (Hoboken) 2011;294:953-60. [PMID: 21538928 DOI: 10.1002/ar.21385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
75 Mao XY, Fan CF, Zheng HC, Wei J, Yao F, Jin F. p53 nuclear accumulation and ERalpha expression in ductal hyperplasia of breast in a cohort of 215 Chinese women. J Exp Clin Cancer Res 2010;29:112. [PMID: 20712900 DOI: 10.1186/1756-9966-29-112] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
76 Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int J Mol Sci 2021;22:8340. [PMID: 34361107 DOI: 10.3390/ijms22158340] [Reference Citation Analysis]
77 Kubo K, Iwakami M, Muromoto R, Inagaki T, Kitai Y, Kon S, Sekine Y, Oritani K, Matsuda T. CCR7 is involved in BCR-ABL/STAP-2-mediated cell growth in hematopoietic Ba/F3 cells. Biochem Biophys Res Commun 2015;463:825-31. [PMID: 26102025 DOI: 10.1016/j.bbrc.2015.06.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
78 Li F, Zou Z, Suo N, Zhang Z, Wan F, Zhong G, Qu Y, Ntaka KS, Tian H. CCL21/CCR7 axis activating chemotaxis accompanied with epithelial-mesenchymal transition in human breast carcinoma. Med Oncol 2014;31:180. [PMID: 25142946 DOI: 10.1007/s12032-014-0180-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
79 Garg AA, Jones TH, Moss SM, Mishra S, Kaul K, Ahirwar DK, Ferree J, Kumar P, Subramaniam D, Ganju RK, Subramaniam VV, Song JW. Electromagnetic fields alter the motility of metastatic breast cancer cells. Commun Biol 2019;2:303. [PMID: 31428691 DOI: 10.1038/s42003-019-0550-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
80 Hiller D, Chu QD. CXCR4 and axillary lymph nodes: review of a potential biomarker for breast cancer metastasis. Int J Breast Cancer 2011;2011:420981. [PMID: 22295222 DOI: 10.4061/2011/420981] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
81 Yu X, Wang M, Han Q, Zhang X, Mao X, Wang X, Li X, Ma W, Jin F. ZNF326 promotes a malignant phenotype of breast cancer by interacting with DBC1. Molecular Carcinogenesis 2018;57:1803-15. [DOI: 10.1002/mc.22898] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
82 Li H, Zhang X, Wu HY, Sun L, Ma Y, Xu J, Lin Q, Zeng D. 64Cu-Labeled Ubiquitin for PET Imaging of CXCR4 Expression in Mouse Breast Tumor. ACS Omega 2019;4:12432-7. [PMID: 31460362 DOI: 10.1021/acsomega.9b00678] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Collet G, Skrzypek K, Grillon C, Matejuk A, El Hafni-Rahbi B, Lamerant-Fayel N, Kieda C. Hypoxia control to normalize pathologic angiogenesis: potential role for endothelial precursor cells and miRNAs regulation. Vascul Pharmacol. 2012;56:252-261. [PMID: 22446152 DOI: 10.1016/j.vph.2012.03.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]