BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2:8. [PMID: 16209704 DOI: 10.1186/1743-8977-2-8] [Cited by in Crossref: 1382] [Cited by in F6Publishing: 1453] [Article Influence: 81.3] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Ding S, Plovie B, Li W, Shang C. Soft and Stretchable Electronics Design. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00087-x] [Reference Citation Analysis]
2 Liu W, Du W, Wang J, Zhuo S, Chen Y, Lin N, Kong G, Pan B. PAHs bound to submicron particles in rural Chinese homes burning solid fuels. Ecotoxicology and Environmental Safety 2022;247:114274. [DOI: 10.1016/j.ecoenv.2022.114274] [Reference Citation Analysis]
3 Li K, Zheng J, Liu H, Gao Q, Yang M, Tang J, Wang H, Li S, Sun Y, Chang X. Whole-transcriptome sequencing revealed differentially expressed mRNAs and non-coding RNAs played crucial roles in NiONPs-induced liver fibrosis. Ecotoxicology and Environmental Safety 2022;248:114308. [DOI: 10.1016/j.ecoenv.2022.114308] [Reference Citation Analysis]
4 Kirkland D, Aardema MJ, Battersby RV, Beevers C, Burnett K, Burzlaff A, Czich A, Donner EM, Fowler P, Johnston HJ, Krug HF, Pfuhler S, Stankowski LF. A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regulatory Toxicology and Pharmacology 2022;136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Reference Citation Analysis]
5 Ranpara A, Lebouf RF, Nurkiewicz TR, Yi J, Cumpston JL, Stefaniak AB. Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols. Journal of Toxicology and Environmental Health, Part A 2022. [DOI: 10.1080/15287394.2022.2150730] [Reference Citation Analysis]
6 Yedgar S, Barshtein G, Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines 2022;13:2091. [DOI: 10.3390/mi13122091] [Reference Citation Analysis]
7 Bhattacharya S, Majumdar nee Paul S. Application of conventional metallic nanoparticles on male reproductive system – challenges and countermeasures. Systems Biology in Reproductive Medicine 2022. [DOI: 10.1080/19396368.2022.2140087] [Reference Citation Analysis]
8 Alvarez Echazú MI, Renou SJ, Alvarez GS, Desimone MF, Olmedo DG. Synthesis and Evaluation of a Chitosan–Silica-Based Bone Substitute for Tissue Engineering. IJMS 2022;23:13379. [DOI: 10.3390/ijms232113379] [Reference Citation Analysis]
9 Kumar N, Thorat ST, Patole PB, Gite A, Kumar T. Does a selenium and zinc nanoparticles support mitigation of multiple-stress in aquaculture? Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.739004] [Reference Citation Analysis]
10 Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the IL ‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1850] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Cytotoxicity of Materials. Biomedical Engineering 2022. [DOI: 10.1002/9783527826674.ch5] [Reference Citation Analysis]
12 Kodali V, Roberts JR, Glassford E, Gill R, Friend S, Dunn KL, Erdely A. Understanding toxicity associated with boron nitride nanotubes: Review of toxicity studies, exposure assessment at manufacturing facilities, and read-across. Journal of Materials Research 2022. [DOI: 10.1557/s43578-022-00796-8] [Reference Citation Analysis]
13 Parviainen A, Vázquez-arias A, Martín-peinado FJ. Mineralogical association and geochemistry of potentially toxic elements in urban soils under the influence of mining. CATENA 2022;217:106517. [DOI: 10.1016/j.catena.2022.106517] [Reference Citation Analysis]
14 Bathi JR, Wright L, Khan E. Critical Review of Engineered Nanoparticles: Environmental Concentrations and Toxicity. Curr Pollution Rep. [DOI: 10.1007/s40726-022-00237-4] [Reference Citation Analysis]
15 Mamakos A, Huber MP, Arndt M, Reingruber H, Steiner G, Weidinger C. Design of a Laboratory Sampling System for Brake Wear Particle Measurements. SAE Technical Paper Series 2022. [DOI: 10.4271/2022-01-1179] [Reference Citation Analysis]
16 Javaid A, Imran M, Latif S, Hussain N, Iqbal HMN, Bilal M. Multifunctional attributes of nanostructured materials, toxicology, safety considerations, and regulations. J Mater Sci. [DOI: 10.1007/s10853-022-07679-7] [Reference Citation Analysis]
17 Khayat MT, Zarka MA, El-Telbany DFA, El-Halawany AM, Kutbi HI, Elkhatib WF, Noreddin AM, Khayyat AN, El-Telbany RFA, Hammad SF, Abdel-Naim AB, Alolayan EM, Al-Sawahli MM. Intensification of resveratrol cytotoxicity, pro-apoptosis, oxidant potentials in human colorectal carcinoma HCT-116 cells using zein nanoparticles. Sci Rep 2022;12:15235. [PMID: 36075939 DOI: 10.1038/s41598-022-18557-2] [Reference Citation Analysis]
18 Firouzamandi M, Hejazy M, Mohammadi A, Shahbazfar AA, Norouzi R. In vivo toxicity of oral administrated nano-SiO 2 ; Can food additives increase apoptosis?. [DOI: 10.21203/rs.3.rs-2025390/v1] [Reference Citation Analysis]
19 Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. Int J Environ Res Public Health 2022;19:11066. [PMID: 36078782 DOI: 10.3390/ijerph191711066] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Alves Feitosa K, de Oliveira Correia R, Maragno Fattori AC, Albuquerque YR, Brassolatti P, Flores Luna G, de Almeida Rodolpho JM, T. Nogueira C, Cancino Bernardi J, Speglich C, de Freitas Anibal F. Toxicological effects of the mixed iron oxide nanoparticle (Fe3O4 NP) on murine fibroblasts LA-9. Journal of Toxicology and Environmental Health, Part A 2022;85:649-670. [DOI: 10.1080/15287394.2022.2068711] [Reference Citation Analysis]
21 Hesse D, Feißel T, Kunze M, Bachmann E, Bachmann T, Gramstat S. Comparison of Methods for Sampling Particulate Emissions from Tires under Different Test Environments. Atmosphere 2022;13:1262. [DOI: 10.3390/atmos13081262] [Reference Citation Analysis]
22 Tu L. Gold nanomaterials for biochemical sensing. Gold Bull. [DOI: 10.1007/s13404-022-00318-8] [Reference Citation Analysis]
23 Majumdar S, Krishnamurthy S. In vivo toxicological evaluation of barium-doped bioactive glass in rats. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.07.272] [Reference Citation Analysis]
24 Kammoun AK, Hegazy MA, Khedr A, Awan ZA, Khayat MT, Al-sawahli MM. Etodolac Fortified Sodium Deoxycholate Stabilized Zein Nanoplatforms for Augmented Repositioning Profile in Human Hepatocellular Carcinoma: Assessment of Bioaccessibility, Anti-Proliferation, Pro-Apoptosis and Oxidant Potentials in HepG2 Cells. Pharmaceuticals 2022;15:916. [DOI: 10.3390/ph15080916] [Reference Citation Analysis]
25 Maluin FN, Katas H. Chitosan functionalization of metal- and carbon-based nanomaterials as an approach toward sustainability tomorrow. Nanotoxicology 2022;:1-25. [PMID: 35867661 DOI: 10.1080/17435390.2022.2090025] [Reference Citation Analysis]
26 Singhal R, Rawat D, Kaushik B. Toxicological Effects of Nanomaterials Used in Food Packaging. Nanotechnology in Intelligent Food Packaging 2022. [DOI: 10.1002/9781119819011.ch10] [Reference Citation Analysis]
27 Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. Front Toxicol 2022;4. [DOI: 10.3389/ftox.2022.895667] [Reference Citation Analysis]
28 Wang W, Lin Y, Yang H, Ling W, Liu L, Zhang W, Lu D, Liu Q, Jiang G. Internal Exposure and Distribution of Airborne Fine Particles in the Human Body: Methodology, Current Understandings, and Research Needs. Environ Sci Technol 2022;56:6857-69. [PMID: 35199997 DOI: 10.1021/acs.est.1c07051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
29 Qiu Y, Wu Z, Man R, Liu Y, Shang D, Tang L, Chen S, Guo S, Dao X, Wang S, Tang G, Hu M. Historically understanding the spatial distributions of particle surface area concentrations over China estimated using a non-parametric machine learning method. Science of The Total Environment 2022;824:153849. [DOI: 10.1016/j.scitotenv.2022.153849] [Reference Citation Analysis]
30 Basit F, Asghar S, Ahmed T, Ijaz U, Noman M, Hu J, Liang X, Guan Y. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. Environ Sci Pollut Res Int 2022. [PMID: 35614352 DOI: 10.1007/s11356-022-20950-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mittal S, Chakole CM, Sharma A, Pandey J, Chauhan MK. An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines. Drug Res (Stuttg) 2022. [PMID: 35562101 DOI: 10.1055/a-1801-6793] [Reference Citation Analysis]
32 Joseph X, Akhil V, Arathi A, Mohanan P. Nanobiomaterials in support of drug delivery related issues. Materials Science and Engineering: B 2022;279:115680. [DOI: 10.1016/j.mseb.2022.115680] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Chaudhury D, Sen U, Sahoo BK, Bhat NN, Kumara K S, Karunakara N, Biswas S, Shenoy P S, Bose B. Thorium promotes lung, liver and kidney damage in BALB/c mouse via alterations in antioxidant systems. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.109977] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Germande O, Ducret T, Quignard J, Deweirdt J, Freund-michel V, Errera M, Cardouat G, Vacher P, Muller B, Berger P, Guibert C, Baudrimont M, Baudrimont I. NiONP-Induced Oxidative Stress and Mitochondrial Impairment in an In Vitro Pulmonary Vascular Cell Model Mimicking Endothelial Dysfunction. Antioxidants 2022;11:847. [DOI: 10.3390/antiox11050847] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Gandomani EA, Mosaffa N, Zendehdel R, Kohneshahri MH, Vahabi M, Sabour S. Release of Interleukin-1β evaluation among mineral oil mist–exposed workers. Toxicol Ind Health. [DOI: 10.1177/07482337221090708] [Reference Citation Analysis]
36 J. Siddiqi N, Fatima S, Sharma B, Samir Elrobh M. In-Utero Neurotoxicity of Nanoparticles. Neurotoxicity - New Advances 2022. [DOI: 10.5772/intechopen.101452] [Reference Citation Analysis]
37 Hong Y. Impact of Silver Nanoparticles on Neurodevelopment and Neurodegeneration. Neurotoxicity - New Advances 2022. [DOI: 10.5772/intechopen.101723] [Reference Citation Analysis]
38 Li C, Hassan A, Palmai M, Snee P, Baveye PC, Darnault CJG. Colloidal stability and aggregation kinetics of nanocrystal CdSe/ZnS quantum dots in aqueous systems: Effects of ionic strength, electrolyte type, and natural organic matter. SN Appl Sci 2022;4. [DOI: 10.1007/s42452-022-04948-7] [Reference Citation Analysis]
39 Pradeep H, M B, Suresh S, Thadathil A, Periyat P. Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: a mini review. RSC Adv 2022;12:8211-27. [PMID: 35424771 DOI: 10.1039/d1ra09317g] [Reference Citation Analysis]
40 Shahabi R, Dehghani M, Javad Moosavi SA, Shahabi B, Poordakan O, Sadeghi M, Aryan L, Ghasempoor A, Aghanasiri F, Mohseni M, Mehravi B. The effect of nanoparticles on pulmonary fibrosis: a systematic review and Meta-analysis of preclinical studies. Arch Environ Occup Health 2022;:1-11. [PMID: 35244528 DOI: 10.1080/19338244.2021.2001637] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Yadav SK, Khan ZA, Mishra B, Bahadur S, Kumar A, Yadav B. The Toxic Side of Nanotechnology: An Insight into Hazards to Health and the Ecosystem. MNS 2022;14:21-33. [DOI: 10.2174/1876402913666210412160329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Nath D, R S, Pal K, Sarkar P. Nanoclay-based active food packaging systems: A review. Food Packaging and Shelf Life 2022;31:100803. [DOI: 10.1016/j.fpsl.2021.100803] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
43 Верещагин А, Морозова Е. SPECIFIC TOXICITY OF NANOPARTICLES (REVIEW). Южно-Сибирский научный вестник 2022. [DOI: 10.25699/sssb.2022.41.1.002] [Reference Citation Analysis]
44 Guzmán E. Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. Coatings 2022;12:277. [DOI: 10.3390/coatings12020277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Chapple R, Chivas-Joly C, Kose O, Erskine EL, Ferry L, Lopez-Cuesta JM, Kandola BK, Forest V. Graphene oxide incorporating carbon fibre-reinforced composites submitted to simultaneous impact and fire: Physicochemical characterisation and toxicology of the by-products. J Hazard Mater 2022;424:127544. [PMID: 34879530 DOI: 10.1016/j.jhazmat.2021.127544] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
46 Caponi L, Cazzuli G, Gargioni G, Massabò D, Brotto P, Prati P. A New PM Sampler with a Built-In Black Carbon Continuous Monitor. Atmosphere 2022;13:299. [DOI: 10.3390/atmos13020299] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Fung PL, Zaidan MA, Niemi JV, Saukko E, Timonen H, Kousa A, Kuula J, Rönkkö T, Karppinen A, Tarkoma S, Kulmala M, Petäjä T, Hussein T. Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets. Atmos Chem Phys 2022;22:1861-82. [DOI: 10.5194/acp-22-1861-2022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Systemic effect of TiO 2 micro‐ and nanoparticles after acute exposure in a murine model. J Biomed Mater Res. [DOI: 10.1002/jbm.b.35017] [Reference Citation Analysis]
49 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Pietras BG. The Origin of Dust Particles in Atmospheric Air in Krakow (Poland) (Atmospheric Background). Land 2022;11:155. [DOI: 10.3390/land11020155] [Reference Citation Analysis]
51 Ukkund SJ, Alke B, Taqui SN, Syed UT. Dextran nanoparticles: Preparation and applications. Polysaccharide Nanoparticles 2022. [DOI: 10.1016/b978-0-12-822351-2.00019-x] [Reference Citation Analysis]
52 Hamatschek C, Hesse D, Augsburg K, Gramstat S, Stich A. Comparison of the Particle Emission Behaviour of Automotive Drum and Disc Brakes. Proceedings 2022. [DOI: 10.1007/978-3-662-64550-5_31] [Reference Citation Analysis]
53 Basmaji P, Olyveira GMD, Kanjou M, Reichert H. Bacterial Cellulose for Several Medicine Areas: Future Insights. JBNB 2022;13:1-23. [DOI: 10.4236/jbnb.2022.131001] [Reference Citation Analysis]
54 Leo BF, Manimaran M, Rumjit NP, Lai CW. Safety Aspects and Environmental Impacts of Nanomaterials in Energy Storing Devices. Encyclopedia of Energy Storage 2022. [DOI: 10.1016/b978-0-12-819723-3.00046-9] [Reference Citation Analysis]
55 Rahman MS, Alom J, Nitai AS, Hasan MS, Ahmed MB, Nam S, Mondal MIH. Ultraviolet-blocking protective textiles. Protective Textiles from Natural Resources 2022. [DOI: 10.1016/b978-0-323-90477-3.00012-2] [Reference Citation Analysis]
56 Mohanty S, Paul S. Nanotechnology-Based ROS-Triggered Therapeutic Strategies in Multiple Cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_119-1] [Reference Citation Analysis]
57 Chapple R, Ferry L, Lopez-cuesta J, Chivas-joly C, Erskine EL, Kandola BK. Material integrity and fate of particulates released from carbon fibre composites containing nanomaterials during simultaneous fire and impact. Environ Sci : Nano 2022. [DOI: 10.1039/d2en00222a] [Reference Citation Analysis]
58 Bajpai R, Rai N, Teli B, Rashid MM, Singh S, Kumar G. Techniques used to detect the presence of nanoparticles in treated plant tissues. Toxicity of Nanoparticles in Plants 2022. [DOI: 10.1016/b978-0-323-90774-3.00010-6] [Reference Citation Analysis]
59 Kakoty V, K.c. S, Pandey M, Dubey SK, Kesharwani P, Taliyan R. Biological toxicity of nanoparticles. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00016-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Erduran V, Bekmezci M, Bayat R, Altuntaş ZB, Sen F. Functionalized nanomaterials and workplace health and safety. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00015-6] [Reference Citation Analysis]
61 Mohanty S, Paul S. Nanotechnology-Based ROS-Triggered Therapeutic Strategies in Multiple Cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_119] [Reference Citation Analysis]
62 Kumarathasan P, Nazemof N, Breznan D, Blais E, Aoki H, Gomes J, Vincent R, Phanse S, Babu M. In vitro toxicity screening of amorphous silica nanoparticles using mitochondrial fraction exposure followed by MS-based proteomic analysis. Analyst 2022;147:3692-3708. [DOI: 10.1039/d2an00569g] [Reference Citation Analysis]
63 Bakaraki Turan N, Onkal Engin G, Bilgili MS. Nanoparticles in solid waste: Impact and management strategies. Comprehensive Analytical Chemistry 2022. [DOI: 10.1016/bs.coac.2022.01.001] [Reference Citation Analysis]
64 Yang Y, Waterhouse GI, Chen Y, Sun-waterhouse D, Li D. Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107914] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
65 Naz M, Raza MA, Tariq M, Dai Z, Du D. Heavy metal contamination and their remediation. Metals Metalloids Soil Plant Water Systems 2022. [DOI: 10.1016/b978-0-323-91675-2.00012-3] [Reference Citation Analysis]
66 Retamal Marín RR. State of the Art and Knowledge About (Nanoparticulate) Disperse Systems. Characterization of Nanomaterials in Liquid Disperse Systems 2022. [DOI: 10.1007/978-3-030-99881-3_2] [Reference Citation Analysis]
67 Prakash Arul Jose J, Younus LA, Reddy KB, Sana SS, Gangadhar L, Hou T, Chakravorty A, Bhardwaj P. Environmental impact on toxicity of nanomaterials. Biogenic Sustainable Nanotechnology 2022. [DOI: 10.1016/b978-0-323-88535-5.00011-1] [Reference Citation Analysis]
68 Rizvi SS, Moraru CI, Bouwmeester H, Kampers FW, Cheng Y. Nanotechnology and food safety. Ensuring Global Food Safety 2022. [DOI: 10.1016/b978-0-12-816011-4.00016-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Gupta D, Yadav P, Garg D, Gupta TK. Pathways of nanotoxicity: Modes of detection, impact, and challenges. Front Mater Sci 2021;15:512-42. [DOI: 10.1007/s11706-021-0570-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Ni D, Ma D, Hao S, Yang W, Kovacs T, Tan F. Titanium dioxide nanoparticles perturb the blood-testis barrier via disruption of actin-based cell adhesive function. Aging 2021;13:25440-25452. [DOI: 10.18632/aging.203763] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
71 Mahmood Ansari S, Saquib Q, De Matteis V, Awad Alwathnani H, Ali Alharbi S, Ali Al-Khedhairy A. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorg Chem Appl 2021;2021:5985377. [PMID: 34873399 DOI: 10.1155/2021/5985377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Fdez-Arroyabe P, Salcines C, Kassomenos P, Santurtún A, Petäjä T. Electric charge of atmospheric nanoparticles and its potential implications with human health. Sci Total Environ 2021;808:152106. [PMID: 34864039 DOI: 10.1016/j.scitotenv.2021.152106] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Bessa MJ, Brandão F, Fokkens PHB, Leseman DLAC, Boere AJF, Cassee FR, Salmatonidis A, Viana M, Vulpoi A, Simon S, Monfort E, Teixeira JP, Fraga S. In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures. Nanomaterials (Basel) 2021;11:3225. [PMID: 34947574 DOI: 10.3390/nano11123225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Malviya R, Fuloria S, Verma S, Subramaniyan V, Sathasivam KV, Kumarasamy V, Hari Kumar D, Vellasamy S, Meenakshi DU, Yadav S, Sharma A, Fuloria NK. Commercial utilities and future perspective of nanomedicines. PeerJ 2021;9:e12392. [PMID: 34820175 DOI: 10.7717/peerj.12392] [Reference Citation Analysis]
75 Shin TH, Manavalan B, Lee DY, Basith S, Seo C, Paik MJ, Kim SW, Seo H, Lee JY, Kim JY, Kim AY, Chung JM, Baik EJ, Kang SH, Choi DK, Kang Y, Mouradian MM, Lee G. Silica-coated magnetic-nanoparticle-induced cytotoxicity is reduced in microglia by glutathione and citrate identified using integrated omics. Part Fibre Toxicol 2021;18:42. [PMID: 34819099 DOI: 10.1186/s12989-021-00433-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
76 Nayek S, Lund AK, Verbeck GF. Inhalation exposure to silver nanoparticles induces hepatic inflammation and oxidative stress, associated with altered renin-angiotensin system signaling, in Wistar rats. Environ Toxicol 2021. [PMID: 34792841 DOI: 10.1002/tox.23412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
77 Li N, Li X, Cheng P, Yang P, Shi P, Kong L, Liu H. Preparation of Curcumin Solid Lipid Nanoparticles Loaded with Flower-Shaped Lactose for Lung Inhalation and Preliminary Evaluation of Cytotoxicity In Vitro. Evid Based Complement Alternat Med 2021;2021:4828169. [PMID: 34745284 DOI: 10.1155/2021/4828169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Adhikari A, Sengupta J. Toxicity of Carbon Nanomaterials. Environmental Applications of Carbon Nanomaterials‐Based Devices 2021. [DOI: 10.1002/9783527830978.ch6] [Reference Citation Analysis]
79 Achawi S, Feneon B, Pourchez J, Forest V. Structure-Activity Relationship of Graphene-Based Materials: Impact of the Surface Chemistry, Surface Specific Area and Lateral Size on Their In Vitro Toxicity. Nanomaterials (Basel) 2021;11:2963. [PMID: 34835726 DOI: 10.3390/nano11112963] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
80 [DOI: 10.4271/2021-01-1301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
81 Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021;18:3671-718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
82 Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021;13:1615. [PMID: 34683908 DOI: 10.3390/pharmaceutics13101615] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
83 Chen Y, Bergendahl J. Identification and Quantification of a Wide Variety of Inorganic Nanoparticles in Municipal Wastewater. J Hazard Toxic Radioact Waste 2021;25. [DOI: 10.1061/(asce)hz.2153-5515.0000634] [Reference Citation Analysis]
84 Fatehbasharzad P, Fatehbasharzad P, Sillanpää M, Shamsi Z. Investigation of Bioimpacts of Metallic and Metallic Oxide Nanostructured Materials: Size, Shape, Chemical Composition, and Surface Functionality: A Review. Part Part Syst Charact 2021;38:2100112. [DOI: 10.1002/ppsc.202100112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
85 Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021;88:707-17. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
86 Čabanová K, Motyka O, Bielniková H, Čábalová L, Handlos P, Zabiegaj D, Zeleník K, Dvořáčková J, Komínek P, Heviánková S, Havlíček M, Kukutschová J. Identification of the phase composition of solid microparticles in the nasal mucosa of patients with chronic hypertrophic rhinitis using Raman microspectroscopy. Sci Rep 2021;11:18989. [PMID: 34556770 DOI: 10.1038/s41598-021-98521-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Kah M, Johnston LJ, Kookana RS, Bruce W, Haase A, Ritz V, Dinglasan J, Doak S, Garelick H, Gubala V. Comprehensive framework for human health risk assessment of nanopesticides. Nat Nanotechnol 2021;16:955-64. [PMID: 34518657 DOI: 10.1038/s41565-021-00964-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
88 Bibi M, Zhu X, Munir M, Angelidaki I. Bioavailability and effect of α-Fe2O3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. Chemosphere 2021;282:131044. [PMID: 34470146 DOI: 10.1016/j.chemosphere.2021.131044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
89 Wang X, Vallabani NS, Giboin A, Lundqvist J, Färnlund K, Karlsson HL, Hedberg YS, Odnevall I. Bioaccessibility and reactivity of alloy powders used in powder bed fusion additive manufacturing. Materialia 2021;19:101196. [DOI: 10.1016/j.mtla.2021.101196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
90 Kaur J, Jhamaria C. Urban Air Pollution and Human Health: A Review. Curr World Environ 2021;16:362-77. [DOI: 10.12944/cwe.16.2.04] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Banu AN, Kudesia N, Raut AM, Pakrudheen I, Wahengbam J. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: a review. Environ Chem Lett 2021;19:4275-96. [DOI: 10.1007/s10311-021-01304-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
92 Pepe GJ, Albrecht ED. Novel Technologies for Target Delivery of Therapeutics to the Placenta during Pregnancy: A Review. Genes (Basel) 2021;12:1255. [PMID: 34440429 DOI: 10.3390/genes12081255] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Alvarez Echazú M, Renou S, Alvarez G, Desimone M, Olmedo D. A collagen-silica-based biocomposite for potential application in bone tissue engineering. J Biomed Mater Res A 2021. [PMID: 34374221 DOI: 10.1002/jbm.a.37291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
94 De Berardis B, Marchetti M, Risuglia A, Ietto F, Fanizza C, Superti F. Exposure to airborne gold nanoparticles: a review of current toxicological data on the respiratory tract. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-04966-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
95 Simms BL, Ji N, Chandrasiri I, Zia MF, Udemgba CS, Kaur R, Delcamp JH, Flynt A, Tan C, Watkins DL. Physicochemical properties and bio‐interfacial interactions of surface modified PDLLA‐PAMAM linear dendritic block copolymers. Journal of Polymer Science 2021;59:2177-92. [DOI: 10.1002/pol.20210448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
96 Entzian K, Aigner A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021;13:1135. [PMID: 34452096 DOI: 10.3390/pharmaceutics13081135] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
97 Hwang YH, Chung CH, Chen YT, Chen JA. Characterization of Ti-containing nanoparticles in the aquatic environment of the Tamsuei River Basin in northern Taiwan. Sci Total Environ 2021;797:149163. [PMID: 34311357 DOI: 10.1016/j.scitotenv.2021.149163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Horník Š, Michálková L, Sýkora J, Ždímal V, Vlčková Š, Dvořáčková Š, Pelclová D. Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. Applied Sciences 2021;11:6601. [DOI: 10.3390/app11146601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
99 Asghar MA, Yousuf RI, Shoaib MH, Asghar MA, Mumtaz N. A Review on Toxicity and Challenges in Transferability of Surface-functionalized Metallic Nanoparticles from Animal Models to Humans. BIO Integration 2021;2:71-80. [DOI: 10.15212/bioi-2020-0047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
100 Turner A, Brokamp C, Wolfe C, Reponen T, Ryan P. Personal exposure to average weekly ultrafine particles, lung function, and respiratory symptoms in asthmatic and non-asthmatic adolescents. Environ Int 2021;156:106740. [PMID: 34237487 DOI: 10.1016/j.envint.2021.106740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
101 Jakubiak S, Oberbek P. Determination of the Concentration of Ultrafine Aerosol Using an Ionization Sensor. Nanomaterials (Basel) 2021;11:1625. [PMID: 34205749 DOI: 10.3390/nano11061625] [Reference Citation Analysis]
102 Economic Aspects of Nanomaterials (NMs) for Sample Preparation. Sample Preparation with Nanomaterials 2021. [DOI: 10.1002/9783527685622.ch11] [Reference Citation Analysis]
103 Boots TE, Kogel AM, Drew NM, Kuempel ED. Utilizing literature-based rodent toxicology data to derive potency estimates for quantitative risk assessment. Nanotoxicology 2021;15:740-60. [PMID: 34087078 DOI: 10.1080/17435390.2021.1918278] [Reference Citation Analysis]
104 Ali A, Ovais M, Zhou H, Rui Y, Chen C. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021;275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
105 Akbari-Alavijeh S, Shaddel R, Jafari SM. In vivo assessments for predicting the bioavailability of nanoencapsulated food bioactives and the safety of nanomaterials. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 33938781 DOI: 10.1080/10408398.2021.1915239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Kutbi HI, Kammoun AK, Farag El-Telbany D. Amelioration of Pterostilbene Antiproliferative, Proapoptotic, and Oxidant Potentials in Human Breast Cancer MCF7 Cells Using Zein Nanocomposites. Int J Nanomedicine 2021;16:3059-71. [PMID: 33953555 DOI: 10.2147/IJN.S303975] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
107 Fujisawa K, Kim YA, Hayashi T, Takeuchi K, Muramatsu H, Tsuruoka S, Yanagisawa T, Terrones M, Endo M. Nanocarbons. Industrial Carbon and Graphite Materials, Volume I 2021. [DOI: 10.1002/9783527674046.ch13] [Reference Citation Analysis]
108 Bernardi RB, Zanchi ACT, Damaceno-Rodrigues NR, Veras MM, Saldiva PHN, Barros HMT, Rhoden CR. The impact of chronic exposure to air pollution over oxidative stress parameters and brain histology. Environ Sci Pollut Res Int 2021;28:47407-17. [PMID: 33890219 DOI: 10.1007/s11356-021-14023-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
109 Wang HJ, Yang GG, Wu SS, Meng ZF, Zhang JM, Cao Y, Zhang YP. Toxicity of CuS/CdS semiconductor nanocomposites to liver cells and mice liver. Sci Total Environ 2021;784:147221. [PMID: 34088078 DOI: 10.1016/j.scitotenv.2021.147221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
110 Chai L, Fan X, Zuo Y, Zhang B, Nie G, Xie N, Xie Z, Zhang H. Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coordination Chemistry Reviews 2021;432:213697. [DOI: 10.1016/j.ccr.2020.213697] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
111 Hesse D, Hamatschek C, Augsburg K, Weigelt T, Prahst A, Gramstat S. Testing of Alternative Disc Brakes and Friction Materials Regarding Brake Wear Particle Emissions and Temperature Behavior. Atmosphere 2021;12:436. [DOI: 10.3390/atmos12040436] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
112 Longo R, Gorrasi G, Guadagno L. Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. Nanomaterials (Basel) 2021;11:848. [PMID: 33810343 DOI: 10.3390/nano11040848] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
113 Hassanen EI, Morsy EA, Hussien AM, Ibrahim MA, Farroh KY. The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci Rep 2020;40:BSR20194296. [PMID: 32124930 DOI: 10.1042/BSR20194296] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
114 Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021;11:441. [PMID: 33809769 DOI: 10.3390/biom11030441] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
115 Freire K, Ordóñez Ramos F, Soria DB, Pabón Gelves E, Di Virgilio AL. Cytotoxicity and DNA damage evaluation of TiO2 and ZnO nanoparticles. Uptake in lung cells in culture. Toxicol Res (Camb) 2021;10:192-202. [PMID: 33884170 DOI: 10.1093/toxres/tfaa112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
116 More SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles. Nanomaterials (Basel) 2021;11:642. [PMID: 33807756 DOI: 10.3390/nano11030642] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
117 Algandaby MM, Al-Sawahli MM. Augmentation of anti-proliferative, pro-apoptotic and oxidant profiles induced by piceatannol in human breast carcinoma MCF-7 cells using zein nanostructures. Biomed Pharmacother 2021;138:111409. [PMID: 33684694 DOI: 10.1016/j.biopha.2021.111409] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
118 Zhang X, Zhu D, Cheng Y, Zhang X, Guo X, Lin N, Zuo B. Preparation and Biocompatibility Characterization of Regenerated Silk Fibroin Films. Journal of Macromolecular Science, Part B 2021;60:603-15. [DOI: 10.1080/00222348.2021.1888491] [Reference Citation Analysis]
119 Lee SY, Kim IY, Heo MB, Moon JH, Son JG, Lee TG. Global Proteomics to Study Silica Nanoparticle-Induced Cytotoxicity and Its Mechanisms in HepG2 Cells. Biomolecules 2021;11:375. [PMID: 33801561 DOI: 10.3390/biom11030375] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
120 Asati S, Sahu A, Jain A. Nanotoxicity: The Dark Side of Nanoformulations. CNTP 2021;1:6-25. [DOI: 10.2174/2665980801999201230095324] [Reference Citation Analysis]
121 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 27.0] [Reference Citation Analysis]
122 Huang Y, Wang J, Fu N, Zhang S, Du W, Chen Y, Wang Z, Qi M, Wang W, Zhong Q, Duan Y, Shen G, Tao S. Inhalation exposure to size-segregated fine particles and particulate PAHs for the population burning biomass fuels in the Eastern Tibetan Plateau area. Ecotoxicol Environ Saf 2021;211:111959. [PMID: 33486383 DOI: 10.1016/j.ecoenv.2021.111959] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
123 Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. Int J Nanomedicine 2021;16:161-84. [PMID: 33447033 DOI: 10.2147/IJN.S288236] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
124 Baig A, Zubair M, Ali S, Farid M, Tahir MB. Protection and hazard controls for exposure reduction measurements. Nanomaterials: Synthesis, Characterization, Hazards and Safety 2021. [DOI: 10.1016/b978-0-12-823823-3.00009-4] [Reference Citation Analysis]
125 Catalan-figueroa J, Morales JO. Safety and Nanotoxicity Aspects of Nanomedicines for Brain-Targeted Drug Delivery. Neuromethods 2021. [DOI: 10.1007/978-1-0716-0838-8_10] [Reference Citation Analysis]
126 Rather GA, Gul MZ, Riyaz M, Chakravorty A, Khan MH, Nanda A, Bhat MY. Toxicity and Risk Assessment of Nanomaterials. Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer 2021. [DOI: 10.4018/978-1-7998-5049-6.ch019] [Reference Citation Analysis]
127 Shafiq F, Tahir MB, Nazir MT, Shafiq A, Sagir M. Introduction. Nanomaterials: Synthesis, Characterization, Hazards and Safety 2021. [DOI: 10.1016/b978-0-12-823823-3.09989-4] [Reference Citation Analysis]
128 Catalano R, Slomberg DL, Picard C, Hucher N, Vidal V, Saint-antonin F, Hubaud J, Rose J, Labille J. In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion – toward safer-by-design products. Environ Sci : Nano 2021;8:3546-3559. [DOI: 10.1039/d1en00345c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Vibhavari R, Kumar G, Rao V, Cheruku SP, Kumar N. Nano-pharmacokinetics: biodistribution and toxicology. Nano-Pharmacokinetics and Theranostics 2021. [DOI: 10.1016/b978-0-323-85050-6.00013-x] [Reference Citation Analysis]
130 Das A, Deka D, Abrar SS, Pathak S, Banerjee A. Ethics in Nanomedicine. Nanomedicine for Cancer Diagnosis and Therapy 2021. [DOI: 10.1007/978-981-15-7564-8_9] [Reference Citation Analysis]
131 Yalcin S. Cytotoxicity and biocompatibility of advanced green materials. Applications of Advanced Green Materials 2021. [DOI: 10.1016/b978-0-12-820484-9.00027-1] [Reference Citation Analysis]
132 Adeyemi OS, Otuechere CA, Adewuyi A, Awakan OJ, Otohinoyi DA. Nanopharmaceuticals: Healthcare Applications and Safety Evaluations. Nanopharmaceuticals: Principles and Applications Vol. 2 2021. [DOI: 10.1007/978-3-030-44921-6_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
133 Shaddel R, Akbari-alavijeh S, Mahdi Jafari S. In vivo assays for predicting the safety of food-based nanomaterials. Safety and Regulatory Issues of Nanoencapsulated Food Ingredients 2021. [DOI: 10.1016/b978-0-12-815725-1.00004-5] [Reference Citation Analysis]
134 Kundu D, Khan MF, Gogoi M, Patra S. Environmental Impact and Econanotoxicity of Engineered Nanomaterials. Environmental Chemistry for a Sustainable World 2021. [DOI: 10.1007/978-3-030-63241-0_11] [Reference Citation Analysis]
135 Sundaram Sanjay S, Shukla AK. Quantification of Antioxidants. Potential Therapeutic Applications of Nano-antioxidants 2021. [DOI: 10.1007/978-981-16-1143-8_5] [Reference Citation Analysis]
136 Dogra V, Kaur G, Kumar R, Kumar S. Nanomaterials; Applications; Implications and Management. New Frontiers of Nanomaterials in Environmental Science 2021. [DOI: 10.1007/978-981-15-9239-3_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Arunachalam P, Alaswad SO, Karuppiah P. Analytical methods for the characterization of bionanomaterials. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications 2021. [DOI: 10.1016/b978-0-12-821013-0.00003-9] [Reference Citation Analysis]
138 Oviyaa Sri M, Ilangovan SS, Srisugamathi G, Nilofar Nisha J, Akshhayya C, Sounder SS, Srilakkshmi KM. Techniques, Methods, Procedures and Protocols in Nanotoxicology. Nanotoxicology and Nanoecotoxicology Vol. 2 2021. [DOI: 10.1007/978-3-030-69492-0_12] [Reference Citation Analysis]
139 Karahalil B. Nanomaterials Causing Cellular Toxicity and Genotoxicity. Environmental Chemistry for a Sustainable World 2021. [DOI: 10.1007/978-3-030-63241-0_5] [Reference Citation Analysis]
140 Ebrahimnejad H, Eskandarzade N, Kabiri R, Moeini E. Impact of Nanomaterials on the Food Chain. Environmental Chemistry for a Sustainable World 2021. [DOI: 10.1007/978-3-030-63241-0_9] [Reference Citation Analysis]
141 Tarhan Ö, Yardımcı AI. Regulatory principles on food nano-particles legislated by international organizations. Safety and Regulatory Issues of Nanoencapsulated Food Ingredients 2021. [DOI: 10.1016/b978-0-12-815725-1.00008-2] [Reference Citation Analysis]
142 Duraiarasan S, Razack SA, Ramakrishnan G, Lin L, Cui H, Hussain CM. Functionalized nanomaterials (FNMS) in terrestial environments: a critical review from bioavailability perspective. Handbook of Functionalized Nanomaterials 2021. [DOI: 10.1016/b978-0-12-822415-1.00016-0] [Reference Citation Analysis]
143 Perumal AB, Nambiar RB, Sellamuthu PS, Sadiku ER. Nanotoxicity of nanoparticles. Nanomedicine Manufacturing and Applications 2021. [DOI: 10.1016/b978-0-12-820773-4.00019-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Al-eryani Y, Dadashi M, Aftabi S, Sattarifard H, Ghavami G, Oldham ZW, Ghoorchian A, Ghavami S. Toxicity, therapeutic applicability, and safe handling of magnetic nanomaterials. Magnetic Nanomaterials in Analytical Chemistry 2021. [DOI: 10.1016/b978-0-12-822131-0.00012-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Ghanem M, Perdrix E, Alleman LY, Rousset D, Coddeville P. Phosphate Buffer Solubility and Oxidative Potential of Single Metals or Multielement Particles of Welding Fumes. Atmosphere 2021;12:30. [DOI: 10.3390/atmos12010030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
146 Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles. Materials (Basel) 2020;14:E53. [PMID: 33374476 DOI: 10.3390/ma14010053] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 25.0] [Reference Citation Analysis]
147 Kim SH, Lee DH, Lee JH, Yang JY, Shin HS, Lee J, Jung K, Jeong J, Oh JH, Lee JK. Evaluation of the Skin Sensitization Potential of Carbon Nanotubes Using Alternative In Vitro and In Vivo Assays. Toxics 2020;8:E122. [PMID: 33339241 DOI: 10.3390/toxics8040122] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
148 Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020;328:873-94. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
149 Noskov A, Ervik TK, Tsivilskiy I, Gilmutdinov A, Thomassen Y. Characterization of ultrafine particles emitted during laser-based additive manufacturing of metal parts. Sci Rep 2020;10:20989. [PMID: 33268812 DOI: 10.1038/s41598-020-78073-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
150 Bocca B, Battistini B, Petrucci F. Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Talanta 2020;220:121404. [DOI: 10.1016/j.talanta.2020.121404] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
151 Yadav E, Yadav P. Biofabricated zinc oxide nanoparticles impair cognitive function via modulating oxidative stress and acetylcholinesterase level in mice. Environ Toxicol 2021;36:572-85. [PMID: 33247493 DOI: 10.1002/tox.23062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
152 Leni Z, Cassagnes LE, Daellenbach KR, El Haddad I, Vlachou A, Uzu G, Prévôt ASH, Jaffrezo JL, Baumlin N, Salathe M, Baltensperger U, Dommen J, Geiser M. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS One 2020;15:e0233425. [PMID: 33206642 DOI: 10.1371/journal.pone.0233425] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
153 Abdel-Azeem HH, Osman GY. Oxidative stress and histopathological effect of zinc oxide nanoparticles on the garden snail Helix aspersa. Environ Sci Pollut Res Int 2021;28:9913-20. [PMID: 33155114 DOI: 10.1007/s11356-020-11438-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
154 Fonseca-Gomes J, Loureiro JA, Tanqueiro SR, Mouro FM, Ruivo P, Carvalho T, Sebastião AM, Diógenes MJ, Pereira MC. In vivo Bio-Distribution and Toxicity Evaluation of Polymeric and Lipid-Based Nanoparticles: A Potential Approach for Chronic Diseases Treatment. Int J Nanomedicine 2020;15:8609-21. [PMID: 33177821 DOI: 10.2147/IJN.S267007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
155 Alkhalaf MI. Attenuating effect of Indole-3-Carbinol on gold nanoparticle induced hepatotoxicity in rats. Arabian Journal of Chemistry 2020;13:8060-8. [DOI: 10.1016/j.arabjc.2020.09.035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
156 Jin M, Li N, Sheng W, Ji X, Liang X, Kong B, Yin P, Li Y, Zhang X, Liu K. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. Environ Int 2021;146:106179. [PMID: 33099061 DOI: 10.1016/j.envint.2020.106179] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
157 Nayek S, De Silva IW, Aguilar R, Lund AK, Verbeck GF. Toxicological alterations induced by subacute exposure of silver nanoparticles in Wistar rats. J Appl Toxicol 2021;41:972-86. [PMID: 33029829 DOI: 10.1002/jat.4086] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
158 Mamakos A, Arndt M, Hesse D, Hamatschek C, Augsburg K. Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation. SAE Technical Paper Series 2020. [DOI: 10.4271/2020-01-1633] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
159 Hussain Z, Thu HE, Haider M, Khan S, Sohail M, Hussain F, Khan FM, Farooq MA, Shuid AN. A review of imperative concerns against clinical translation of nanomaterials: Unwanted biological interactions of nanomaterials cause serious nanotoxicity. Journal of Drug Delivery Science and Technology 2020;59:101867. [DOI: 10.1016/j.jddst.2020.101867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
160 Lee H. The effect of water lubricant on reducing the generation of airborne wear particles from wheel–rail contacts under various train velocities. Tribology International 2020;150:106393. [DOI: 10.1016/j.triboint.2020.106393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
161 Jahangir MA, Imam SS, Muheem A, Chettupalli A, Al-abbasi FA, Nadeem MS, Kazmi I, Afzal M, Alshehri S. Nanocrystals: Characterization Overview, Applications in Drug Delivery, and Their Toxicity Concerns. J Pharm Innov. [DOI: 10.1007/s12247-020-09499-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
162 Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020;25:E3982. [PMID: 32882920 DOI: 10.3390/molecules25173982] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 42.0] [Reference Citation Analysis]
163 Güney B, Öz A. Taşıt Freni Aşınma Parçacık Emisyonlarının Mikroyapısı ve Kimyasal Analizi. European Journal of Science and Technology. [DOI: 10.31590/ejosat.744098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Donsì F, Ferrari G. Changing the Vision in Smart Food Design Utilizing the Next Generation of Nanometric Delivery Systems for Bioactive Compounds. Foods 2020;9:E1100. [PMID: 32806512 DOI: 10.3390/foods9081100] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
165 Burgum MJ, Clift MJD, Evans SJ, Hondow N, Miller M, Lopez SB, Williams A, Tarat A, Jenkins GJ, Doak SH. In Vitro Primary-Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few-Layer Graphene. Small 2021;17:e2002551. [PMID: 32734718 DOI: 10.1002/smll.202002551] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
166 Alas MO, Alkas FB, Aktas Sukuroglu A, Genc Alturk R, Battal D. Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. J Mater Sci 2020;55:15074-105. [DOI: 10.1007/s10853-020-05054-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
167 Wang X, Odnevall Wallinder I, Hedberg Y. Bioaccessibility of Nickel and Cobalt Released from Occupationally Relevant Alloy and Metal Powders at Simulated Human Exposure Scenarios. Ann Work Expo Health 2020;64:659-75. [PMID: 32320011 DOI: 10.1093/annweh/wxaa042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
168 Mangababu A, Sarang Dev G, Chandu B, Bharati M, Venugopal Rao S, Nageswara Rao S. Structural investigations of picosecond laser ablated GaAs nanoparticles in different liquids. Nano-Structures & Nano-Objects 2020;23:100509. [DOI: 10.1016/j.nanoso.2020.100509] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
169 Secondo LE, Avrutin V, Ozgur U, Topsakal E, Lewinski NA. Real-time monitoring of cellular oxidative stress during aerosol sampling: a proof of concept study. Drug Chem Toxicol 2020;:1-8. [PMID: 32529856 DOI: 10.1080/01480545.2020.1774774] [Reference Citation Analysis]
170 Sanches PL, Geaquinto LRO, Cruz R, Schuck DC, Lorencini M, Granjeiro JM, Ribeiro ARL. Toxicity Evaluation of TiO2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front Bioeng Biotechnol 2020;8:575. [PMID: 32587852 DOI: 10.3389/fbioe.2020.00575] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
171 Rodrigues AF, Newman L, Jasim D, Mukherjee SP, Wang J, Vacchi IA, Ménard-Moyon C, Bianco A, Fadeel B, Kostarelos K, Bussy C. Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design. Adv Sci (Weinh) 2020;7:1903200. [PMID: 32596109 DOI: 10.1002/advs.201903200] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
172 Vimercati L, Cavone D, Caputi A, De Maria L, Tria M, Prato E, Ferri GM. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front Public Health 2020;8:192. [PMID: 32509719 DOI: 10.3389/fpubh.2020.00192] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
173 Cronin JG, Jones N, Thornton CA, Jenkins GJS, Doak SH, Clift MJD. Nanomaterials and Innate Immunity: A Perspective of the Current Status in Nanosafety. Chem Res Toxicol 2020;33:1061-73. [PMID: 32307980 DOI: 10.1021/acs.chemrestox.0c00051] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
174 Singh N, Das MK, Ramteke A, R P. Oxidative stress mediated hepatotoxicity induced by ZNP and modulatory role of fruit extract on male Wistar rat. Toxicol Rep 2020;7:492-500. [PMID: 32309148 DOI: 10.1016/j.toxrep.2020.03.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
175 Zainal Abidin HF, Hassan KH, Zainol ZA. Regulating Risk of Nanomaterials for Workers through Soft Law Approach. Nanoethics 2020;14:155-67. [DOI: 10.1007/s11569-020-00363-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
176 Nazarparvar-Noshadi M, Ezzati Nazhad Dolatabadi J, Rasoulzadeh Y, Mohammadian Y, Shanehbandi D. Apoptosis and DNA damage induced by silica nanoparticles and formaldehyde in human lung epithelial cells. Environ Sci Pollut Res Int 2020;27:18592-601. [PMID: 32198691 DOI: 10.1007/s11356-020-08191-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
177 Aoki K, Haniu H, Kim YA, Saito N. The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration. Nanomaterials (Basel) 2020;10:E562. [PMID: 32244931 DOI: 10.3390/nano10030562] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
178 Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. Small 2020;16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
179 Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med 2020;52:311-7. [PMID: 32203102 DOI: 10.1038/s12276-020-0403-3] [Cited by in Crossref: 198] [Cited by in F6Publishing: 206] [Article Influence: 99.0] [Reference Citation Analysis]
180 Golhani DK, Khare A, Burra GK, Jain VK, Rao Mokka J. Microbes induced biofabrication of nanoparticles: a review. Inorganic and Nano-Metal Chemistry 2020;50:983-99. [DOI: 10.1080/24701556.2020.1731539] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
181 Fahmy HM, Ebrahim NM, Gaber MH. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J Trace Elem Med Biol 2020;60:126481. [PMID: 32135445 DOI: 10.1016/j.jtemb.2020.126481] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
182 Masoudi F, Naghizadeh A, Zardast M, Gholami A, Farrokhfall K, Foadoddini M, Mehrpour O. Effects of bentonite nanoparticles inhalation on lung tissue and blood antioxidant indices in a rat model. Toxicol Ind Health 2020;36:11-21. [PMID: 32096459 DOI: 10.1177/0748233719900841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
183 Wang Y, Adamcakova-Dodd A, Steines BR, Jing X, Salem AK, Thorne PS. Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models. NanoImpact 2020;18:100215. [PMID: 32885098 DOI: 10.1016/j.impact.2020.100215] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
184 Bessa MJ, Brandão F, Viana M, Gomes JF, Monfort E, Cassee FR, Fraga S, Teixeira JP. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ Res 2020;184:109297. [PMID: 32155489 DOI: 10.1016/j.envres.2020.109297] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
185 Benzerga R, Badard M, Méjean C, El Assal A, Le Paven C, Sharaiha A. Carbon Fibers Loaded Composites for Microwave Absorbing Application: Effect of Fiber Length and Dispersion Process on Dielectric Properties. Journal of Elec Materi 2020;49:2999-3008. [DOI: 10.1007/s11664-020-07998-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
186 Azarnezhad A, Samadian H, Jaymand M, Sobhani M, Ahmadi A. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol 2020;50:148-76. [PMID: 32053030 DOI: 10.1080/10408444.2020.1719974] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
187 Ventura C, Pereira JFS, Matos P, Marques B, Jordan P, Sousa-Uva A, Silva MJ. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology 2020;14:479-503. [PMID: 32046553 DOI: 10.1080/17435390.2019.1695975] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
188 Koch AHR, Morsbach S, Bereau T, Lévêque G, Butt HJ, Deserno M, Landfester K, Fytas G. Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics. J Phys Chem B 2020;124:742-50. [PMID: 31951417 DOI: 10.1021/acs.jpcb.9b10469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
189 Huang Y, Lü X, Chen R, Chen Y. Comparative study of the effects of gold and silver nanoparticles on the metabolism of human dermal fibroblasts. Regen Biomater 2020;7:221-32. [PMID: 32296541 DOI: 10.1093/rb/rbz051] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
190 Zhu Q, Li N, Wang C, Zhang Q, Sun H. Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus. Chemosphere 2020;247:125895. [PMID: 31958649 DOI: 10.1016/j.chemosphere.2020.125895] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
191 Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. Materials (Basel) 2020;13:E349. [PMID: 31940903 DOI: 10.3390/ma13020349] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
192 Madkour LH. Nanoparticle cellular uptake and intracellular targeting on reactive oxygen species (ROS) in biological activities. Reactive Oxygen Species (ROS), Nanoparticles, and Endoplasmic Reticulum (ER) Stress-Induced Cell Death Mechanisms 2020. [DOI: 10.1016/b978-0-12-822481-6.00014-1] [Reference Citation Analysis]
193 Satapathy MK, Lekha R, Mehndiratta S, Das P, Chen C. Advanced Nanomaterials in the Clinical Scenario: Virtues and Consequences. Functional Bionanomaterials 2020. [DOI: 10.1007/978-3-030-41464-1_18] [Reference Citation Analysis]
194 Alexander A, Agrawal M, Yadav P, Jeswani G, Verma VS, Siddique S, Ajazuddin. Targeted delivery through carbon nanomaterials: applications in bioactive delivery systems. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents 2020. [DOI: 10.1016/b978-0-12-819666-3.00017-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
195 Bueno J. In Vitro Nanotoxicity: Toward the Development of Safe and Effective Treatments. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_4] [Reference Citation Analysis]
196 Sri S, Panwar S, Solanki PR. Carbon-Based Tumour-targeted Systems. New Nanomaterials and Techniques for Tumor-targeted Systems 2020. [DOI: 10.1007/978-981-15-5159-8_7] [Reference Citation Analysis]
197 Pola S, Konatala A. Evaluation of Toxicity of Nanoparticles Using Cell Lines. Model Organisms to Study Biological Activities and Toxicity of Nanoparticles 2020. [DOI: 10.1007/978-981-15-1702-0_15] [Reference Citation Analysis]
198 Dervin S, Panaitescu E, Menon L, Hinder SS, Pillai SC, Garvey M. In vitro pulmonary toxicity of thermally processed titania nanotubes. J Nanopart Res 2020;22:14. [DOI: 10.1007/s11051-019-4722-z] [Reference Citation Analysis]
199 Sanapala P, Pola S. Toxicological Evaluation of Nanoparticles Using Prokaryotic Model Organisms. Model Organisms to Study Biological Activities and Toxicity of Nanoparticles 2020. [DOI: 10.1007/978-981-15-1702-0_14] [Reference Citation Analysis]
200 Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
201 Madkour LH. Mechanisms for nanoparticle-mediated oxidative stress. Reactive Oxygen Species (ROS), Nanoparticles, and Endoplasmic Reticulum (ER) Stress-Induced Cell Death Mechanisms 2020. [DOI: 10.1016/b978-0-12-822481-6.00016-5] [Reference Citation Analysis]
202 Netkueakul W, Korejwo D, Hammer T, Chortarea S, Rupper P, Braun O, Calame M, Rothen-rutishauser B, Buerki-thurnherr T, Wick P, Wang J. Release of graphene-related materials from epoxy-based composites: characterization, quantification and hazard assessment in vitro. Nanoscale 2020;12:10703-22. [DOI: 10.1039/c9nr10245k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
203 Lee H. Generation characteristics of the airborne wear particles emitted from the wheel–rail contact for various train velocities and their generation relation with the train velocity. Atmospheric Environment: X 2020;5:100068. [DOI: 10.1016/j.aeaoa.2020.100068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
204 Sahoo PR, Madhyastha H, Madhyastha R, Maruyama M, Nakajima Y. Recent Progress in Nanotheranostic Medicine. Nanopharmaceuticals: Principles and Applications Vol. 3 2020. [DOI: 10.1007/978-3-030-47120-0_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
205 Skinder BM, Hamid S. Nanotechnology: A Modern Technique for Pollution Abatement. Bioremediation and Biotechnology, Vol 4 2020. [DOI: 10.1007/978-3-030-48690-7_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
206 Tarhan Ö. Safety and regulatory issues of nanomaterials in foods. Handbook of Food Nanotechnology 2020. [DOI: 10.1016/b978-0-12-815866-1.00016-9] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
207 Anuje M, Sivan A, Khot VM, Pawaskar P. Cellular interaction and toxicity of nanostructures. Nanomedicines for Breast Cancer Theranostics 2020. [DOI: 10.1016/b978-0-12-820016-2.00010-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
208 Kumar V, Lakkaboyana SK, Sharma N, Maitra SS, Hanafiah MM. Nanotoxicology and Its Remediation. Intelligent Nanomaterials for Drug Delivery Applications 2020. [DOI: 10.1016/b978-0-12-817830-0.00009-6] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
209 Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Adv 2020;2:3734-63. [DOI: 10.1039/d0na00286k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
210 Sayes CM. Nanotoxicology: Developing a Responsible Technology. Women in Nanotechnology 2020. [DOI: 10.1007/978-3-030-19951-7_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
211 Ferraro SA, Domingo MG, Etcheverrito A, Olmedo DG, Tasat DR. Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells. Journal of Trace Elements in Medicine and Biology 2020;57:126413. [DOI: 10.1016/j.jtemb.2019.126413] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
212 Madkour LH. Metal nanoparticles (MNPs) and particulate matter (PM) induce toxicity. Reactive Oxygen Species (ROS), Nanoparticles, and Endoplasmic Reticulum (ER) Stress-Induced Cell Death Mechanisms 2020. [DOI: 10.1016/b978-0-12-822481-6.00015-3] [Reference Citation Analysis]
213 Butt BZ. Nanotechnology and Waste Water Treatment. Nanoagronomy 2020. [DOI: 10.1007/978-3-030-41275-3_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
214 Madkour LH. Nanotoxicity, Cytotoxicity, and Genotoxicity Mechanisms of Nanomaterials. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses 2020. [DOI: 10.1007/978-3-030-37297-2_2] [Reference Citation Analysis]
215 Madkour LH. Pathways for Nanoparticle (NP)-Induced Oxidative Stress. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses 2020. [DOI: 10.1007/978-3-030-37297-2_7] [Reference Citation Analysis]
216 Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2020;77:80-93. [PMID: 31899250 DOI: 10.1016/j.neuro.2019.12.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
217 Pardhi VP, Verma T, Flora SJS, Chandasana H, Shukla R. Nanocrystals: An Overview of Fabrication, Characterization and Therapeutic Applications in Drug Delivery. Curr Pharm Des 2018;24:5129-46. [PMID: 30767737 DOI: 10.2174/1381612825666190215121148] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
218 Santos A, Veiga F, Figueiras A. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. Materials (Basel) 2019;13:E65. [PMID: 31877717 DOI: 10.3390/ma13010065] [Cited by in Crossref: 106] [Cited by in F6Publishing: 114] [Article Influence: 35.3] [Reference Citation Analysis]
219 Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 2020;52:157-84. [PMID: 31834823 DOI: 10.1080/03602532.2019.1697282] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 17.0] [Reference Citation Analysis]
220 Gaharwar US, Meena R, Rajamani P. Biodistribution, Clearance And Morphological Alterations Of Intravenously Administered Iron Oxide Nanoparticles In Male Wistar Rats. Int J Nanomedicine 2019;14:9677-92. [PMID: 31827324 DOI: 10.2147/IJN.S223142] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
221 Nogueira DJ, Arl M, Köerich JS, Simioni C, Ouriques LC, Vicentini DS, Matias WG. Comparison of cytotoxicity of α-Al2O3 and η-Al2O3 nanoparticles toward neuronal and bronchial cells. Toxicology in Vitro 2019;61:104596. [DOI: 10.1016/j.tiv.2019.104596] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
222 Zhao H, Li L, Zhan H, Chu Y, Sun B. Mechanistic Understanding of the Engineered Nanomaterial-Induced Toxicity on Kidney. Journal of Nanomaterials 2019;2019:1-12. [DOI: 10.1155/2019/2954853] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
223 Singh M, Singh S. Electrochemical discharge machining: fumes generations, properties and biological effects. Int J Adv Manuf Technol 2020;106:357-70. [DOI: 10.1007/s00170-019-04632-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
224 Lee JH, Kim JY, Cho BB, Anusha JR, Sim JY, Raj CJ, Yu KH. Assessment of air purifier on efficient removal of airborne bacteria, Staphylococcus epidermidis, using single-chamber method. Environ Monit Assess 2019;191:720. [PMID: 31691038 DOI: 10.1007/s10661-019-7876-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
225 Gradin KT, Åström AH. Comparative life cycle assessment of car disc brake systems—case study results and method discussion about comparative LCAs. Int J Life Cycle Assess 2020;25:350-62. [DOI: 10.1007/s11367-019-01704-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
226 Jia S, Zhang Q, Sarkar S, Mao J, Hang J, Chen W, Wang X, Yuan L, Yang L, Ye G, Zhou S. Size-segregated deposition of atmospheric elemental carbon (EC) in the human respiratory system: A case study of the Pearl River Delta, China. Sci Total Environ 2020;708:134932. [PMID: 31784178 DOI: 10.1016/j.scitotenv.2019.134932] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
227 Mamakos A, Arndt M, Hesse D, Augsburg K. Physical Characterization of Brake-Wear Particles in a PM10 Dilution Tunnel. Atmosphere 2019;10:639. [DOI: 10.3390/atmos10110639] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
228 Du W, Yun X, Luo Z, Chen Y, Liu W, Sun Z, Zhong Q, Qiu Y, Li X, Zhu Y, Cheng H, Tao S, Shen G. Submicrometer PM 1.0 Exposure from Household Burning of Solid Fuels. Environ Sci Technol Lett 2020;7:1-6. [DOI: 10.1021/acs.estlett.9b00633] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
229 Kucukoglu V, Uzuner H, Kenar H, Karadenizli A. In vitro antibacterial activity of ciprofloxacin loaded chitosan microparticles and their effects on human lung epithelial cells. International Journal of Pharmaceutics 2019;569:118578. [DOI: 10.1016/j.ijpharm.2019.118578] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
230 Fisinin V, Miroshnikov S, Sizova E, Ushakov A, Miroshnikova E. Metal particles as trace-element sources: current state and future prospects. World's Poultry Science Journal 2018;74:523-40. [DOI: 10.1017/s0043933918000491] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
231 Goyal S, Gupta N, Kumar A, Chatterjee S, Nimesh S. Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET Nanobiotechnol 2018;12:526-33. [PMID: 29768242 DOI: 10.1049/iet-nbt.2017.0089] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
232 Iavicoli I, Leso V, Piacci M, Cioffi DL, Guseva Canu I, Schulte PA. An Exploratory Assessment of Applying Risk Management Practices to Engineered Nanomaterials. Int J Environ Res Public Health 2019;16:E3290. [PMID: 31500229 DOI: 10.3390/ijerph16183290] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
233 Aleixandre A, Benavent-Gil Y, Rosell CM. Effect of Bread Structure and In Vitro Oral Processing Methods in Bolus Disintegration and Glycemic Index. Nutrients 2019;11:E2105. [PMID: 31487935 DOI: 10.3390/nu11092105] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
234 Ji J, Ganguly K, Mihai X, Sun J, Malmlöf M, Gerde P, Upadhyay S, Palmberg L. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019;13:1362-79. [PMID: 31462114 DOI: 10.1080/17435390.2019.1655600] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
235 Bauer EM, De Caro T, Tagliatesta P, Carbone M. Unraveling the real pigment composition of tattoo inks: the case of bi-components phthalocyanine based greens. Dyes and Pigments 2019;167:225-35. [DOI: 10.1016/j.dyepig.2019.04.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
236 Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF Jr, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2018;164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 18.0] [Reference Citation Analysis]
237 Li M, Thompson KK, Nissen JC, Hendrix D, Hurowitz JA, Tsirka SE. Lunar soil simulants alter macrophage survival and function. J Appl Toxicol 2019;39:1413-23. [PMID: 31319435 DOI: 10.1002/jat.3827] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
238 Cui H, Huang J, Lu M, Zhang Q, Qin W, Zhao Y, Lu X, Zhang J, Xi Z, Li R. Antagonistic effect of vitamin E on nAl2O3-induced exacerbation of Th2 and Th17-mediated allergic asthma via oxidative stress. Environ Pollut 2019;252:1519-31. [PMID: 31277021 DOI: 10.1016/j.envpol.2019.06.092] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
239 Barkhade T, Phatangare A, Dahiwale S, Mahapatra SK, Banerjee I. Nano‐bio interface study between Fe content TiO2 nanoparticles and adenosine triphosphate biomolecules. Surf Interface Anal 2019;51:894-905. [DOI: 10.1002/sia.6663] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
240 Hashempour S, Ghanbarzadeh S, Maibach HI, Ghorbani M, Hamishehkar H. Skin toxicity of topically applied nanoparticles. Ther Deliv 2019;10:383-96. [PMID: 31184548 DOI: 10.4155/tde-2018-0060] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
241 Sanches PL, Souza W, Gemini-Piperni S, Rossi AL, Scapin S, Midlej V, Sade Y, Leme AFP, Benchimol M, Rocha LA, Carias RBV, Borojevic R, Granjeiro JM, Ribeiro AR. Rutile nano-bio-interactions mediate dissimilar intracellular destiny in human skin cells. Nanoscale Adv 2019;1:2216-28. [PMID: 36131956 DOI: 10.1039/c9na00078j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
242 Sadeghimakki B, Zheng Y, Tarighat RS, Brunning JA, Ghosh H, Sivoththaman S. Addressing Safety Issues in Development of Quantum Dot Incorporated EVA Lamination of Photovoltaic Devices. 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) 2019. [DOI: 10.1109/pvsc40753.2019.8981321] [Reference Citation Analysis]
243 Su L, Ou Q, Cao LN, Du Q, Pui DY. A new instrument prototype to measure the geometric surface area of nanoparticles with a time resolution of 1s. Journal of Aerosol Science 2019;132:32-43. [DOI: 10.1016/j.jaerosci.2019.03.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
244 Fichera O, Alpan L, Laloy J, Tabarrant T, Uhrner U, Ye Q, Mejia J, Dogné J, Lucas S. Characterization of water-based paints containing titanium dioxide or carbon black as manufactured nanomaterials before and after atomization. Appl Nanosci 2019;9:515-28. [DOI: 10.1007/s13204-019-01030-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
245 Dos Anjos S, Mavropoulos E, Alves GG, Costa AM, de Alencar Hausen M, Spiegel CN, Longuinho MM, Mir M, Granjeiro JM, Rossi AM. Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre-osteoblast in vitro biocompatibility. J Biomed Mater Res A 2019;107:1965-76. [PMID: 31035306 DOI: 10.1002/jbm.a.36709] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
246 Abbasi F, Jamei R. Effects of Silver Nanoparticles and Silver Nitrate on Antioxidant Responses in Echium amoenum. Russ J Plant Physiol 2019;66:488-94. [DOI: 10.1134/s1021443719030026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
247 Yan N, He X, Tang BZ, Wang W. Differentiating Silver Nanoparticles and Ions in Medaka Larvae by Coupling Two Aggregation-Induced Emission Fluorophores. Environ Sci Technol 2019;53:5895-905. [DOI: 10.1021/acs.est.9b01156] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
248 Wong EM, Walby WF, Wilson DW, Tablin F, Schelegle ES. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease. Toxicol Sci 2018;163:140-51. [PMID: 29394414 DOI: 10.1093/toxsci/kfy018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
249 Majeed S, Aripin FHB, Shoeb NSB, Danish M, Ibrahim MNM, Hashim R. Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Mater Sci Eng C Mater Biol Appl 2019;102:254-63. [PMID: 31146998 DOI: 10.1016/j.msec.2019.04.041] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
250 Truong L, Zaikova T, Baldock BL, Balik-Meisner M, To K, Reif DM, Kennedy ZC, Hutchison JE, Tanguay RL. Systematic determination of the relationship between nanoparticle core diameter and toxicity for a series of structurally analogous gold nanoparticles in zebrafish. Nanotoxicology 2019;13:879-93. [PMID: 30938251 DOI: 10.1080/17435390.2019.1592259] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
251 Gualtieri AF, Lusvardi G, Zoboli A, Di Giuseppe D, Lassinantti Gualtieri M. Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environmental Research 2019;171:550-7. [DOI: 10.1016/j.envres.2019.01.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
252 Ali I, Alghamdi K, Al-wadaani FT. Advances in iridium nano catalyst preparation, characterization and applications. Journal of Molecular Liquids 2019;280:274-84. [DOI: 10.1016/j.molliq.2019.02.050] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
253 Mishra P, Dutta S, Haldar M, Dey P, Kumar D, Mukherjee A, Chandrasekaran N. Enhanced mosquitocidal efficacy of colloidal dispersion of pyrethroid nanometric emulsion with benignity towards non-target species. Ecotoxicol Environ Saf 2019;176:258-69. [PMID: 30939406 DOI: 10.1016/j.ecoenv.2019.03.096] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
254 Roth GA, Geraci CL, Stefaniak A, Murashov V, Howard J. Potential occupational hazards of additive manufacturing. J Occup Environ Hyg 2019;16:321-8. [PMID: 30908118 DOI: 10.1080/15459624.2019.1591627] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
255 Purushothaman AE, Thakur K, Kandasubramanian B. Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. International Journal of Polymeric Materials and Polymeric Biomaterials 2020;69:477-504. [DOI: 10.1080/00914037.2019.1581197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
256 Arbo MD, Altknecht LF, Cattani S, Braga WV, Peruzzi CP, Cestonaro LV, Göethel G, Durán N, Garcia SC. In vitro cardiotoxicity evaluation of graphene oxide. Mutat Res 2019;841:8-13. [PMID: 31138412 DOI: 10.1016/j.mrgentox.2019.03.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
257 Yang Y, Deng ZD. Stretchable sensors for environmental monitoring. Applied Physics Reviews 2019;6:011309. [DOI: 10.1063/1.5085013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
258 Bełkowska-wołoczko D. Introduction of fractal-like agglomerates to the algorithm for calculating surface area concentrations of PM1. Air Qual Atmos Health 2019;12:297-303. [DOI: 10.1007/s11869-018-0653-6] [Reference Citation Analysis]
259 Asadi F, Sadeghzadeh M, Jalilvand A, Nedaei K, Asadi Y, Heidari A, Dept. of Pediatrics, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran, Dept. of Pediatrics, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran, Dept. of Pathology, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran, Dept. of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran, National Nutrition of Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Dept. of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran. Effect of Molybdenum Trioxide Nanoparticles on Ovary Function in Female Rats. J Adv Med Biomed Res 2019;27:48-53. [DOI: 10.30699/jambs.27.121.48] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
260 Lopalco A, Denora N. Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy. Methods Mol Biol 2018;1800:347-65. [PMID: 29934902 DOI: 10.1007/978-1-4939-7899-1_17] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
261 Gao X, Zou H, Xu X, Zhou L, Tang S, Yuan W, Zhang M. Developing a guideline for measuring the total number concentration of engineering nanomaterials in workplaces in China. J Occup Health 2019;61:197-202. [PMID: 30790393 DOI: 10.1002/1348-9585.12044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
262 Castillo APD. Training for Workers and Safety Representatives on Manufactured Nanomaterials. New Solut 2019;29:36-52. [PMID: 30782079 DOI: 10.1177/1048291119830085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
263 Vranic S, Shimada Y, Ichihara S, Kimata M, Wu W, Tanaka T, Boland S, Tran L, Ichihara G. Toxicological Evaluation of SiO₂ Nanoparticles by Zebrafish Embryo Toxicity Test. Int J Mol Sci 2019;20:E882. [PMID: 30781642 DOI: 10.3390/ijms20040882] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
264 Logozzi M, Mizzoni D, Bocca B, Di Raimo R, Petrucci F, Caimi S, Alimonti A, Falchi M, Cappello F, Campanella C, Bavisotto CC, David S, Bucchieri F, Angelini DF, Battistini L, Fais S. Human primary macrophages scavenge AuNPs and eliminate it through exosomes. A natural shuttling for nanomaterials. Eur J Pharm Biopharm 2019;137:23-36. [PMID: 30779978 DOI: 10.1016/j.ejpb.2019.02.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
265 Shubha P, Gowda ML, Namratha K, Manjunatha H, Byrappa K. In vitro and In vivo evaluation of green-hydrothermal synthesized ZnO nanoparticles. Journal of Drug Delivery Science and Technology 2019;49:692-9. [DOI: 10.1016/j.jddst.2018.12.017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
266 Guo C, Robertson S, Weber RJM, Buckley A, Warren J, Hodgson A, Rappoport JZ, Ignatyev K, Meldrum K, Römer I, Macchiarulo S, Chipman JK, Marczylo T, Leonard MO, Gant TW, Viant MR, Smith R. Pulmonary toxicity of inhaled nano-sized cerium oxide aerosols in Sprague-Dawley rats. Nanotoxicology 2019;13:733-50. [PMID: 30704321 DOI: 10.1080/17435390.2018.1554751] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
267 Thrall BD, Kodali V, Skerrett S, Thomas DG, Frevert CW, Pounds JG, Teeguarden JG. Modulation of susceptibility to lung bacterial infection by engineered nanomaterials: In vitro and in vivo correspondence based on macrophage phagocytic function. NanoImpact 2019;14:100155. [DOI: 10.1016/j.impact.2019.100155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
268 Prasath S, Palaniappan K. Is using nanosilver mattresses/pillows safe? A review of potential health implications of silver nanoparticles on human health. Environ Geochem Health 2019;41:2295-313. [PMID: 30671691 DOI: 10.1007/s10653-019-00240-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
269 Lujan H, Criscitiello MF, Hering AS, Sayes CM. Refining In Vitro Toxicity Models: Comparing Baseline Characteristics of Lung Cell Types. Toxicological Sciences 2019;168:302-14. [DOI: 10.1093/toxsci/kfz001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
270 Arnoldussen YJ, Kringlen Ervik T, Baarnes Eriksen M, Kero I, Skaug V, Zienolddiny S. Cellular Responses of Industrially Relevant Silica Dust on Human Glial Cells In Vitro. Int J Mol Sci 2019;20:E358. [PMID: 30654492 DOI: 10.3390/ijms20020358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
271 Laiteerapong A, Reichl FX, Hickel R, Högg C. Effect of eluates from zirconia-modified glass ionomer cements on DNA double-stranded breaks in human gingival fibroblast cells. Dent Mater 2019;35:444-9. [PMID: 30642637 DOI: 10.1016/j.dental.2019.01.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
272 Bugata LSP, Pitta Venkata P, Gundu AR, Mohammed Fazlur R, Reddy UA, Kumar JM, Mekala VR, Bojja S, Mahboob M. Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J Appl Toxicol 2019;39:702-16. [PMID: 30618104 DOI: 10.1002/jat.3760] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
273 Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology 2019;17:2. [PMID: 30616599 DOI: 10.1186/s12951-018-0436-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
274 Srivastav AK, Dhiman N, Khan H, Srivastav AK, Yadav SK, Prakash J, Arjaria N, Singh D, Yadav S, Patnaik S, Kumar M. Impact of Surface-Engineered ZnO Nanoparticles on Protein Corona Configuration and Their Interactions With Biological System. J Pharm Sci 2019;108:1872-89. [PMID: 30615879 DOI: 10.1016/j.xphs.2018.12.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
275 Dhananjayan V, Ravichandran B, Sen S, Panjakumar K. Source, effect, and risk assessment of nanoparticles with special reference to occupational exposure. Nanoarchitectonics in Biomedicine 2019. [DOI: 10.1016/b978-0-12-816200-2.00004-9] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
276 Devasahayam S. Nanotechnology and Nanomedicine in Market. Characterization and Biology of Nanomaterials for Drug Delivery 2019. [DOI: 10.1016/b978-0-12-814031-4.00017-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
277 Landsiedel R, Gamo M, Hirose A. The Role of In Vivo Screening Studies in Assessing Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine 2019. [DOI: 10.1007/978-981-13-8433-2_1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
278 Dhillon A, Kumar D. New Generation Nano-Based Adsorbents for Water Purification. Nanoscale Materials in Water Purification 2019. [DOI: 10.1016/b978-0-12-813926-4.00036-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
279 Chuang H. Oxidative Stress in Environmental Lung Diseases. Oxidative Stress in Lung Diseases 2019. [DOI: 10.1007/978-981-13-8413-4_15] [Reference Citation Analysis]
280 Dhoble S, Dhage S, Pulakkat S, Patravale VB. Opportunities and Challenges in Targeted Carrier-Based Intracellular Drug Delivery: Increased Efficacy and Reduced Toxicity. Novel Drug Delivery Technologies 2019. [DOI: 10.1007/978-981-13-3642-3_12] [Reference Citation Analysis]
281 Jafarizadeh-malmiri H, Sayyar Z, Anarjan N, Berenjian A. Potential Hazards of Nanoparticles. Nanobiotechnology in Food: Concepts, Applications and Perspectives 2019. [DOI: 10.1007/978-3-030-05846-3_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
282 Kermanizadeh A, Brown DM, Møller P. Toxicological Hazard Analysis of Nanomaterials With Potential for Utilization in Consumer Goods. Nanomaterials for Food Applications. Elsevier; 2019. pp. 355-80. [DOI: 10.1016/b978-0-12-814130-4.00012-9] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
283 Cucurachi S, Blanco Rocha CF. Life-cycle assessment of engineered nanomaterials. Nanotechnology in Eco-efficient Construction 2019. [DOI: 10.1016/b978-0-08-102641-0.00031-1] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
284 Karak N. Fundamentals of Sustainable Nanostructural Materials at Bio-Nano Interface. Dynamics of Advanced Sustainable Nanomaterials and their Related Nanocomposites at the Bio-Nano Interface 2019. [DOI: 10.1016/b978-0-12-819142-2.00001-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
285 De Marchi L, Oliva M, Freitas R, Neto V, Figueira E, Chiellini F, Morelli A, Soares AM, Pretti C. Toxicity evaluation of carboxylated carbon nanotubes to the reef-forming tubeworm Ficopomatus enigmaticus (Fauvel, 1923). Marine Environmental Research 2019;143:1-9. [DOI: 10.1016/j.marenvres.2018.10.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
286 Issabayeva G, Dih JCM. Rubber industry wastewater treatment: Adsorption of zinc. INTERNATIONAL SYMPOSIUM ON GREEN AND SUSTAINABLE TECHNOLOGY (ISGST2019) 2019. [DOI: 10.1063/1.5126547] [Reference Citation Analysis]
287 Ganguly R, Singh AK, Kumar R, Gupta A, Pandey AK, Pandey AK. Nanoparticles as Modulators of Oxidative Stress. Nanotechnology in Modern Animal Biotechnology 2019. [DOI: 10.1016/b978-0-12-818823-1.00003-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
288 Book F, Ekvall MT, Persson M, Lönnerud S, Lammel T, Sturve J, Backhaus T. Ecotoxicity screening of seven different types of commercial silica nanoparticles using cellular and organismic assays: Importance of surface and size. NanoImpact 2019;13:100-11. [DOI: 10.1016/j.impact.2019.01.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
289 Que YM, Fan XQ, Lin XJ, Jiang XL, Hu PP, Tong XY, Tan QY. Size dependent anti-invasiveness of silver nanoparticles in lung cancer cells. RSC Adv 2019;9:21134-8. [DOI: 10.1039/c9ra03662h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
290 Abhilash MR, Gangadhar A, Krishnegowda J, Chikkamadaiah M, Srikantaswamy S. Hydrothermal synthesis, characterization and enhanced photocatalytic activity and toxicity studies of a rhombohedral Fe 2 O 3 nanomaterial. RSC Adv 2019;9:25158-69. [DOI: 10.1039/c9ra04978a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
291 Oberbek P, Bolek T, Chlanda A, Hirano S, Kusnieruk S, Rogowska-Tylman J, Nechyporenko G, Zinchenko V, Swieszkowski W, Puzyn T. Characterization and influence of hydroxyapatite nanopowders on living cells. Beilstein J Nanotechnol 2018;9:3079-94. [PMID: 30643706 DOI: 10.3762/bjnano.9.286] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
292 Pallotta A, Clarot I, Sobocinski J, Fattal E, Boudier A. Nanotechnologies for Medical Devices: Potentialities and Risks. ACS Appl Bio Mater 2019;2:1-13. [DOI: 10.1021/acsabm.8b00612] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
293 Hayat S, Muzammil S, Shabana, Aslam B, Siddique MH, Saqalein M, Nisar MA. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 2019;14:61-72. [PMID: 30539663 DOI: 10.2217/fmb-2018-0257] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
294 Garcia CV, Shin GH, Kim JT. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science & Technology 2018;82:21-31. [DOI: 10.1016/j.tifs.2018.09.021] [Cited by in Crossref: 124] [Cited by in F6Publishing: 131] [Article Influence: 31.0] [Reference Citation Analysis]
295 Abdelhalim MAK, Qaid HA, Al-Mohy Y, Al-Ayed MS. Effects of quercetin and arginine on the nephrotoxicity and lipid peroxidation induced by gold nanoparticles in vivo. Int J Nanomedicine 2018;13:7765-70. [PMID: 30538457 DOI: 10.2147/IJN.S183281] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
296 Bresolin B, Tang WZ, Sillanpää M. Quantum Dot Size Effect on the Frontier Molecular Orbital Energies in the Presence of Different Aquatic Environmental Ligands. Environ Process 2018;5:879-94. [DOI: 10.1007/s40710-018-0337-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
297 Vozza G, Danish M, Byrne HJ, Frías JM, Ryan SM. Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery. International Journal of Pharmaceutics 2018;551:257-69. [DOI: 10.1016/j.ijpharm.2018.08.050] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
298 Ojha PK, Kar S, Roy K, Leszczynski J. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology 2019;13:14-34. [PMID: 30354872 DOI: 10.1080/17435390.2018.1529836] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
299 Tomonaga T, Izumi H, Yoshiura Y, Myojo T, Oyabu T, Lee BW, Okada T, Marui T, Wang KY, Kubo M, Shimada M, Noguchi S, Nishida C, Yatera K, Morimoto Y. Usefulness of myeloperoxidase as a biomarker for the ranking of pulmonary toxicity of nanomaterials. Part Fibre Toxicol 2018;15:41. [PMID: 30352603 DOI: 10.1186/s12989-018-0277-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
300 Rameshkumar A, Rameshkumar A, Ananth DA, Ananth DA, Periyasamy S, Garlapati D, Sivasudha T. Role of Bioconjugated Quantum Dots in Detection and Reduction of Pathogenic Microbes. Green Metal Nanoparticles 2018. [DOI: 10.1002/9781119418900.ch19] [Reference Citation Analysis]
301 De Matteis V, Cascione M, Toma CC, Leporatti S. Morphomechanical and organelle perturbation induced by silver nanoparticle exposure. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4383-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
302 Gupta R, Xie H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J Environ Pathol Toxicol Oncol 2018;37:209-30. [PMID: 30317972 DOI: 10.1615/JEnvironPatholToxicolOncol.2018026009] [Cited by in Crossref: 202] [Cited by in F6Publishing: 205] [Article Influence: 50.5] [Reference Citation Analysis]
303 Akhtar MJ, Ahamed M, Alhadlaq HA. Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clin Chim Acta. 2018;487:186-196. [PMID: 30291894 DOI: 10.1016/j.cca.2018.10.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
304 Mohammadi P, Abbasinia M, Assari MJ, Oliaei M. The Toxicology of Silica Nanoparticles: A Review. Toxicological & Environmental Chemistry 2018;100:285-316. [DOI: 10.1080/02772248.2018.1485921] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
305 Gatto F, Bardi G. Metallic Nanoparticles: General Research Approaches to Immunological Characterization. Nanomaterials (Basel) 2018;8:E753. [PMID: 30248990 DOI: 10.3390/nano8100753] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
306 Ficociello G, De Caris MG, Trillò G, Cavallini D, Sarto MS, Uccelletti D, Mancini P. Anti-Candidal Activity and In Vitro Cytotoxicity Assessment of Graphene Nanoplatelets Decorated with Zinc Oxide Nanorods. Nanomaterials (Basel) 2018;8:E752. [PMID: 30248950 DOI: 10.3390/nano8100752] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
307 Chen Y, Wang M, Zhang T, Du E, Liu Y, Qi S, Xu Y, Zhang Z. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure. Ecotoxicol Environ Saf 2018;166:71-7. [PMID: 30248563 DOI: 10.1016/j.ecoenv.2018.09.070] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
308 Chen X, Li Z, Zhao S, Yang L, Ma Y, Liu L, Li D. Using the Gaofen-4 geostationary satellite to retrieve aerosols with high spatiotemporal resolution. J Appl Rem Sens 2018;12:1. [DOI: 10.1117/1.jrs.12.042606] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
309 Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. European Journal of Medicinal Chemistry 2018;157:1326-45. [DOI: 10.1016/j.ejmech.2018.08.076] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]
310 Kermani ZR, Haghighi SS, Hajihosseinali S, Fashami AZ, Akbaritouch T, Akhtari K, Shahpasand K, Falahati M. Aluminium oxide nanoparticles induce structural changes in tau and cytotoxicity of the neuroblastoma cell line. Int J Biol Macromol 2018;120:1140-8. [PMID: 30179693 DOI: 10.1016/j.ijbiomac.2018.08.182] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
311 De Matteis V, Rinaldi R. Toxicity Assessment in the Nanoparticle Era. Adv Exp Med Biol 2018;1048:1-19. [PMID: 29453529 DOI: 10.1007/978-3-319-72041-8_1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
312 Missaoui WN, Arnold RD, Cummings BS. Toxicological status of nanoparticles: What we know and what we don't know. Chem Biol Interact 2018;295:1-12. [PMID: 30048623 DOI: 10.1016/j.cbi.2018.07.015] [Cited by in Crossref: 59] [Cited by in F6Publishing: 65] [Article Influence: 14.8] [Reference Citation Analysis]
313 Budama-kilinc Y, Cakir-koc R, Zorlu T, Ozdemir B, Karavelioglu Z, Egil AC, Kecel-gunduz S. Assessment of Nano-toxicity and Safety Profiles of Silver Nanoparticles. Silver Nanoparticles - Fabrication, Characterization and Applications 2018. [DOI: 10.5772/intechopen.75645] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
314 Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules 2018;23:E1704. [PMID: 30002333 DOI: 10.3390/molecules23071704] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 16.0] [Reference Citation Analysis]
315 Senapati VA, Kansara K, Shanker R, Dhawan A, Kumar A. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona. Mutagenesis 2017;32:479-90. [PMID: 29048576 DOI: 10.1093/mutage/gex028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
316 Huang CH, Yeh JM, Chan WH. Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes. Environ Toxicol 2018;33:1039-49. [PMID: 29964317 DOI: 10.1002/tox.22590] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
317 Brown DM, Johnston HJ, Gaiser B, Pinna N, Caputo G, Culha M, Kelestemur S, Altunbek M, Stone V, Roy JC, Kinross JH, Fernandes TF. A cross-species and model comparison of the acute toxicity of nanoparticles used in the pigment and ink industries. NanoImpact 2018;11:20-32. [DOI: 10.1016/j.impact.2018.02.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
318 Mackevica A, Olsson M, Mines P, Heggelund L, Hansen S. Dermal transfer quantification of nanoparticles from nano-enabled surfaces. NanoImpact 2018;11:109-18. [DOI: 10.1016/j.impact.2018.06.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
319 Fröhlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol 2018;46:1091-107. [PMID: 29956556 DOI: 10.1080/21691401.2018.1479709] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 17.3] [Reference Citation Analysis]
320 Retamal Marín RR, Babick F, Lindner GG, Wiemann M, Stintz M. Effects of Sample Preparation on Particle Size Distributions of Different Types of Silica in Suspensions. Nanomaterials (Basel) 2018;8:E454. [PMID: 29933581 DOI: 10.3390/nano8070454] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
321 Oberbek P. NECID – nano exposure and contextual information database. Podstawy i Metody Oceny Środowiska Pracy 2018;34:25-34. [DOI: 10.5604/01.3001.0012.1018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
322 Schulte P, Leso V, Niang M, Iavicoli I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett 2018;298:112-24. [PMID: 29920308 DOI: 10.1016/j.toxlet.2018.06.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
323 Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018;4:2237-75. [DOI: 10.1021/acsbiomaterials.8b00068] [Cited by in Crossref: 141] [Cited by in F6Publishing: 154] [Article Influence: 35.3] [Reference Citation Analysis]
324 Chortarea S, Fytianos K, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B. Distribution of polymer-coated gold nanoparticles in a 3D lung model and indication of apoptosis after repeated exposure. Nanomedicine (Lond) 2018;13:1169-85. [PMID: 29874145 DOI: 10.2217/nnm-2017-0358] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
325 Landvik NE, Skaug V, Mohr B, Verbeek J, Zienolddiny S. Criteria for grouping of manufactured nanomaterials to facilitate hazard and risk assessment, a systematic review of expert opinions. Regulatory Toxicology and Pharmacology 2018;95:270-9. [DOI: 10.1016/j.yrtph.2018.03.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 5.8] [Reference Citation Analysis]
326 Kavosi A, Hosseini Ghale Noei S, Madani S, Khalighfard S, Khodayari S, Khodayari H, Mirzaei M, Kalhori MR, Yavarian M, Alizadeh AM, Falahati M. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 2018;8:8375. [PMID: 29849103 DOI: 10.1038/s41598-018-26790-x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 14.3] [Reference Citation Analysis]
327 Chen Y, Li J, Yuan Z, Feng J, Chen Z. Metabolic fate and subchronic biological effects of core-shell structured Fe3O4@SiO2-NH2 nanoparticles. Nanotoxicology 2018;12:621-36. [PMID: 29745273 DOI: 10.1080/17435390.2018.1471537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
328 Sarwar F, Malik RN, Chow CW, Alam K. Occupational exposure and consequent health impairments due to potential incidental nanoparticles in leather tanneries: An evidential appraisal of south Asian developing countries. Environ Int 2018;117:164-74. [PMID: 29753147 DOI: 10.1016/j.envint.2018.04.051] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
329 Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New "Smart-Foods" for Health. Foods 2018;7:E72. [PMID: 29735897 DOI: 10.3390/foods7050072] [Cited by in Crossref: 102] [Cited by in F6Publishing: 105] [Article Influence: 25.5] [Reference Citation Analysis]
330 Chuang H, Shie R, Chio C, Yuan T, Lee J, Chan C. Cluster analysis of fine particulate matter (PM2.5) emissions and its bioreactivity in the vicinity of a petrochemical complex. Environmental Pollution 2018;236:591-7. [DOI: 10.1016/j.envpol.2018.01.067] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
331 Dudefoi W, Villares A, Peyron S, Moreau C, Ropers M, Gontard N, Cathala B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innovative Food Science & Emerging Technologies 2018;46:107-21. [DOI: 10.1016/j.ifset.2017.09.007] [Cited by in Crossref: 36] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
332 Gümperlein I, Fischer E, Dietrich-Gümperlein G, Karrasch S, Nowak D, Jörres RA, Schierl R. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air 2018;28:611-23. [PMID: 29500848 DOI: 10.1111/ina.12458] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
333 Ávila DS, Roncato JF, Jacques MT. Nanotoxicology assessment in complementary/alternative models. Energ Ecol Environ 2018;3:72-80. [DOI: 10.1007/s40974-018-0086-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
334 Schulte PA, Kuempel ED, Drew NM. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol 2018;95:207-19. [PMID: 29574195 DOI: 10.1016/j.yrtph.2018.03.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
335 Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1512. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
336 Cao LN, Pui DY. A novel weighted sum method to measure particle geometric surface area in real-time. Journal of Aerosol Science 2018;117:11-23. [DOI: 10.1016/j.jaerosci.2017.12.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
337 Ventura C, Sousa-uva A, Lavinha J, Silva MJ. Conventional and novel “omics”-based approaches to the study of carbon nanotubes pulmonary toxicity: Conventional and “Omics” CNT Toxicity Studies. Environ Mol Mutagen 2018;59:334-62. [DOI: 10.1002/em.22177] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
338 Sheehan B, Murphy F, Mullins M, Furxhi I, Costa AL, Simeone FC, Mantecca P. Hazard Screening Methods for Nanomaterials: A Comparative Study. Int J Mol Sci 2018;19:E649. [PMID: 29495342 DOI: 10.3390/ijms19030649] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
339 Cardenas-benitez B, Djordjevic I, Hosseini S, Madou MJ, Martinez-chapa SO. Review—Covalent Functionalization of Carbon Nanomaterials for Biosensor Applications: An Update. J Electrochem Soc 2018;165:B103-17. [DOI: 10.1149/2.0381803jes] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
340 Abukabda AB, Stapleton PA, Nurkiewicz TR. Metal Nanomaterial Toxicity Variations Within the Vascular System. Curr Environ Health Rep 2016;3:379-91. [PMID: 27686080 DOI: 10.1007/s40572-016-0112-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
341 Li Y, Zhao J, Gao Y, Li B, Chen C. Study on the Toxicology of Nanomaterials by Synchrotron Radiation Techniques*. Synchrotron Radiation in Materials Science 2018. [DOI: 10.1002/9783527697106.ch15] [Reference Citation Analysis]
342 Engin AB, Hayes AW. The impact of immunotoxicity in evaluation of the nanomaterials safety. Toxicology Research and Application 2018;2:239784731875557. [DOI: 10.1177/2397847318755579] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
343 Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res Lett 2018;13:44. [PMID: 29417375 DOI: 10.1186/s11671-018-2457-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
344 Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res Lett 2018;13:44. [PMID: 29417375 DOI: 10.1186/s11671-018-2457-x] [Cited by in Crossref: 454] [Cited by in F6Publishing: 479] [Article Influence: 113.5] [Reference Citation Analysis]
345 Chinde S, Poornachandra Y, Panyala A, Kumari SI, Yerramsetty S, Adicherla H, Grover P. Comparative study of cyto- and genotoxic potential with mechanistic insights of tungsten oxide nano- and microparticles in lung carcinoma cells: Genotoxic potential of tungsten oxide nanoparticles in A549 cells. J Appl Toxicol 2018;38:896-913. [DOI: 10.1002/jat.3598] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
346 Laiteerapong A, Reichl F, Yang Y, Hickel R, Högg C. Induction of DNA double-strand breaks in human gingival fibroblasts by eluates from titanium dioxide modified glass ionomer cements. Dental Materials 2018;34:282-7. [DOI: 10.1016/j.dental.2017.11.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
347 Joshi GN, Gilberti RM, Knecht DA. Single Cell Analysis of Phagocytosis, Phagosome Maturation, Phagolysosomal Leakage, and Cell Death Following Exposure of Macrophages to Silica Particles. Methods Mol Biol 2017;1519:55-77. [PMID: 27815873 DOI: 10.1007/978-1-4939-6581-6_5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
348 Ma DD, Yang WX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget. 2016;7:40882-40903. [PMID: 27056889 DOI: 10.18632/oncotarget.8553] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 12.8] [Reference Citation Analysis]
349 Mala R, Ruby Celsia A. Toxicity of nanomaterials to biomedical applications— A review. Fundamental Biomaterials: Ceramics 2018. [DOI: 10.1016/b978-0-08-102203-0.00015-9] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
350 Erkekoglu P, Kocer-gumusel B. Toxicity assessment of nanopharmaceuticals. Inorganic Frameworks as Smart Nanomedicines 2018. [DOI: 10.1016/b978-0-12-813661-4.00013-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
351 Otles S, Sahyar BY. Chemical Structure and Toxicity of Nanomaterials Used in Food and Food Products. Nanomaterials: Ecotoxicity, Safety, and Public Perception 2018. [DOI: 10.1007/978-3-030-05144-0_3] [Reference Citation Analysis]
352 Madl A, Sun X, Silva R, Kadir T, Pinkerton K. Particle Toxicities. Comprehensive Toxicology. Elsevier; 2018. pp. 263-301. [DOI: 10.1016/b978-0-12-801238-3.02084-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
353 Boyes W. Safety Assessment of Nanotechnology Products. Comprehensive Toxicology 2018. [DOI: 10.1016/b978-0-12-801238-3.99179-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
354 Remya N, Mohanan P. Safety and toxicity concerns of nanosystems. Drug Delivery Nanosystems for Biomedical Applications 2018. [DOI: 10.1016/b978-0-323-50922-0.00003-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
355 Burgum MJ, Evans SJ, Jenkins GJ, Doak SH, Clift MJ. Considerations for the Human Health Implications of Nanotheranostics. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00010-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
356 Thomas TA. Consumer Safety Implications of Nanotechnology Commercialization. Nanotechnology Environmental Health and Safety 2018. [DOI: 10.1016/b978-0-12-813588-4.00014-2] [Reference Citation Analysis]
357 Chuang H, Hsiao T, Lee C, Chun-te Lin J, Chuang K, Feng P, Cheng T. Effects of physical characteristics of carbon black on metabolic regulation in mice. Environmental Pollution 2018;232:494-504. [DOI: 10.1016/j.envpol.2017.09.077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
358 Iqbal Z, Iqbal S. Nanobotany and Pharmaceuticals. Nanobotany 2018. [DOI: 10.1007/978-3-319-77119-9_7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
359 Sayes CM, Duval AL, Santamaria AB. Consumer Products Containing Nanomaterials. Nanotechnology Environmental Health and Safety 2018. [DOI: 10.1016/b978-0-12-813588-4.00015-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
360 Kluenker M, Kurch S, Tahir MN, Tremel W. Bio-nano: Theranostic at Cellular Level. Particles and Nanoparticles in Pharmaceutical Products 2018. [DOI: 10.1007/978-3-319-94174-5_3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
361 Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018;17:1612-50. [DOI: 10.1039/c8pp00112j] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 16.8] [Reference Citation Analysis]
362 Fen LB, Rashid AHA, Nordin NI, Johan MR. Applications and impacts of nanomaterials in food safety and quality. Preparation and Processing of Religious and Cultural Foods 2018. [DOI: 10.1016/b978-0-08-101892-7.00007-9] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
363 Hodson LL, Geraci CL. Managing Nanotechnology Risks in Small Business—A National Institute for Occupational Safety and Health Perspective. Nanotechnology Environmental Health and Safety 2018. [DOI: 10.1016/b978-0-12-813588-4.00011-7] [Reference Citation Analysis]
364 Yaman S, Çömelekoğlu Ü, Değirmenci E. Determination of the Effect of SiO2 Nanoparticles on Spontaneous Activity of Rat Uterus Smooth Muscles using Wavelet Scalogram Analysis. IFMBE Proceedings 2018. [DOI: 10.1007/978-981-10-5122-7_30] [Reference Citation Analysis]
365 Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun 2018;54:12787-803. [DOI: 10.1039/c8cc06473c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
366 Veranth J, Ghandehari H, Grainger D. Nanoparticles in the Lung. Comprehensive Toxicology 2018. [DOI: 10.1016/b978-0-12-801238-3.64194-6] [Reference Citation Analysis]
367 Morilla MJ, Romero EL. Nanotoxicity of Lipid-Based Nanomedicines. Nanomaterials: Ecotoxicity, Safety, and Public Perception 2018. [DOI: 10.1007/978-3-030-05144-0_8] [Reference Citation Analysis]
368 Sharma S, Mehta SK, Parmar A, Sachar S. Understanding Toxicity of Nanomaterials in the Environment: Crucial Tread for Controlling the Production, Processing, and Assessing the Risk. Nanomaterials in Chromatography 2018. [DOI: 10.1016/b978-0-12-812792-6.00018-2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
369 Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A. Nanomaterials history, classification, unique properties, production and market. Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier; 2018. pp. 341-84. [DOI: 10.1016/b978-0-323-51254-1.00012-9] [Cited by in Crossref: 36] [Article Influence: 9.0] [Reference Citation Analysis]
370 Capjak I, Zebić Avdičević M, Sikirić MD, Domazet Jurašin D, Hozić A, Pajić D, Dobrović S, Goessler W, Vinković Vrček I. Behavior of silver nanoparticles in wastewater: systematic investigation on the combined effects of surfactants and electrolytes in model systems. Environ Sci : Water Res Technol 2018;4:2146-59. [DOI: 10.1039/c8ew00317c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
371 Nafisi S, Maibach HI. Skin penetration of nanoparticles. Emerging Nanotechnologies in Immunology 2018. [DOI: 10.1016/b978-0-323-40016-9.00003-8] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
372 Kalaiselvi A, Rathna R, Nakkeeran E. Toxicological Studies and Regulatory Aspects of Nanobased Foods. Bioorganic Phase in Natural Food: An Overview 2018. [DOI: 10.1007/978-3-319-74210-6_12] [Reference Citation Analysis]
373 Clippinger AJ, Allen D, Jarabek AM, Corvaro M, Gaça M, Gehen S, Hotchkiss JA, Patlewicz G, Melbourne J, Hinderliter P, Yoon M, Huh D, Lowit A, Buckley B, Bartels M, BéruBé K, Wilson DM, Indans I, Vinken M. Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report. Toxicol In Vitro 2018;48:53-70. [PMID: 29277654 DOI: 10.1016/j.tiv.2017.12.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
374 Efeoglu E, Maher MA, Casey A, Byrne HJ. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Anal Bioanal Chem 2018;410:1631-46. [DOI: 10.1007/s00216-017-0812-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
375 Wang Z, Zhang T, Huang F, Wang Z. The reproductive and developmental toxicity of nanoparticles: A bibliometric analysis. Toxicol Ind Health 2018;34:169-77. [DOI: 10.1177/0748233717744430] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
376 Esimbekova EN, Nemtseva EV, Bezrukikh AE, Jukova GV, Lisitsa AE, Lonshakova-mukina VI, Rimatskaya NV, Sutormin OS, Kratasyuk VA. Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials. Toxicology in Vitro 2017;45:128-33. [DOI: 10.1016/j.tiv.2017.08.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
377 Siddiqui MA, Wahab R, Ahmad J, Farshori NN, Musarrat J, Al-khedhairy AA. Evaluation of cytotoxic responses of raw and functionalized multi-walled carbon nanotubes in human breast cancer (MCF-7) cells. Vacuum 2017;146:578-85. [DOI: 10.1016/j.vacuum.2017.05.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
378 Yu Y, Wu N, Yi Y, Li Y, Zhang L, Yang Q, Miao W, Ding X, Jiang L, Huang H. Dispersible MoS 2 Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomater Sci Eng 2017;3:3261-72. [DOI: 10.1021/acsbiomaterials.7b00575] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
379 Lozano O, Colaux JL, Laloy J, Alpan L, Dogné JM, Lucas S. Fast, asymmetric and nonhomogeneous clearance of SiC nanoaerosol assessed by micro-particle-induced x-ray emission. Nanomedicine (Lond) 2018;13:145-55. [PMID: 29173016 DOI: 10.2217/nnm-2017-0245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
380 Runa S, Hussey M, Payne CK. Nanoparticle-Cell Interactions: Relevance for Public Health. J Phys Chem B 2018;122:1009-16. [PMID: 29111728 DOI: 10.1021/acs.jpcb.7b08650] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
381 Netzer K, Jordakieva G, Girard AM, Budinsky AC, Pilger A, Richter L, Kataeva N, Schotter J, Godnic-Cvar J, Ertl P. Next-Generation Magnetic Nanocomposites: Cytotoxic and Genotoxic Effects of Coated and Uncoated Ferric Cobalt Boron (FeCoB) Nanoparticles In Vitro. Basic Clin Pharmacol Toxicol 2018;122:355-63. [PMID: 28990335 DOI: 10.1111/bcpt.12918] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
382 van Pomeren M, Peijnenburg WJGM, Brun NR, Vijver MG. A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. Int J Environ Res Public Health 2017;14:E1348. [PMID: 29113114 DOI: 10.3390/ijerph14111348] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
383 Sardoiwala MN, Kaundal B, Choudhury SR. Toxic impact of nanomaterials on microbes, plants and animals. Environ Chem Lett 2018;16:147-60. [DOI: 10.1007/s10311-017-0672-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
384 Arnoldussen YJ, Ervik TK, Berlinger B, Kero I, Shaposhnikov S, Zienolddiny S. Cellular responses of human astrocytoma cells to dust from the Acheson process: An in vitro study. Neurotoxicology 2018;65:241-7. [PMID: 29113734 DOI: 10.1016/j.neuro.2017.11.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
385 Nosko O, Borrajo-pelaez R, Hedström P, Olofsson U. Porosity and shape of airborne wear microparticles generated by sliding contact between a low-metallic friction material and a cast iron. Journal of Aerosol Science 2017;113:130-40. [DOI: 10.1016/j.jaerosci.2017.07.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
386 Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, Cao L, Duan J, Zhou X, Li Y, Sun Z. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ Pollut 2018;236:926-36. [PMID: 29074197 DOI: 10.1016/j.envpol.2017.10.060] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 15.8] [Reference Citation Analysis]
387 Álvarez K, Alvarez VA, Gutiérrez TJ. Biopolymer Composite Materials with Antimicrobial Effects Applied to the Food Industry. In: Thakur VK, Thakur MK, editors. Functional Biopolymers. Cham: Springer International Publishing; 2018. pp. 57-96. [DOI: 10.1007/978-3-319-66417-0_3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
388 Onoda A, Takeda K, Umezawa M. Pretreatment with N-acetyl cysteine suppresses chronic reactive astrogliosis following maternal nanoparticle exposure during gestational period. Nanotoxicology 2017;11:1012-25. [PMID: 29046125 DOI: 10.1080/17435390.2017.1388864] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
389 De Matteis V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics 2017;5:E29. [PMID: 29051461 DOI: 10.3390/toxics5040029] [Cited by in Crossref: 143] [Cited by in F6Publishing: 150] [Article Influence: 28.6] [Reference Citation Analysis]
390 Vriens H, Mertens D, Regret R, Lin P, Locquet JP, Hoet P. Case Study III: The Construction of a Nanotoxicity Database - The MOD-ENP-TOX Experience. Adv Exp Med Biol 2017;947:325-44. [PMID: 28168673 DOI: 10.1007/978-3-319-47754-1_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
391 Ribeiro A, Leite P, Falagan-lotsch P, Benetti F, Micheletti C, Budtz H, Jacobsen N, Lisboa-filho P, Rocha L, Kühnel D, Hristozov D, Granjeiro J. Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact 2017;8:59-72. [DOI: 10.1016/j.impact.2017.07.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
392 Yang F, Jiang Q, Xie W, Zhang Y. Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: Cytotoxicity and adaptive mechanisms. Chemosphere 2017;185:162-70. [DOI: 10.1016/j.chemosphere.2017.07.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
393 Liu J, Pu H, Liu S, Kan J, Jin C. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydrate Polymers 2017;174:999-1017. [DOI: 10.1016/j.carbpol.2017.07.014] [Cited by in Crossref: 154] [Cited by in F6Publishing: 159] [Article Influence: 30.8] [Reference Citation Analysis]
394 Drasler B, Sayre P, Steinhäuser KG, Petri-fink A, Rothen-rutishauser B. In vitro approaches to assess the hazard of nanomaterials. NanoImpact 2017;8:99-116. [DOI: 10.1016/j.impact.2017.08.002] [Cited by in Crossref: 132] [Cited by in F6Publishing: 137] [Article Influence: 26.4] [Reference Citation Analysis]
395 Dankers ACA, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllers-mulderij M, Tromp P, Nelissen I, Zondervan-van Den Beuken EK, Vandebriel RJ. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J Appl Toxicol 2018;38:160-71. [DOI: 10.1002/jat.3518] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
396 Sahu SC, Hayes AW. Toxicity of nanomaterials found in human environment: A literature review. Toxicology Research and Application 2017;1:239784731772635. [DOI: 10.1177/2397847317726352] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
397 Ghosh S, Saha S, Sur A. Nanoparticles: Cancer Management Applications. Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2017. [DOI: 10.1081/e-ebppc-120050073] [Reference Citation Analysis]
398 Damby DE, Horwell CJ, Larsen G, Thordarson T, Tomatis M, Fubini B, Donaldson K. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples. Environ Health 2017;16:98. [PMID: 28893249 DOI: 10.1186/s12940-017-0302-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
399 Thakur A, Reddy G. Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends. IOP Conf Ser : Mater Sci Eng 2017;225:012170. [DOI: 10.1088/1757-899x/225/1/012170] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
400 Polydorou O. Elution of Substances from Dental Composite Materials. In: Miletic V, editor. Dental Composite Materials for Direct Restorations. Cham: Springer International Publishing; 2018. pp. 179-95. [DOI: 10.1007/978-3-319-60961-4_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
401 Ude VC, Brown DM, Viale L, Kanase N, Stone V, Johnston HJ. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part Fibre Toxicol 2017;14:31. [PMID: 28835236 DOI: 10.1186/s12989-017-0211-7] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 10.4] [Reference Citation Analysis]
402 Hassan M, Gomes VG, Dehghani A, Ardekani SM. Engineering carbon quantum dots for photomediated theranostics. Nano Res 2018;11:1-41. [DOI: 10.1007/s12274-017-1616-1] [Cited by in Crossref: 164] [Cited by in F6Publishing: 130] [Article Influence: 32.8] [Reference Citation Analysis]
403 Rodríguez H. Nanotechnology and Risk Governance in the European Union: the Constitution of Safety in Highly Promoted and Contested Innovation Areas. Nanoethics 2018;12:5-26. [DOI: 10.1007/s11569-017-0296-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
404 Pięta E, Piergies N, Oćwieja M, Domin H, Paluszkiewicz C, Bielańska E, Kwiatek WM. Monitoring the Interfacial Behavior of Selective Y5 Receptor Antagonist on Colloidal Gold Nanoparticle Surfaces: Surface-Enhanced Vibrational Spectroscopy Studies. J Phys Chem C 2017;121:17276-88. [DOI: 10.1021/acs.jpcc.7b04435] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
405 Dubey S, Banerjee S, Upadhyay SN, Sharma YC. Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids 2017;240:656-77. [DOI: 10.1016/j.molliq.2017.05.107] [Cited by in Crossref: 77] [Cited by in F6Publishing: 54] [Article Influence: 15.4] [Reference Citation Analysis]
406 Protano C, Manigrasso M, Avino P, Vitali M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ Int 2017;107:190-5. [PMID: 28750224 DOI: 10.1016/j.envint.2017.07.014] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 15.4] [Reference Citation Analysis]
407 Lujan H, Sayes CM. Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the 'nano-bio' interface. Toxicol Res (Camb) 2017;6:580-94. [PMID: 30090527 DOI: 10.1039/c7tx00119c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
408 Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Materials Science and Engineering: C 2017;76:1289-304. [DOI: 10.1016/j.msec.2017.02.132] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 10.2] [Reference Citation Analysis]
409 Morrison M, Srinivasan RS, Dobbs C. Smart Ecology of Cities: Integrating Development Impacts on Ecosystem Services for Land Parcels. Smart Cities 2017. [DOI: 10.1002/9781119226444.ch8] [Reference Citation Analysis]
410 Tasat DR, Domingo MG, Bruno ME, Guglielmotti MB, Olmedo DG. Titanium Nanoparticle Size Influences Trace Concentration Levels in Skin Appendages. Toxicol Pathol 2017;45:624-32. [DOI: 10.1177/0192623317711808] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
411 Akhtar MJ, Ahamed M, Alhadlaq HA. Therapeutic targets in the selective killing of cancer cells by nanomaterials. Clinica Chimica Acta 2017;469:53-62. [DOI: 10.1016/j.cca.2017.03.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
412 Spyrogianni A, Sotiriou GA, Brambilla D, Leroux J, Pratsinis SE. The effect of settling on cytotoxicity evaluation of SiO2 nanoparticles. Journal of Aerosol Science 2017;108:56-66. [DOI: 10.1016/j.jaerosci.2017.02.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
413 Cui X, Wan B, Yang Y, Ren X, Guo LH. Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells. Sci Rep 2017;7:1518. [PMID: 28490792 DOI: 10.1038/s41598-017-01746-9] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
414 Cao W, Zhou Y, Niu Y, Zhu X, Song Y, Guo R. Quantitative Analysis of Hepatic Toxicity in Rats Induced by Inhalable Silica Nanoparticles Using Acoustic Radiation Force Imaging. J Ultrasound Med 2017;36:1829-39. [PMID: 28471058 DOI: 10.1002/jum.14219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
415 Nosko O, Olofsson U. Effective density of airborne wear particles from car brake materials. Journal of Aerosol Science 2017;107:94-106. [DOI: 10.1016/j.jaerosci.2017.02.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
416 Pięta E, Paluszkiewicz C, Oćwieja M, Kwiatek WM. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules. Applied Surface Science 2017;404:168-79. [DOI: 10.1016/j.apsusc.2017.01.270] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
417 Harik VM. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects. Toxicology Letters 2017;273:69-85. [DOI: 10.1016/j.toxlet.2017.03.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
418 Bastos V, Duarte IF, Santos C, Oliveira H. A study of the effects of citrate-coated silver nanoparticles on RAW 264.7 cells using a toolbox of cytotoxic endpoints. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-3855-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
419 Lambert S, Scherer C, Wagner M. Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integr Environ Assess Manag 2017;13:470-5. [PMID: 28440923 DOI: 10.1002/ieam.1901] [Cited by in Crossref: 128] [Cited by in F6Publishing: 128] [Article Influence: 25.6] [Reference Citation Analysis]
420 Jain AK, Senapati VA, Singh D, Dubey K, Maurya R, Pandey AK. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake. Food Chem Toxicol 2017;105:127-39. [PMID: 28400324 DOI: 10.1016/j.fct.2017.04.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
421 Zhang Z, Balasubramanian R. Effects of Cerium Oxide and Ferrocene Nanoparticles Addition As Fuel-Borne Catalysts on Diesel Engine Particulate Emissions: Environmental and Health Implications. Environ Sci Technol 2017;51:4248-58. [DOI: 10.1021/acs.est.7b00920] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
422 McKenzie Z, Kendall M, Mackay RM, Whitwell H, Elgy C, Ding P, Mahajan S, Morgan C, Griffiths M, Clark H, Madsen J. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles. Nanotoxicology 2015;9:952-62. [PMID: 25676620 DOI: 10.3109/17435390.2014.992487] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
423 Nishijima N, Hirai T, Misato K, Aoyama M, Kuroda E, Ishii KJ, Higashisaka K, Yoshioka Y, Tsutsumi Y. Human Scavenger Receptor A1-Mediated Inflammatory Response to Silica Particle Exposure Is Size Specific. Front Immunol 2017;8:379. [PMID: 28421077 DOI: 10.3389/fimmu.2017.00379] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
424 Savery LC, Viñas R, Nagy AM, Pradeep P, Merrill SJ, Hood AM, Malghan SG, Goering PL, Brown RP. Deriving a provisional tolerable intake for intravenous exposure to silver nanoparticles released from medical devices. Regulatory Toxicology and Pharmacology 2017;85:108-18. [DOI: 10.1016/j.yrtph.2017.01.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
425 Nirmala JG, Akila S, Narendhirakannan R, Chatterjee S. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Advanced Powder Technology 2017;28:1170-84. [DOI: 10.1016/j.apt.2017.02.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
426 Picchietti S, Bernini C, Stocchi V, Taddei A, Meschini R, Fausto A, Rocco L, Buonocore F, Cervia D, Scapigliati G. Engineered nanoparticles of titanium dioxide (TIO 2 ): Uptake and biological effects in a sea bass cell line. Fish & Shellfish Immunology 2017;63:53-67. [DOI: 10.1016/j.fsi.2017.01.044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
427 Porter DW, Orandle M, Mercer RR, Wu N, Zheng P, Chen BT, Holian A, Andrew M, Leonard S, Wolfarth M, Friend S, Battelli L, Hamilton RF, Hagiwara Y, Koyama T, Castranova V. Lung bioactivity of vapor grown carbon nanofibers. NanoImpact 2017;6:1-10. [DOI: 10.1016/j.impact.2017.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
428 Devasahayam S. Overview of an internationally integrated nanotechnology governance. Int J Metrol Qual Eng 2017;8:8. [DOI: 10.1051/ijmqe/2017002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
429 Nosko O, Olofsson U. Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials. Wear 2017;374-375:92-6. [DOI: 10.1016/j.wear.2017.01.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 7.6] [Reference Citation Analysis]
430 Cheng Y, Lai C, Lin K, Wang SS. Effects of metal oxide nanoparticles on the structure and activity of lysozyme. Colloids and Surfaces B: Biointerfaces 2017;151:344-53. [DOI: 10.1016/j.colsurfb.2016.12.030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
431 Mishra P, Balaji APB, Dhal PK, Suresh Kumar RS, Magdassi S, Margulis K, Tyagi BK, Mukherjee A, Chandrasekaran N. Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bull Entomol Res 2017;107:676-88. [PMID: 28245893 DOI: 10.1017/S0007485317000165] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
432 Handa T, Hirai T, Izumi N, Eto S, Tsunoda S, Nagano K, Higashisaka K, Yoshioka Y, Tsutsumi Y. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. Nanotechnology 2017;28:135101. [DOI: 10.1088/1361-6528/aa5d7c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
433 Musazzi UM, Marini V, Casiraghi A, Minghetti P. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov Today 2017;22:870-82. [PMID: 28189800 DOI: 10.1016/j.drudis.2017.01.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
434 Oksel C, Ma CY, Liu JJ, Wilkins T, Wang XZ. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity. In: Tran L, Bañares MA, Rallo R, editors. Modelling the Toxicity of Nanoparticles. Cham: Springer International Publishing; 2017. pp. 103-42. [DOI: 10.1007/978-3-319-47754-1_5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
435 Pang C, Radomyski A, Subramanian V, Nadimi-goki M, Marcomini A, Linkov I. Multi-criteria decision analysis applied to harmful algal bloom management: A case study: MCDA for Algal Blooms. Integr Environ Assess Manag 2017;13:631-9. [DOI: 10.1002/ieam.1882] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
436 Alejo T, Arruebo M, Carcelen V, Monsalvo VM, Sebastian V. Advances in draw solutes for forward osmosis: Hybrid organic-inorganic nanoparticles and conventional solutes. Chemical Engineering Journal 2017;309:738-52. [DOI: 10.1016/j.cej.2016.10.079] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
437 Hama SM, Ma N, Cordell RL, Kos GP, Wiedensohler A, Monks PS. Lung deposited surface area in Leicester urban background site/UK: Sources and contribution of new particle formation. Atmospheric Environment 2017;151:94-107. [DOI: 10.1016/j.atmosenv.2016.12.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
438 Guichard R, Belut E. Simulation of airborne nanoparticles transport, deposition and aggregation: Experimental validation of a CFD-QMOM approach. Journal of Aerosol Science 2017;104:16-31. [DOI: 10.1016/j.jaerosci.2016.11.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
439 Shatkin JA, Ong K, Ede J. Minimizing Risk: An Overview of Risk Assessment and Risk Management of Nanomaterials. Metrology and Standardization of Nanotechnology 2017. [DOI: 10.1002/9783527800308.ch24] [Reference Citation Analysis]
440 Stefaniak AB. Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials. In: Mansfield E, Kaiser DL, Fujita D, Van de Voorde M, editors. Metrology and Standardization of Nanotechnology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 151-74. [DOI: 10.1002/9783527800308.ch8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
441 Wittig A, Gehrke H, Del Favero G, Fritz EM, Al-Rawi M, Diabaté S, Weiss C, Sami H, Ogris M, Marko D. Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells. Nanomaterials (Basel) 2017;7:E18. [PMID: 28336852 DOI: 10.3390/nano7010018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
442 Jain N, Bhargava A, Pareek V, Sayeed Akhtar M, Panwar J. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology 2017;26:238-49. [DOI: 10.1007/s10646-017-1758-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
443 Ema M, Okuda H, Gamo M, Honda K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 2017;67:149-64. [PMID: 28088501 DOI: 10.1016/j.reprotox.2017.01.005] [Cited by in Crossref: 111] [Cited by in F6Publishing: 115] [Article Influence: 22.2] [Reference Citation Analysis]
444 Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int J Mol Sci 2017;18:E120. [PMID: 28075405 DOI: 10.3390/ijms18010120] [Cited by in Crossref: 433] [Cited by in F6Publishing: 465] [Article Influence: 86.6] [Reference Citation Analysis]
445 Mihalache R, Verbeek J, Graczyk H, Murashov V, van Broekhuizen P. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology 2017;11:7-19. [DOI: 10.1080/17435390.2016.1262920] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
446 Boonrungsiman S, Suchaoin W, Chetprayoon P, Viriya-Empikul N, Aueviriyavit S, Maniratanachote R. Shape and surface properties of titanate nanomaterials influence differential cellular uptake behavior and biological responses in THP-1 cells. Biochem Biophys Rep 2017;9:203-10. [PMID: 28956006 DOI: 10.1016/j.bbrep.2016.12.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
447 Rascol E, Devoisselle JM, Chopineau J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. Nanoscale 2016;8:4780-98. [PMID: 26868717 DOI: 10.1039/c5nr07954c] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 16.8] [Reference Citation Analysis]
448 Efeoglu E, Casey A, Byrne HJ. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure. Analyst 2017;142:3848-56. [DOI: 10.1039/c7an00969k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
449 Chen Z, Wu X, Hu S, Hu P, Yan H, Tang Z, Liu Y. Upconversion fluorescent and X-ray-sensitive bifunctional nanoprobes for assessing the penetrability of inorganic nanoparticles in the digestive system. Med Chem Commun 2017;8:1053-1062. [DOI: 10.1039/c6md00703a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
450 Vozza G, Khalid M, Byrne HJ, Ryan S, Frias J. Nutrition—nutrient delivery. Nutrient Delivery 2017. [DOI: 10.1016/b978-0-12-804304-2.00001-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
451 Emam AN, Mansour AS, Girgis E, Mohamed MB. Hybrid Plasmonic Nanostructures. Pharmaceutical Sciences 2017. [DOI: 10.4018/978-1-5225-1762-7.ch046] [Reference Citation Analysis]
452 Liang X, Wang H, Liu X, Grice J, Xu ZP, Roberts MS. Related Topic: Safety Evaluation of Nanomaterials. Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds 2017. [DOI: 10.1007/978-4-431-56526-0_28] [Reference Citation Analysis]
453 Nafisi S, Schäfer-korting M, Maibach HI. Measuring Silica Nanoparticles in the Skin. Agache's Measuring the Skin 2017. [DOI: 10.1007/978-3-319-32383-1_44] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
454 Chou S, Gunaseelan S, Kiellani MHH, Thottempudi VVK, Neuenschwander P, Nie H. A Review of Injectable and Implantable Biomaterials for Treatment and Repair of Soft Tissues in Wound Healing. Journal of Nanotechnology 2017;2017:1-15. [DOI: 10.1155/2017/6341710] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
455 Jain KK. Nanotoxicology. The Handbook of Nanomedicine 2017. [DOI: 10.1007/978-1-4939-6966-1_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
456 Tayel AA, Sorour NM, El-baz AF, El-tras WF. Nanometals appraisal in food preservation and food-related activities. Food Preservation. Elsevier; 2017. pp. 487-526. [DOI: 10.1016/b978-0-12-804303-5.00014-6] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
457 Mortimer G, Minchin R. Nanotoxicology and Nanovaccines. Micro and Nanotechnology in Vaccine Development 2017. [DOI: 10.1016/b978-0-323-39981-4.00020-8] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
458 Vrontaki E, Mavromoustakos T, Melagraki G, Afantitis A. Quantitative Nanostructure-Activity Relationship Models for the Risk Assessment of NanoMaterials. In: Management Association IR, editor. Pharmaceutical Sciences. IGI Global; 2017. pp. 1314-38. [DOI: 10.4018/978-1-5225-1762-7.ch050] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
459 Monteiro-riviere NA, Filon FL. Skin. Adverse Effects of Engineered Nanomaterials. Elsevier; 2017. pp. 357-80. [DOI: 10.1016/b978-0-12-809199-9.00015-x] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
460 Maskos M, Stauber R. 3.21 Characterization of Nanoparticles in Biological Environments ☆. Comprehensive Biomaterials II 2017. [DOI: 10.1016/b978-0-12-803581-8.09823-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
461 Kaundal B, Dalai S, Choudhury SR. Nanomaterial Toxicity in Microbes, Plants and Animals. Sustainable Agriculture Reviews 2017. [DOI: 10.1007/978-3-319-58496-6_9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
462 Mishra RK, Zachariah AK, Thomas S. Energy-Dispersive X-ray Spectroscopy Techniques for Nanomaterial. Microscopy Methods in Nanomaterials Characterization 2017. [DOI: 10.1016/b978-0-323-46141-2.00012-2] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
463 Bedford DAD, Bekbalaeva J, Ballard KM, Hernandez TJ. Global human trafficking seen through the lens of semantics and text analytics. Proc Assoc Info Sci Tech 2017;54:535-538. [DOI: 10.1002/pra2.2017.14505401065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
464 Rasmussen K, Rauscher H, Mech A. Physicochemical Characterization. Adverse Effects of Engineered Nanomaterials. Elsevier; 2017. pp. 15-49. [DOI: 10.1016/b978-0-12-809199-9.00002-1] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
465 Cerqueira MÂPR, Pinheiro ACB, do Carmo CVS, Duarte CMM, da Cunha MDGC, Vicente AAMDOS. Nanostructured biobased systems for nutrient and bioactive compounds delivery. Nutrient Delivery. Elsevier; 2017. pp. 43-85. [DOI: 10.1016/b978-0-12-804304-2.00002-0] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
466 Vrontaki E, Mavromoustakos T, Melagraki G, Afantitis A. Quantitative Nanostructure-Activity Relationship Models for the Risk Assessment of NanoMaterials. Materials Science and Engineering 2017. [DOI: 10.4018/978-1-5225-1798-6.ch002] [Reference Citation Analysis]
467 Efeoglu E, Maher MA, Casey A, Byrne HJ. Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH 2 ). Analyst 2017;142:3500-13. [DOI: 10.1039/c7an00461c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
468 Flora S. The Applications, Neurotoxicity, and Related Mechanism of Gold Nanoparticles. Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier; 2017. pp. 179-203. [DOI: 10.1016/b978-0-12-804598-5.00008-8] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
469 Jafari SM, Katouzian I, Akhavan S. Safety and regulatory issues of nanocapsules. Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Elsevier; 2017. pp. 545-90. [DOI: 10.1016/b978-0-12-809436-5.00015-x] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
470 Perkins BL, Naderi N. Carbon Nanostructures in Bone Tissue Engineering. Open Orthop J 2016;10:877-99. [PMID: 28217212 DOI: 10.2174/1874325001610010877] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
471 Han C, Pelaez M, Betancourt D, Choi H, Dionysiou D, Veronesi B. Linking the Physicochemical Properties of Calcined Titania Nanoparticles with Their Biocidal Activity. Inventions 2016;1:26. [DOI: 10.3390/inventions1040026] [Reference Citation Analysis]
472 Mattsson MO, Simkó M. The changing face of nanomaterials: Risk assessment challenges along the value chain. Regul Toxicol Pharmacol 2017;84:105-15. [PMID: 27998719 DOI: 10.1016/j.yrtph.2016.12.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
473 Boyles MS, Powell LG, Kermanizadeh A, Johnston HJ, Rothen-rutishauser B, Stone V, Clift MJ. An Overview of Nanoparticle Biocompatibility for Their Use in Nanomedicine. Pharmaceutical Nanotechnology: Innovation and Production 2016. [DOI: 10.1002/9783527800681.ch18] [Reference Citation Analysis]
474 Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. Assessment of Metal Nanoparticle Agglomeration, Uptake, and Interaction Using High-Illuminating System. Int J Toxicol 2007;26:135-41. [DOI: 10.1080/10915810701226248] [Cited by in Crossref: 102] [Cited by in F6Publishing: 84] [Article Influence: 17.0] [Reference Citation Analysis]
475 Friehs E, Alsalka Y, Jonczyk R, Lavrentieva A, Jochums A, Walter J, Stahl F, Scheper T, Bahnemann D. Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2016;29:1-28. [DOI: 10.1016/j.jphotochemrev.2016.09.001] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 11.3] [Reference Citation Analysis]
476 Chin S, Baughman RH, Dalton AB, Dieckmann GR, Draper RK, Mikoryak C, Musselman IH, Poenitzsch VZ, Xie H, Pantano P. Amphiphilic Helical Peptide Enhances the Uptake of Single-Walled Carbon Nanotubes by Living Cells. Exp Biol Med (Maywood) 2007;232:1236-44. [DOI: 10.3181/0612-rm-284] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
477 Malhaire H, Gimel JC, Roger E, Benoît JP, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev 2016;106:320-36. [PMID: 27058155 DOI: 10.1016/j.addr.2016.03.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 11.0] [Reference Citation Analysis]
478 Rejman J, Nazarenus M, Jimenez de Aberasturi D, Said AH, Feliu N, Parak WJ. Some thoughts about the intracellular location of nanoparticles and the resulting consequences. Journal of Colloid and Interface Science 2016;482:260-6. [DOI: 10.1016/j.jcis.2016.07.065] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
479 Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zítka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R. Transport phenomena of nanoparticles in plants and animals/humans. Environmental Research 2016;151:233-43. [DOI: 10.1016/j.envres.2016.07.018] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
480 Sportelli MC, Picca RA, Cioffi N. Recent advances in the synthesis and characterization of nano-antimicrobials. TrAC Trends in Analytical Chemistry 2016;84:131-8. [DOI: 10.1016/j.trac.2016.05.002] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 7.7] [Reference Citation Analysis]
481 Kolosova II, Dnepropetrovsk Medical Academy of the Ministry of Health of Ukraine, Maior VV, Shatorna VF, Dnepropetrovsk Medical Academy of the Ministry of Health of Ukraine, Dnepropetrovsk Medical Academy of the Ministry of Health of Ukraine. Investigation Of Lead Acetate Embryotoxicity In Combination With Gold, Silver And Iron Citrates At Different Stages Pregnancy Of Rats. Naukovì dopovìdì Nacìonalʹnogo unìversitetu bìoresursiv ì prirodokoristuvannâ Ukraïni 2016. [DOI: 10.31548/dopovidi2016.07.004] [Reference Citation Analysis]
482 Richard S, Saric A, Boucher M, Slomianny C, Geffroy F, Mériaux S, Lalatonne Y, Petit PX, Motte L. Antioxidative Theranostic Iron Oxide Nanoparticles toward Brain Tumors Imaging and ROS Production. ACS Chem Biol 2016;11:2812-9. [PMID: 27513597 DOI: 10.1021/acschembio.6b00558] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
483 Kuku G, Saricam M, Akhatova F, Danilushkina A, Fakhrullin R, Culha M. Surface-Enhanced Raman Scattering to Evaluate Nanomaterial Cytotoxicity on Living Cells. Anal Chem 2016;88:9813-20. [PMID: 27611981 DOI: 10.1021/acs.analchem.6b02917] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
484 Secondo LE, Liu NJ, Lewinski NA. Methodological considerations when conducting in vitro , air–liquid interface exposures to engineered nanoparticle aerosols. Critical Reviews in Toxicology 2016;47:225-62. [DOI: 10.1080/10408444.2016.1223015] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
485 He X. In VivoNanotoxicity Assays in Animal Models. Toxicology of Nanomaterials 2016. [DOI: 10.1002/9783527689125.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
486 Hulla JE, Sahu SC, Hayes AW. Nanotechnology: History and future. Hum Exp Toxicol 2015;34:1318-21. [PMID: 26614822 DOI: 10.1177/0960327115603588] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 17.5] [Reference Citation Analysis]
487 Zeinalov OА, Kombarova SP, Bagrov DV, Petrosyan MA, Tolibova GH, Feofanov AV, Shaitan KV. About the influence of metal oxide nanoparticles on living organisms physiology. Rev Clin Pharm Drug Ther 2016;14:24-33. [DOI: 10.17816/rcf14324-33] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
488 Zhang C, Wang J, Tan L, Chen X. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum : Attention to the accumulation of intracellular Zn. Aquatic Toxicology 2016;178:158-64. [DOI: 10.1016/j.aquatox.2016.07.020] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 11.0] [Reference Citation Analysis]
489 Hedberg Y, Pradhan S, Cappellini F, Karlsson M, Blomberg E, Karlsson H, Odnevall Wallinder I, Hedberg J. Electrochemical surface oxide characteristics of metal nanoparticles (Mn, Cu and Al) and the relation to toxicity. Electrochimica Acta 2016;212:360-71. [DOI: 10.1016/j.electacta.2016.07.017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
490 Azarudeen RMST, Govindarajan M, Amsath A, Muthukumaran U, Benelli G. Single-Step Biofabrication of Silver Nanocrystals Using Naregamia alata: A Cost Effective and Eco-Friendly Control Tool in the Fight Against Malaria, Zika Virus and St. Louis Encephalitis Mosquito Vectors. J Clust Sci 2017;28:179-203. [DOI: 10.1007/s10876-016-1067-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
491 Gashti MP, Alimohammadi F, Kiumarsi A, Nogala W, Xu Z, Eldridge WJ, Wax A. Microscopy of Nanomaterials. Nanocomposite Materials 2016. [DOI: 10.1201/9781315372310-6] [Reference Citation Analysis]
492 Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RC, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017;47:1-58. [PMID: 27537422 DOI: 10.1080/10408444.2016.1206061] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 10.8] [Reference Citation Analysis]
493 Multilayer Nanocapsules as a Vehicle for Release of Bioactive Compounds. Innovative Processing Technologies for Foods with Bioactive Compounds 2016. [DOI: 10.1201/9781315371276-8] [Reference Citation Analysis]
494 Shatkin JA, Ong KJ, Beaudrie C, Clippinger AJ, Hendren CO, Haber LT, Hill M, Holden P, Kennedy AJ, Kim B, Macdonell M, Powers CM, Sharma M, Sheremeta L, Stone V, Sultan Y, Turley A, White RH. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement: Advancing Risk Analysis for Nanoscale Materials. Risk Analysis 2016;36:1520-37. [DOI: 10.1111/risa.12683] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
495 Emam AN, Mansour AS, Girgis E, Mohamed MB. Hybrid Plasmonic Nanostructures. Applying Nanotechnology for Environmental Sustainability. [DOI: 10.4018/978-1-5225-0585-3.ch012] [Reference Citation Analysis]
496 Govindarajan M, Khater HF, Panneerselvam C, Benelli G. One-pot fabrication of silver nanocrystals using Nicandra physalodes : A novel route for mosquito vector control with moderate toxicity on non-target water bugs. Research in Veterinary Science 2016;107:95-101. [DOI: 10.1016/j.rvsc.2016.05.017] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 12.0] [Reference Citation Analysis]
497 Herranz-Blanco B, Shahbazi MA, Correia AR, Balasubramanian V, Kohout T, Hirvonen J, Santos HA. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Adv Healthc Mater 2016;5:1904-16. [PMID: 27245691 DOI: 10.1002/adhm.201600160] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
498 Kaya H, Duysak M, Akbulut M, Yılmaz S, Gürkan M, Arslan Z, Demir V, Ateş M. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). Environ Toxicol 2017;32:1213-25. [PMID: 27464841 DOI: 10.1002/tox.22318] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
499 Akyıl D, Eren Y, Konuk M, Tepekozcan A, Sağlam E. Determination of mutagenicity and genotoxicity of indium tin oxide nanoparticles using the Ames test and micronucleus assay. Toxicol Ind Health 2016;32:1720-8. [DOI: 10.1177/0748233715579804] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
500 Noël A, Truchon G, Cloutier Y, Charbonneau M, Maghni K, Tardif R. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Toxicol Ind Health 2017;33:351-64. [DOI: 10.1177/0748233716651560] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
501 Miettinen M, Torvela T, Leskinen JT. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel. Ann Occup Hyg 2016;60:960-8. [PMID: 27390355 DOI: 10.1093/annhyg/mew039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
502 Das J, Choi Y, Song H, Kim J. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016;22:588-619. [DOI: 10.1093/humupd/dmw020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
503 Zou Y, Li Q, Jiang L, Guo C, Li Y, Yu Y, Li Y, Duan J, Sun Z. DNA Hypermethylation of CREB3L1 and Bcl-2 Associated with the Mitochondrial-Mediated Apoptosis via PI3K/Akt Pathway in Human BEAS-2B Cells Exposure to Silica Nanoparticles. PLoS One 2016;11:e0158475. [PMID: 27362941 DOI: 10.1371/journal.pone.0158475] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
504 Choi K. Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility. Journal of Korean Society of Occupational and Environmental Hygiene 2016;26:119-138. [DOI: 10.15269/jksoeh.2016.26.2.119] [Reference Citation Analysis]
505 Hosseinpour M, Azimirad V, Alimohammadi M, Shahabi P, Sadighi M, Ghamkhari Nejad G. The cardiac effects of carbon nanotubes in rat. Bioimpacts 2016;6:79-84. [PMID: 27525224 DOI: 10.15171/bi.2016.11] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
506 Fröhlich E, Roblegg E. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch Toxicol 2016;90:2297-314. [PMID: 27342244 DOI: 10.1007/s00204-016-1765-0] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 8.3] [Reference Citation Analysis]
507 Mao B, Tsai J, Chen C, Yan S, Wang Y. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016;10:1021-40. [DOI: 10.1080/17435390.2016.1189614] [Cited by in Crossref: 151] [Cited by in F6Publishing: 144] [Article Influence: 25.2] [Reference Citation Analysis]
508 Avino P, Protano C, Vitali M, Manigrasso M. Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract. Environ Pollut 2016;216:530-7. [PMID: 27325547 DOI: 10.1016/j.envpol.2016.06.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
509 Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, Kim SH, Heo JD, Kim JC. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine 2016;11:2883-900. [PMID: 27366066 DOI: 10.2147/IJN.S106346] [Cited by in Crossref: 23] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
510 Schulte PA, Roth G, Hodson LL, Murashov V, Hoover MD, Zumwalde R, Kuempel ED, Geraci CL, Stefaniak AB, Castranova V, Howard J. Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015. J Nanopart Res 2016;18:159. [PMID: 27594804 DOI: 10.1007/s11051-016-3459-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
511 Rambanapasi C, Zeevaart JR, Buntting H, Bester C, Kotze D, Hayeshi R, Grobler A. Bioaccumulation and Subchronic Toxicity of 14 nm Gold Nanoparticles in Rats. Molecules 2016;21:E763. [PMID: 27294904 DOI: 10.3390/molecules21060763] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 6.2] [Reference Citation Analysis]
512 Dugas T, Lomnicki S, Cormier S, Dellinger B, Reams M. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals. IJERPH 2016;13:573. [DOI: 10.3390/ijerph13060573] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
513 Makarenko N, Rudnytska L, Bondar V. Peculiarities of ecotoxicological assessment nanoagrochemicals used in crop production. Annals of Agrarian Science 2016;14:35-41. [DOI: 10.1016/j.aasci.2016.03.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
514 Ansari MA, Shukla AK, Oves M, Khan HM. Electron microscopic ultrastructural study on the toxicological effects of AgNPs on the liver, kidney and spleen tissues of albino mice. Environmental Toxicology and Pharmacology 2016;44:30-43. [DOI: 10.1016/j.etap.2016.04.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
515 Li Q, Hu H, Jiang L, Zou Y, Duan J, Sun Z. Cytotoxicity and autophagy dysfunction induced by different sizes of silica particles in human bronchial epithelial BEAS-2B cells. Toxicol Res (Camb) 2016;5:1216-28. [PMID: 30090427 DOI: 10.1039/c6tx00100a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
516 Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Critical Reviews in Toxicology 2016;46:490-560. [DOI: 10.1080/10408444.2016.1181047] [Cited by in Crossref: 65] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
517 Chiang HM, Cho KY, Zeng LX, Chiang HL. Characteristics of Carbon Material Formation on SBA-15 and Ni-SBA-15 Templates by Acetylene Decomposition and Their Bioactivity Effects. Materials (Basel) 2016;9:E350. [PMID: 28773474 DOI: 10.3390/ma9050350] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
518 Dunpall R, Revaprasadu N. An in vitro and in vivo bio-interaction responses and biosafety evaluation of novel Au-ZnTe core-shell nanoparticles. Toxicol Res (Camb) 2016;5:1078-89. [PMID: 30090413 DOI: 10.1039/c6tx00054a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
519 Ji Z. Use of compositional and combinatorial nanomaterial libraries for biological studies. Science Bulletin 2016;61:755-71. [DOI: 10.1007/s11434-016-1069-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
520 Wang L, Chen C. Pathophysiologic mechanisms of biomedical nanomaterials. Toxicology and Applied Pharmacology 2016;299:30-40. [DOI: 10.1016/j.taap.2016.01.022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
521 Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food and Chemical Toxicology 2016;91:42-57. [DOI: 10.1016/j.fct.2016.03.003] [Cited by in Crossref: 88] [Cited by in F6Publishing: 69] [Article Influence: 14.7] [Reference Citation Analysis]
522 Park CM, Chu KH, Heo J, Her N, Jang M, Son A, Yoon Y. Environmental behavior of engineered nanomaterials in porous media: a review. Journal of Hazardous Materials 2016;309:133-50. [DOI: 10.1016/j.jhazmat.2016.02.006] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 12.7] [Reference Citation Analysis]
523 Clippinger AJ, Ahluwalia A, Allen D, Bonner JC, Casey W, Castranova V, David RM, Halappanavar S, Hotchkiss JA, Jarabek AM, Maier M, Polk W, Rothen-Rutishauser B, Sayes CM, Sayre P, Sharma M, Stone V. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials. Arch Toxicol 2016;90:1769-83. [PMID: 27121469 DOI: 10.1007/s00204-016-1717-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
524 Thakur PS, Khan AM, Talegaonkar S, Ahmad FJ, Iqbal Z. Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016;142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Reference Citation Analysis]
525 Martirosyan A, Grintzalis K, Polet M, Laloux L, Schneider YJ. Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Toxicol Lett. 2016;253:36-45. [PMID: 27113704 DOI: 10.1016/j.toxlet.2016.04.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 8.5] [Reference Citation Analysis]
526 Castagnola E, Maggiolini E, Ceseracciu L, Ciarpella F, Zucchini E, De Faveri S, Fadiga L, Ricci D. pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Front Neurosci 2016;10:151. [PMID: 27147944 DOI: 10.3389/fnins.2016.00151] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
527 Tada-Oikawa S, Ichihara G, Fukatsu H, Shimanuki Y, Tanaka N, Watanabe E, Suzuki Y, Murakami M, Izuoka K, Chang J, Wu W, Yamada Y, Ichihara S. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells. Int J Mol Sci 2016;17:576. [PMID: 27092499 DOI: 10.3390/ijms17040576] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
528 Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat-Jeanneret L, Marcomini A, Huk A, Dusinska M, Fjellsbø LM, Marano F, Boland S. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2015;9 Suppl 1:13-24. [PMID: 23889211 DOI: 10.3109/17435390.2013.829590] [Cited by in Crossref: 161] [Cited by in F6Publishing: 176] [Article Influence: 26.8] [Reference Citation Analysis]
529 Liu Y, Chen C. Effect on Reproductive System of Carbon Nanomaterials. Biomedical Applications and Toxicology of Carbon Nanomaterials 2016. [DOI: 10.1002/9783527692866.ch11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
530 Strickland JD, Lefew WR, Crooks J, Hall D, Ortenzio JN, Dreher K, Shafer TJ. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses. Toxicology 2016;355-356:1-8. [DOI: 10.1016/j.tox.2016.05.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
531 Wani WA, Prashar S, Shreaz S, Gómez-ruiz S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coordination Chemistry Reviews 2016;312:67-98. [DOI: 10.1016/j.ccr.2016.01.001] [Cited by in Crossref: 145] [Cited by in F6Publishing: 149] [Article Influence: 24.2] [Reference Citation Analysis]
532 Mahoney S, Najera M, Bai Q, Burton EA, Veser G. The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties. PLoS One 2016;11:e0152010. [PMID: 27031643 DOI: 10.1371/journal.pone.0152010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
533 Amiri G, Valipoor A, Parivar K, Modaresi M, Noori A, Gharamaleki H, Taheri J, Kazemi A. Comparison of Toxicity of CdSe: ZnS Quantum Dots on Male Reproductive System in Different Stages of Development in Mice. Int J Fertil Steril 2016;9:512-20. [PMID: 26985339 DOI: 10.22074/ijfs.2015.4610] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
534 Wohlleben W, Driessen MD, Raesch S, Schaefer UF, Schulze C, Vacano Bv, Vennemann A, Wiemann M, Ruge CA, Platsch H, Mues S, Ossig R, Tomm JM, Schnekenburger J, Kuhlbusch TA, Luch A, Lehr CM, Haase A. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity. Nanotoxicology 2016;10:970-80. [PMID: 26984182 DOI: 10.3109/17435390.2016.1155671] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 8.0] [Reference Citation Analysis]
535 Herrmann IK, Beck-Schimmer B, Schumacher CM, Gschwind S, Kaech A, Ziegler U, Clavien PA, Günther D, Stark WJ, Graf R, Schlegel AA. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios. Nanomedicine (Lond) 2016;11:783-96. [PMID: 26979124 DOI: 10.2217/nnm.16.22] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
536 Lee S, Wang T, Hong J, Cheng T, Lin C. NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung. Nanotoxicology 2016;10:924-34. [DOI: 10.3109/17435390.2016.1144825] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
537 Steer B, Gorbunov B, Price MC, Podoleanu A. Raman spectroscopic identification of size-selected airborne particles for quantitative exposure assessment. Meas Sci Technol 2016;27:045801. [DOI: 10.1088/0957-0233/27/4/045801] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
538 Dilger M, Orasche J, Zimmermann R, Paur H, Diabaté S, Weiss C. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch Toxicol 2016;90:3029-44. [DOI: 10.1007/s00204-016-1659-1] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 11.8] [Reference Citation Analysis]
539 Ema M, Gamo M, Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regulatory Toxicology and Pharmacology 2016;74:42-63. [DOI: 10.1016/j.yrtph.2015.11.015] [Cited by in Crossref: 82] [Cited by in F6Publishing: 87] [Article Influence: 13.7] [Reference Citation Analysis]
540 Boholm M, Arvidsson R. A Definition Framework for the Terms Nanomaterial and Nanoparticle. Nanoethics 2016;10:25-40. [DOI: 10.1007/s11569-015-0249-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
541 Silva AH, Locatelli C, Filippin-Monteiro FB, Martin P, Liptrott NJ, Zanetti-Ramos BG, Benetti LC, Nazari EM, Albuquerque CA, Pasa AA, Owen A, Creczynski-Pasa TB. Toxicity and inflammatory response in Swiss albino mice after intraperitoneal and oral administration of polyurethane nanoparticles. Toxicol Lett 2016;246:17-27. [PMID: 26820842 DOI: 10.1016/j.toxlet.2016.01.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
542 Leonida MD, Kumar I. Nanotoxicity and the Skin. SpringerBriefs in Bioengineering 2016. [DOI: 10.1007/978-3-319-39168-7_14] [Reference Citation Analysis]
543 K. Comfort K; Department of Chemical and Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA. . AIMS Bioengineering 2016;3:230-44. [DOI: 10.3934/bioeng.2016.3.230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
544 Urban DA, Rodriguez-lorenzo L, Balog S, Kinnear C, Rothen-rutishauser B, Petri-fink A. Plasmonic nanoparticles and their characterization in physiological fluids. Colloids and Surfaces B: Biointerfaces 2016;137:39-49. [DOI: 10.1016/j.colsurfb.2015.05.053] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
545 Torrens F, Castellano G. Cluster Origin of Solvation Features of C-Nanostructures in Organic Solvents. Advances in Medical Technologies and Clinical Practice 2016. [DOI: 10.4018/978-1-5225-0248-7.ch008] [Reference Citation Analysis]
546 Liu W, Webster T. Toxicity and biocompatibility properties of nanocomposites for musculoskeletal tissue regeneration. Nanocomposites for Musculoskeletal Tissue Regeneration 2016. [DOI: 10.1016/b978-1-78242-452-9.00004-2] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
547 Charitidis CA, Trompeta A, Vlachou N, Markakis V. Risk management of engineered nanomaterials in EU-The case of carbon nanotubes and carbon nanofibers: A review. Trans Mat Res Soc Japan 2016;41:1-11. [DOI: 10.14723/tmrsj.41.1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
548 Jain P, Srivastava S, Baroliya I, Gupta N. Structure and particle size analysis of LaFeO3 nanoparticles. AIP Conference Proceedings 2016. [DOI: 10.1063/1.4946710] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
549 Chevallet M, Gallet B, Fuchs A, Jouneau PH, Um K, Mintz E, Michaud-soret I. Metal homeostasis disruption and mitochondrial dysfunction in hepatocytes exposed to sub-toxic doses of zinc oxide nanoparticles. Nanoscale 2016;8:18495-506. [DOI: 10.1039/c6nr05306h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
550 Govindarajan M, Benelli G. One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 2016;6:59021-9. [DOI: 10.1039/c6ra10228j] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 10.3] [Reference Citation Analysis]
551 Mikolajczyk A, Malankowska A, Nowaczyk G, Gajewicz A, Hirano S, Jurga S, Zaleska-medynska A, Puzyn T. Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO 2 nanoparticles. Environ Sci : Nano 2016;3:1425-35. [DOI: 10.1039/c6en00232c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
552 Cheng Z, Zhang Y, Han Z, Cui L, Kang L, Zhang F. A novel preparation of anti-layered poly(vinylalcohol)–polyacrylonitrile (PVA/PAN) membrane for air filtration by electrospinning. RSC Adv 2016;6:85545-50. [DOI: 10.1039/c6ra13971j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
553 Wu X, Lu Z. Nanoparticle–Tissue Interaction. Methods in Pharmacology and Toxicology 2016. [DOI: 10.1007/978-1-4939-3121-7_10] [Reference Citation Analysis]
554 Schrand AM. Perspectives on Carbon Nanomaterials in Medicine Based upon Physicochemical Properties: Nanotubes, Nanodiamonds, and Carbon Nanobombs. Springer Series in Biomaterials Science and Engineering 2016. [DOI: 10.1007/978-3-319-22861-7_1] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
555 Beaudrie CE, Kandlikar M, Ramachandran G. Using Expert Judgment for Risk Assessment. Assessing Nanoparticle Risks to Human Health 2016. [DOI: 10.1016/b978-0-323-35323-6.00005-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
556 Kanno S. NLRP3 Inflammasome-Mediated Toxicity of Fibrous Particles. Current Topics in Environmental Health and Preventive Medicine 2016. [DOI: 10.1007/978-4-431-55732-6_2] [Reference Citation Analysis]
557 Bhatia S. Nanotechnology and Its Drug Delivery Applications. Natural Polymer Drug Delivery Systems 2016. [DOI: 10.1007/978-3-319-41129-3_1] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
558 Singh AK. Principles of Nanotoxicology. Engineered Nanoparticles. Elsevier; 2016. pp. 171-227. [DOI: 10.1016/b978-0-12-801406-6.00005-4] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
559 Kim I, Lee B, Kim H, Kim K, Kim SD, Hwang Y. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 2016;143:99-105. [DOI: 10.1016/j.chemosphere.2015.06.046] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 8.0] [Reference Citation Analysis]
560 Chadha N, Chaturvedi S, Lal S, Mishra AK, Pulicharla R, Cledon M, Brar SK, Surampalli RY. Engineered Nanoparticles Associated Metabolomics. J Hazard Toxic Radioact Waste 2016;20. [DOI: 10.1061/(asce)hz.2153-5515.0000283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
561 Maiti S, Fournier I, Brar SK, Cledon M, Surampalli RY. Nanomaterials in Surface Water and Sediments: Fate and Analytical Challenges. J Hazard Toxic Radioact Waste 2016;20:B4014004. [DOI: 10.1061/(asce)hz.2153-5515.0000264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
562 Irache JM, Martín-arbella N, Ojer P, Azqueta A, Lopez de Cerain A. Toxicological Aspects of Polymer Nanoparticles. Polymer Nanoparticles for Nanomedicines 2016. [DOI: 10.1007/978-3-319-41421-8_16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
563 Egorova EM, Kaba SI, Kubatiev AA. Toxicity of silver nanoparticles obtained by bioreduction as studied on malignant cells. Nanobiomaterials in Cancer Therapy. Elsevier; 2016. pp. 505-42. [DOI: 10.1016/b978-0-323-42863-7.00015-3] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
564 Díaz-torres R, López-arellano R, Escobar-chávez JJ, García-garcía E, Domínguez-delgado CL, Ramírez-noguera P. Effect of Size and Functionalization of Pharmaceutical Nanoparticles and Their Interaction with Biological Systems. Handbook of Nanoparticles 2016. [DOI: 10.1007/978-3-319-15338-4_46] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
565 Benson H, Mohammed Y, Grice J, Roberts M. Formulation Effects on Topical Nanoparticle Penetration. Nanoscience in Dermatology 2016. [DOI: 10.1016/b978-0-12-802926-8.00009-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
566 Gokhale S. Effects of Engineered Nanomaterials Released into the Atmosphere. J Hazard Toxic Radioact Waste 2016;20. [DOI: 10.1061/(asce)hz.2153-5515.0000301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
567 Palkhiwala S, Bakshi SR. Engineered nanoparticles: Revisiting safety concerns in light of ethno medicine. Ayu 2014;35:237-42. [PMID: 26664232 DOI: 10.4103/0974-8520.153785] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
568 Oberdörster G, Castranova V, Asgharian B, Sayre P. Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry. J Toxicol Environ Health B Crit Rev 2015;18:121-212. [PMID: 26361791 DOI: 10.1080/10937404.2015.1051611] [Cited by in Crossref: 116] [Cited by in F6Publishing: 102] [Article Influence: 16.6] [Reference Citation Analysis]
569 Ghosh S, Saha S, Sur A. Nanoparticles: Cancer Management Applications. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2015. [DOI: 10.1081/e-ebpp-120050073] [Reference Citation Analysis]
570 Maser E, Schulz M, Sauer UG, Wiemann M, Ma-hock L, Wohlleben W, Hartwig A, Landsiedel R. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2015;794:57-74. [DOI: 10.1016/j.mrgentox.2015.10.005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
571 Flaherty NL, Chandrasekaran A, Peña MDPS, Roth GA, Brenner SA, Begley TJ, Melendez JA. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives. Toxicology Letters 2015;239:205-15. [DOI: 10.1016/j.toxlet.2015.09.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
572 Strickland JD, Lefew WR, Crooks J, Hall D, Ortenzio JN, Dreher K, Shafer TJ. In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. Nanotoxicology 2015;10:619-28. [DOI: 10.3109/17435390.2015.1107142] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
573 Anderlohr C, Schaber K. Direct Transfer of Gas-Borne Nanoparticles into Liquid Suspensions by Means of a Wet Electrostatic Precipitator. Aerosol Science and Technology 2015;49:1281-90. [DOI: 10.1080/02786826.2015.1120857] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
574 Zeinali Sehrig F, Majidi S, Asvadi S, Hsanzadeh A, Rasta SH, Emamverdy M, Akbarzadeh J, Jahangiri S, Farahkhiz S, Akbarzadeh A. An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging. Artificial Cells, Nanomedicine, and Biotechnology 2015;44:1583-8. [DOI: 10.3109/21691401.2015.1101001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
575 Tiwari B, Zhang D, Winslow D, Lee CH, Hao B, Yap YK. A Simple and Universal Technique To Extract One- and Two-Dimensional Nanomaterials from Contaminated Water. ACS Appl Mater Interfaces 2015;7:26108-16. [PMID: 26551578 DOI: 10.1021/acsami.5b07542] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
576 Gmoshinski IV, Khotimchenko SA. Nanomaterials in consumer's goods: the problems of risk assessment. IOP Conf Ser : Mater Sci Eng 2015;98:012009. [DOI: 10.1088/1757-899x/98/1/012009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
577 Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, Riebeling C, Ossig R, Wiemann M, Schnekenburger J, Kuhlbusch TA, Renard B, Luch A, Haase A. Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol 2015;12:36. [PMID: 26525058 DOI: 10.1186/s12989-015-0108-2] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
578 Stapleton PA. Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. J Physiol 2016;594:2161-73. [PMID: 26332609 DOI: 10.1113/JP270581] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
579 Best M, Phillips G, Fowler C, Rowland J, Elsom J. Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro. Toxicol In Vitro 2015;30:402-11. [PMID: 26432707 DOI: 10.1016/j.tiv.2015.09.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
580 Brown DM, Varet J, Johnston H, Chrystie A, Stone V. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells. J Nanopart Res 2015;17. [DOI: 10.1007/s11051-015-3210-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
581 Mendoza-gonzalez NY, Avalos-ramirez A, Quevedo IR. Responsible Nanotechnology. Nanomaterials in the Environment 2015. [DOI: 10.1061/9780784414088.ch22] [Reference Citation Analysis]
582 Stapleton PA, Abukabda AB, Hardy SL, Nurkiewicz TR. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. Am J Physiol Heart Circ Physiol 2015;309:H1609-20. [PMID: 26386111 DOI: 10.1152/ajpheart.00546.2015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
583 Ema M, Hougaard KS, Kishimoto A, Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 2015;10:391-412. [DOI: 10.3109/17435390.2015.1073811] [Cited by in Crossref: 127] [Cited by in F6Publishing: 129] [Article Influence: 18.1] [Reference Citation Analysis]
584 Periasamy VS, Athinarayanan J, Alfawaz MA, Alshatwi AA. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes. Chemosphere 2016;144:275-84. [PMID: 26364217 DOI: 10.1016/j.chemosphere.2015.08.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
585 Chen B, Stein AF, Castell N, Gonzalez-Castanedo Y, Sanchez de la Campa AM, de la Rosa JD. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Sci Total Environ 2016;539:17-25. [PMID: 26352643 DOI: 10.1016/j.scitotenv.2015.08.117] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
586 Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015;10:487-510. [PMID: 26640510 DOI: 10.1016/j.nantod.2015.06.006] [Cited by in Crossref: 697] [Cited by in F6Publishing: 731] [Article Influence: 99.6] [Reference Citation Analysis]
587 Breitner EK, Hussain SM, Comfort KK. The role of biological fluid and dynamic flow in the behavior and cellular interactions of gold nanoparticles. J Nanobiotechnology 2015;13:56. [PMID: 26341004 DOI: 10.1186/s12951-015-0117-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
588 Xia D, Chen Y, Chen C, Wang Y, Li X, He H, Gu H. Comparative Study of Biosafety, DNA, and Chromosome Damage of Different-Materials-Modified Fe3O4 in Rats. Appl Biochem Biotechnol 2015;177:1069-82. [DOI: 10.1007/s12010-015-1797-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
589 van der Horst C, Silwana B, Iwuoha E, Somerset V. Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples. Journal of Electroanalytical Chemistry 2015;752:1-11. [DOI: 10.1016/j.jelechem.2015.06.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
590 Hussain SM, Warheit DB, Ng SP, Comfort KK, Grabinski CM, Braydich-stolle LK. At the Crossroads of Nanotoxicology in vitro : Past Achievements and Current Challenges. Toxicol Sci 2015;147:5-16. [DOI: 10.1093/toxsci/kfv106] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
591 Laloy J, Lozano O, Alpan L, Masereel B, Toussaint O, Dogné JM, Lucas S. Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol. J Nanopart Res 2015;17. [DOI: 10.1007/s11051-015-3138-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
592 Shin SW, Song IH, Um SH. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials (Basel) 2015;5:1351-65. [PMID: 28347068 DOI: 10.3390/nano5031351] [Cited by in Crossref: 181] [Cited by in F6Publishing: 186] [Article Influence: 25.9] [Reference Citation Analysis]
593 Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran Biomed J 2016;20:1-11. [PMID: 26286636 DOI: 10.7508/ibj.2016.01.001] [Cited by in F6Publishing: 157] [Reference Citation Analysis]
594 Asare N, Duale N, Slagsvold HH, Lindeman B, Olsen AK, Gromadzka-Ostrowska J, Meczynska-Wielgosz S, Kruszewski M, Brunborg G, Instanes C. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology 2016;10:312-21. [PMID: 26923343 DOI: 10.3109/17435390.2015.1071443] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 7.3] [Reference Citation Analysis]
595 Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem 2015;3:48. [PMID: 26301216 DOI: 10.3389/fchem.2015.00048] [Cited by in Crossref: 158] [Cited by in F6Publishing: 162] [Article Influence: 22.6] [Reference Citation Analysis]
596 Oksel C, Ma CY, Liu JJ, Wilkins T, Wang XZ. (Q)SAR modelling of nanomaterial toxicity: A critical review. Particuology 2015;21:1-19. [DOI: 10.1016/j.partic.2014.12.001] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 7.7] [Reference Citation Analysis]
597 Li Y, Zhao J, Qu Y, Gao Y, Guo Z, Liu Z, Zhao Y, Chen C. Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1531-49. [DOI: 10.1016/j.nano.2015.04.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
598 Kreider ML, Cyrs WD, Tosiano MA, Panko JM. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities. ANNHYG 2015;59:1122-34. [DOI: 10.1093/annhyg/mev052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
599 Kobayashi S, Tsuruoka S, Usui Y, Haniu H, Aoki K, Takanashi S, Okamoto M, Nomura H, Tanaka M, Aiso S, Saito M, Kato H, Saito N. An advanced in situ imaging method using heavy metal-doped hollow tubes to evaluate the biokinetics of carbon nanotubes in vivo. NPG Asia Mater 2015;7:e203-e203. [DOI: 10.1038/am.2015.77] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
600 Grafmueller S, Manser P, Diener L, Maurizi L, Diener PA, Hofmann H, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts. Sci Technol Adv Mater 2015;16:044602. [PMID: 27877820 DOI: 10.1088/1468-6996/16/4/044602] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
601 Fadeel B, Fornara A, Toprak MS, Bhattacharya K. Keeping it real: The importance of material characterization in nanotoxicology. Biochem Biophys Res Commun 2015;468:498-503. [PMID: 26187673 DOI: 10.1016/j.bbrc.2015.06.178] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 7.4] [Reference Citation Analysis]
602 Juric A, Meldrum R, Liberda EN. Achieving Control of Occupational Exposures to Engineered Nanomaterials. Journal of Occupational and Environmental Hygiene 2015;12:501-8. [DOI: 10.1080/15459624.2015.1011329] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
603 Parivar K, Hayati Rudbari N, Khanbabaee R, Khaleghi M. The Effect of Nano-Titanium Dioxide on Limb Bud Development of NMRI Mouse Embryo In Vivo. Cell J 2015;17:296-303. [PMID: 26199908 DOI: 10.22074/cellj.2016.3734] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
604 Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Critical Reviews in Toxicology 2015;45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Cited by in Crossref: 106] [Cited by in F6Publishing: 107] [Article Influence: 15.1] [Reference Citation Analysis]
605 Lv M, Huang W, Chen Z, Jiang H, Chen J, Tian Y, Zhang Z, Xu F. Metabolomics techniques for nanotoxicity investigations. Bioanalysis 2015;7:1527-44. [DOI: 10.4155/bio.15.83] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
606 Ata Saei A, Mahmoudi M. Toxicity of nanoparticles. Nanoparticles for Biotherapeutic Delivery (Volume 1) 2015. [DOI: 10.4155/fseb2013.14.74] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
607 Madl AK, Liong M, Kovochich M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1201-15. [DOI: 10.1016/j.nano.2014.12.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 6.9] [Reference Citation Analysis]
608 Zijno A, De Angelis I, De Berardis B, Andreoli C, Russo MT, Pietraforte D, Scorza G, Degan P, Ponti J, Rossi F, Barone F. Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol In Vitro 2015;29:1503-12. [PMID: 26079941 DOI: 10.1016/j.tiv.2015.06.009] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 10.4] [Reference Citation Analysis]
609 Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, Park MV, de Jong WH, Wolterink G, Piersma AH, Ross BL, Hutchison GR, Hansen JS, Vogel U, Jackson P, Slama R, Pietroiusti A, Cassee FR. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 2015;56:118-40. [PMID: 26050605 DOI: 10.1016/j.reprotox.2015.05.015] [Cited by in Crossref: 119] [Cited by in F6Publishing: 121] [Article Influence: 17.0] [Reference Citation Analysis]
610 Luo YH, Chang LW, Lin P. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications. Biomed Res Int 2015;2015:143720. [PMID: 26125021 DOI: 10.1155/2015/143720] [Cited by in Crossref: 113] [Cited by in F6Publishing: 143] [Article Influence: 16.1] [Reference Citation Analysis]
611 Omlor AJ, Nguyen J, Bals R, Dinh QT. Nanotechnology in respiratory medicine. Respir Res 2015;16:64. [PMID: 26021823 DOI: 10.1186/s12931-015-0223-5] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 7.7] [Reference Citation Analysis]
612 Jeannet N, Fierz M, Schneider S, Künzi L, Baumlin N, Salathe M, Burtscher H, Geiser M. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology 2016;10:279-91. [DOI: 10.3109/17435390.2015.1049233] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
613 Kyriazis M. The impracticality of biomedical rejuvenation therapies: translational and pharmacological barriers. Rejuvenation Res. 2014;17:390-396. [PMID: 25072550 DOI: 10.1089/rej.2014.1588] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
614 Levin M, Gudmundsson A, Pagels JH, Fierz M, Mølhave K, Löndahl J, Jensen KA, Koponen IK. Limitations in the Use of Unipolar Charging for Electrical Mobility Sizing Instruments: A Study of the Fast Mobility Particle Sizer. Aerosol Science and Technology 2015;49:556-65. [DOI: 10.1080/02786826.2015.1052039] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
615 Guglielmotti MB, Domingo MG, Steimetz T, Ramos E, Paparella ML, Olmedo DG. Migration of titanium dioxide microparticles and nanoparticles through the body and deposition in the gingiva: an experimental study in rats. Eur J Oral Sci 2015;123:242-8. [DOI: 10.1111/eos.12190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
616 Humphries GS, Dunn J, Hossain MM, Lengden M, Burns IS, Black JD. A simple photoacoustic method for the in situ study of soot distribution in flames. Appl Phys B 2015;119:709-15. [DOI: 10.1007/s00340-015-6132-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
617 Gutierrez ER, Kamens RM, Tolocka M, Sexton K, Jaspers I. A comparison of three dispersion media on the physicochemical and toxicological behavior of TiO2 and NiO nanoparticles. Chem Biol Interact 2015;236:74-81. [PMID: 25964212 DOI: 10.1016/j.cbi.2015.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
618 Demin VA, Gmoshinsky IV, Demin VF, Anciferova AA, Buzulukov YP, Khotimchenko SA, Tutelyan VA. Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles). Nanotechnol Russia 2015;10:288-96. [DOI: 10.1134/s1995078015020081] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
619 Krystek P, Kettler K, van der Wagt B, de Jong WH. Exploring influences on the cellular uptake of medium-sized silver nanoparticles into THP-1 cells. Microchemical Journal 2015;120:45-50. [DOI: 10.1016/j.microc.2015.01.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
620 Bumbudsanpharoke N, Ko S. Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 2015;80:R910-23. [PMID: 25881665 DOI: 10.1111/1750-3841.12861] [Cited by in Crossref: 233] [Cited by in F6Publishing: 236] [Article Influence: 33.3] [Reference Citation Analysis]
621 Chuang H, Chen L, Lei Y, Wu K, Feng P, Cheng T. Surface area as a dose metric for carbon black nanoparticles: A study of oxidative stress, DNA single-strand breakage and inflammation in rats. Atmospheric Environment 2015;106:329-34. [DOI: 10.1016/j.atmosenv.2015.02.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
622 Asztemborska M, Steborowski R, Kowalska J, Bystrzejewska-Piotrowska G. Accumulation of Platinum Nanoparticles by Sinapis alba and Lepidium sativum Plants. Water Air Soil Pollut 2015;226:126. [PMID: 25859065 DOI: 10.1007/s11270-015-2381-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
623 Treuel L, Docter D, Maskos M, Stauber RH. Protein corona - from molecular adsorption to physiological complexity. Beilstein J Nanotechnol 2015;6:857-73. [PMID: 25977856 DOI: 10.3762/bjnano.6.88] [Cited by in Crossref: 97] [Cited by in F6Publishing: 100] [Article Influence: 13.9] [Reference Citation Analysis]
624 Noël A, Truchon G. Inhaled Titanium Dioxide Nanoparticles: A Review of Their Pulmonary Responses with Particular Focus on the Agglomeration State. Nano LIFE 2015;05:1450008. [DOI: 10.1142/s1793984414500081] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
625 Warheit DB, Reed KL. Nanotoxicology: Environmental, Health and Safety (EHS) Considerations for Assessing Hazards and Risks Following Nanoparticle Exposures. Mammalian Toxicology 2015. [DOI: 10.1002/9781118683484.ch11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
626 Arts JH, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 2015;71:S1-27. [PMID: 25818068 DOI: 10.1016/j.yrtph.2015.03.007] [Cited by in Crossref: 183] [Cited by in F6Publishing: 190] [Article Influence: 26.1] [Reference Citation Analysis]
627 Nguyen KC, Rippstein P, Tayabali AF, Willmore WG. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes. Toxicol Sci 2015;146:31-42. [PMID: 25809595 DOI: 10.1093/toxsci/kfv068] [Cited by in Crossref: 67] [Cited by in F6Publishing: 74] [Article Influence: 9.6] [Reference Citation Analysis]
628 Spigoni V, Cito M, Alinovi R, Pinelli S, Passeri G, Zavaroni I, Goldoni M, Campanini M, Aliatis I, Mutti A, Bonadonna RC, Dei Cas A. Effects of TiO₂ and Co₃O₄ nanoparticles on circulating angiogenic cells. PLoS One 2015;10:e0119310. [PMID: 25803285 DOI: 10.1371/journal.pone.0119310] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
629 Neubauer N, Palomaeki J, Karisola P, Alenius H, Kasper G. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments – An indication for the catalytic nature of their interactions. Nanotoxicology 2015;9:1059-66. [DOI: 10.3109/17435390.2015.1019585] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
630 Nalika N, Parvez S. Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Toxicology Mechanisms and Methods 2015;25:355-63. [DOI: 10.3109/15376516.2015.1020183] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
631 Haase A, Tentschert J, Luch A. Nanomaterials: a challenge for toxicological risk assessment? Exp Suppl 2012;101:219-50. [PMID: 22945571 DOI: 10.1007/978-3-7643-8340-4_8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
632 Fratoddi I, Venditti I, Cametti C, Russo MV. How toxic are gold nanoparticles? The state-of-the-art. Nano Res 2015;8:1771-99. [DOI: 10.1007/s12274-014-0697-3] [Cited by in Crossref: 204] [Cited by in F6Publishing: 127] [Article Influence: 29.1] [Reference Citation Analysis]
633 Krystek P, Bäuerlein PS, Kooij PJ. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water. Journal of Pharmaceutical and Biomedical Analysis 2015;106:116-23. [DOI: 10.1016/j.jpba.2014.04.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
634 Chivas-joly C, Longuet C, Motzkus C, Lopez-cuesta J. Influence of the composition of PMMA nanocomposites on gaseous effluents emitted during combustion. Polymer Degradation and Stability 2015;113:197-207. [DOI: 10.1016/j.polymdegradstab.2014.11.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
635 Zhang JQ, Yang H, Wang YT, Zhang Y. PM2.5 Pollution Level of Heavy Metals in Atmospheric Particles in Taiyuan. AMM 2015;737:491-494. [DOI: 10.4028/www.scientific.net/amm.737.491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
636 Mateo D, Morales P, Ávalos A, Haza AI. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. Journal of Experimental Nanoscience 2015;10:1401-17. [DOI: 10.1080/17458080.2015.1014934] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
637 Sebby KB, Mansfield E. Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis. Anal Bioanal Chem 2015;407:2913-22. [DOI: 10.1007/s00216-015-8520-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
638 Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Subramaniam J, Dinesh D, Chandramohan B. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 2015;114:1551-62. [PMID: 25669140 DOI: 10.1007/s00436-015-4339-9] [Cited by in Crossref: 152] [Cited by in F6Publishing: 155] [Article Influence: 21.7] [Reference Citation Analysis]
639 Kim YR, Lee EJ, Park SH, Kwon HJ, An SS, Son SW, Seo YR, Pie JE, Yoon M, Kim JH, Kim MK. Interactive survey of consumer awareness of nanotechnologies and nanoparticles in consumer products in South Korea. Int J Nanomedicine 2014;9 Suppl 2:11-20. [PMID: 25565822 DOI: 10.2147/IJN.S57919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
640 Jouzel J. 9. De la critique à la métrique. La mondialisation des risques 2015. [DOI: 10.4000/books.pur.73376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
641 Lewis DJ. Hydrodynamic chromatography – inductively coupled plasma mass spectrometry, with post-column injection capability for simultaneous determination of nanoparticle size, mass concentration and particle number concentration (HDC-PCi-ICP-MS). Analyst 2015;140:1624-8. [DOI: 10.1039/c4an01979b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
642 Shumbula P, Harris R, Nyembe S, Keter F, Sikhwivhilu L, Tshikhudo R. Cytotoxicity Effects of Citrate, Glucose and Cetyltrimethyl Ammonium Chloride-capped Silver Nanoparticles in Lung Epithelial Carcinoma Cells (A549). Materials Today: Proceedings 2015;2:4118-4124. [DOI: 10.1016/j.matpr.2015.08.042] [Reference Citation Analysis]
643 Shatkin JA, Kim B. Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap. Environ Sci : Nano 2015;2:477-99. [DOI: 10.1039/c5en00059a] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 8.6] [Reference Citation Analysis]
644 Gallocchio F, Belluco S, Ricci A. Nanotechnology and Food: Brief Overview of the Current Scenario. Procedia Food Science 2015;5:85-8. [DOI: 10.1016/j.profoo.2015.09.022] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 5.9] [Reference Citation Analysis]
645 Smijs T, Pavel S. A Case Study. Nanoengineering 2015. [DOI: 10.1016/b978-0-444-62747-6.00013-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
646 Díaz-torres R, López-arellano R, Escobar-chávez JJ, García-garcía E, Domínguez-delgado CL, Ramírez-noguera P. Effect of Size and Functionalization of Pharmaceutical Nanoparticles and Their Interaction with Biological Systems. Handbook of Nanoparticles 2015. [DOI: 10.1007/978-3-319-13188-7_46-1] [Reference Citation Analysis]
647 Cassee FR, Kreyling W, Aitken R, Poland C. Dosimetry and Toxicology of Nanosized Particles and Fibres. The Handbook of Environmental Chemistry 2015. [DOI: 10.1007/698_2015_415] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
648 Regiel-futyra A, Kus-liśkiewicz M, Wojtyła S, Stochel G, Macyk W. The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity. RSC Adv 2015;5:80089-97. [DOI: 10.1039/c5ra12667c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
649 Handy R, Whitt M, Rodriguez M, Jackson M. Environmental and occupational health issues with nanoparticles. Emerging Nanotechnologies for Manufacturing 2015. [DOI: 10.1016/b978-0-323-28990-0.00009-9] [Reference Citation Analysis]
650 Greco F, Courbière B, Rose J, Orsière T, Sari-minodier I, Bottero J, Auffan M, Perrin J. Reprotoxicité des nanoparticules. Gynécologie Obstétrique & Fertilité 2015;43:49-55. [DOI: 10.1016/j.gyobfe.2014.11.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
651 Polonini HC, Brayner R. Nanoecotoxicology: The State of the Art. In: Rai M, Ribeiro C, Mattoso L, Duran N, editors. Nanotechnologies in Food and Agriculture. Cham: Springer International Publishing; 2015. pp. 301-19. [DOI: 10.1007/978-3-319-14024-7_13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
652 Liu Y, Mark Worden R. Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015;1848:67-75. [DOI: 10.1016/j.bbamem.2014.09.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
653 He X, Aker WG, Fu PP, Hwang H. Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective. Environ Sci : Nano 2015;2:564-82. [DOI: 10.1039/c5en00094g] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 9.6] [Reference Citation Analysis]
654 Sonawane SJ, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Govender T. Transforming linoleic acid into a nanoemulsion for enhanced activity against methicillin susceptible and resistant Staphylococcus aureus. RSC Adv 2015;5:90482-92. [DOI: 10.1039/c5ra16248c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
655 De León H, Boue S, Peitsch MC, Hoeng J. A Systems Toxicology Approach to Investigating the Cardiovascular Effects of Cigarette Smoke and Environmental Pollutants in ApoE-Deficient Mice. Methods in Pharmacology and Toxicology 2015. [DOI: 10.1007/978-1-4939-2778-4_14] [Reference Citation Analysis]
656 Vrontaki E, Mavromoustakos T, Melagraki G, Afantitis A. Quantitative Nanostructure-Activity Relationship Models for the Risk Assessment of NanoMaterials. Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment 2015. [DOI: 10.4018/978-1-4666-8136-1.ch014] [Reference Citation Analysis]
657 Shrivastava R, Kushwaha P, Bhutia YC, Flora S. Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health 2016;32:1391-404. [DOI: 10.1177/0748233714562623] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 8.8] [Reference Citation Analysis]
658 Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M. Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 2014;30:59-66. [DOI: 10.1093/mutage/geu057] [Cited by in Crossref: 67] [Cited by in F6Publishing: 73] [Article Influence: 8.4] [Reference Citation Analysis]
659 Beaudrie CEH, Kandlikar M, Gregory R, Long G, Wilson T. Nanomaterial risk screening: a structured approach to aid decision making under uncertainty. Environ Syst Decis 2015;35:88-109. [DOI: 10.1007/s10669-014-9529-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
660 Kwon JY, Kim HL, Lee JY, Ju YH, Kim JS, Kang SH, Kim YR, Lee JK, Jeong J, Kim MK, Maeng EH, Seo YR. Undetactable levels of genotoxicity of SiO2 nanoparticles in in vitro and in vivo tests. Int J Nanomedicine 2014;9 Suppl 2:173-81. [PMID: 25565835 DOI: 10.2147/IJN.S57933] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
661 Park HS, Shin SS, Meang EH, Hong JS, Park JI, Kim SH, Koh SB, Lee SY, Jang DH, Lee JY, Sun YS, Kang JS, Kim YR, Kim MK, Jeong J, Lee JK, Son WC, Park JH. A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats. Int J Nanomedicine 2014;9 Suppl 2:79-92. [PMID: 25565828 DOI: 10.2147/IJN.S57926] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
662 Kim YR, Park SH, Lee JK, Jeong J, Kim JH, Meang EH, Yoon TH, Lim ST, Oh JM, An SS, Kim MK. Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles. Int J Nanomedicine 2014;9 Suppl 2:3-10. [PMID: 25565821 DOI: 10.2147/IJN.S57915] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
663 Afrooz ARMN, Hussain SM, Saleh NB. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2771-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
664 El-Said KS, Ali EM, Kanehira K, Taniguchi A. Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines. J Nanobiotechnology 2014;12:48. [PMID: 25441061 DOI: 10.1186/s12951-014-0048-2] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
665 Côté-maurais G, Bernier J. Silver and fullerene nanoparticles’ effect on interleukin-2-dependent proliferation of CD4 (+) T cells. Toxicology in Vitro 2014;28:1474-81. [DOI: 10.1016/j.tiv.2014.08.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
666 Xu P, Li Z, Zhang X, Yang Z. Increased response to oxidative stress challenge of nano-copper-induced apoptosis in mesangial cells. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2777-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
667 Vignardi CP, Hasue FM, Sartório PV, Cardoso CM, Machado AS, Passos MJ, Santos TC, Nucci JM, Hewer TL, Watanabe IS, Gomes V, Phan NV. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquat Toxicol 2015;158:218-29. [PMID: 25481788 DOI: 10.1016/j.aquatox.2014.11.008] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 7.4] [Reference Citation Analysis]
668 Shim KH, Hulme J, Maeng EH, Kim MK, An SS. Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomedicine 2014;9 Suppl 2:217-24. [PMID: 25565839 DOI: 10.2147/IJN.S58204] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
669 Marucco A, Gazzano E, Ghigo D, Enrico E, Fenoglio I. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO 2 , SiO 2 and carbon nanomaterials. Nanotoxicology 2016. [DOI: 10.3109/17435390.2014.978405] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
670 Izak-nau E, Voetz M. As-Produced: Intrinsic Physico-Chemical Properties and Appropriate Characterization Tools. In: Wohlleben W, Kuhlbusch T, Schnekenburger J, Lehr C, editors. Safety of Nanomaterials along Their Lifecycle. CRC Press; 2014. pp. 3-24. [DOI: 10.1201/b17774-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
671 Kolter M, Ott M, Hauer C, Reimold I, Fricker G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release. 2015;197:165-179. [PMID: 25445700 DOI: 10.1016/j.jconrel.2014.11.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 5.9] [Reference Citation Analysis]
672 Cardoso E, Londero E, Ferreira GK, Rezin GT, Zanoni ET, de Souza Notoya F, Leffa DD, Damiani AP, Daumann F, Rohr P, da Silva L, Andrade VM, da Silva Paula MM. Gold nanoparticles induce DNA damage in the blood and liver of rats. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2727-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
673 Motzkus C, Gaie-levrel F, Ausset P, Maillé M, Baccile N, Vaslin-reimann S, Idrac J, Oster D, Fischer N, Macé T. Impact of batch variability on physicochemical properties of manufactured TiO 2 and SiO 2 nanopowders. Powder Technology 2014;267:39-53. [DOI: 10.1016/j.powtec.2014.06.055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
674 Mishra R, Militky J, Baheti V, Huang J, Kale B, Venkataraman M, Bele V, Arumugam V, Zhu G, Wang Y. The production, characterization and applications of nanoparticles in the textile industry. Textile Progress 2014;46:133-226. [DOI: 10.1080/00405167.2014.964474] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
675 Kermanizadeh A, Løhr M, Roursgaard M, Messner S, Gunness P, Kelm JM, Møller P, Stone V, Loft S. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part Fibre Toxicol 2014;11:56. [PMID: 25326698 DOI: 10.1186/s12989-014-0056-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 7.8] [Reference Citation Analysis]
676 Wang YW, Yang K, Tang H, Chen D, Bai YL. Toxicity assessment of repeated intravenous injections of arginine-glycine-aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice. Int J Nanomedicine 2014;9:4809-17. [PMID: 25378922 DOI: 10.2147/IJN.S70092] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
677 Bantz C, Koshkina O, Lang T, Galla HJ, Kirkpatrick CJ, Stauber RH, Maskos M. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol 2014;5:1774-86. [PMID: 25383289 DOI: 10.3762/bjnano.5.188] [Cited by in Crossref: 91] [Cited by in F6Publishing: 93] [Article Influence: 11.4] [Reference Citation Analysis]
678 Chatterjee S, Sarkar S, Bhattacharya S. Toxic Metals and Autophagy. Chem Res Toxicol 2014;27:1887-900. [DOI: 10.1021/tx500264s] [Cited by in Crossref: 82] [Cited by in F6Publishing: 83] [Article Influence: 10.3] [Reference Citation Analysis]
679 Nafisi S, Schäfer-korting M, Maibach HI. Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology 2014;9:643-57. [DOI: 10.3109/17435390.2014.958115] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
680 Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutation Research/Reviews in Mutation Research 2014;762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Cited by in Crossref: 193] [Cited by in F6Publishing: 181] [Article Influence: 24.1] [Reference Citation Analysis]
681 Greim H, Utell MJ, Maxim LD, Niebo R. Perspectives on refractory ceramic fiber (RCF) carcinogenicity: comparisons with other fibers. Inhal Toxicol 2014;26:789-810. [PMID: 25264933 DOI: 10.3109/08958378.2014.953276] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
682 Abdalla AME, Xiao L, Ouyang C, Yang G. Engineered nanoparticles: thrombotic events in cancer. Nanoscale 2014;6:14141-52. [DOI: 10.1039/c4nr04825c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
683 Shepard M, Brenner S. Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination. Int J Occup Environ Health 2014;20:247-57. [PMID: 25000112 DOI: 10.1179/2049396714Y.0000000074] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
684 Anwar MF, Yadav D, Rastogi S, Arora I, Khar RK, Chander J, Samim M. Modulation of liver and kidney toxicity by herb Withania somnifera for silver nanoparticles: a novel approach for harmonizing between safety and use of nanoparticles. Protoplasma 2015;252:547-58. [PMID: 25248758 DOI: 10.1007/s00709-014-0701-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
685 Pal AK, Aalaei I, Gadde S, Gaines P, Schmidt D, Demokritou P, Bello D. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology. ACS Nano 2014;8:9003-15. [PMID: 25093451 DOI: 10.1021/nn502219q] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
686 Sahu SC, Njoroge J, Bryce SM, Yourick JJ, Sprando RL. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric in vitro micronucleus assay: Genotoxicity of nanosilver in HepG2 and Caco2 cells. J Appl Toxicol 2014;34:1226-34. [DOI: 10.1002/jat.3065] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
687 Browning CL, The T, Mason MD, Wise JP Sr. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells. J Environ Anal Toxicol 2014;4:239. [PMID: 26568896 DOI: 10.4172/2161-0525.1000239] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
688 Liu W, Bien M, Chuang K, Chang T, Jones T, Bérubé K, Lalev G, Tsai D, Chuang H, Cheng T. Physicochemical and biological characterization of single-walled and double-walled carbon nanotubes in biological media. Journal of Hazardous Materials 2014;280:216-25. [DOI: 10.1016/j.jhazmat.2014.07.069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
689 Suh J. Study of the Introduction of a Nanomaterials Regulatory Policy for Product Safety. Journal of the Korea Academia-Industrial cooperation Society 2014;15:4987-4998. [DOI: 10.5762/kais.2014.15.8.4987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
690 Park EJ, Lee GH, Shim JH, Cho MH, Lee BS, Kim YB, Kim JH, Kim Y, Kim DW. Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicol 2015;89:1771-82. [PMID: 25155191 DOI: 10.1007/s00204-014-1332-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
691 Liu Y, Beaucham CC, Pearce TA, Zhuang Z. Assessment of two portable real-time particle monitors used in nanomaterial workplace exposure evaluations. PLoS One 2014;9:e105769. [PMID: 25148239 DOI: 10.1371/journal.pone.0105769] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
692 Pan CH, Liu WT, Bien MY, Lin IC, Hsiao TC, Ma CM, Lai CH, Chen MC, Chuang KJ, Chuang HC. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses. Int J Nanomedicine 2014;9:3631-43. [PMID: 25120361 DOI: 10.2147/IJN.S66651] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
693 Regulatory Implications of Nanotechnology. Biointeractions of Nanomaterials 2014. [DOI: 10.1201/b17191-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
694 Bhaumik A, Shearin AM, Delong R, Wanekaya A, Ghosh K. Probing the Interaction at the Nano-Bio Interface Using Raman Spectroscopy: ZnO Nanoparticles and Adenosine Triphosphate Biomolecules. J Phys Chem C Nanomater Interfaces 2014;118:18631-9. [PMID: 25152799 DOI: 10.1021/jp506200a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
695 Torrisi V, Graillot A, Vitorazi L, Crouzet Q, Marletta G, Loubat C, Berret J. Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles. Biomacromolecules 2014;15:3171-9. [DOI: 10.1021/bm500832q] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 8.0] [Reference Citation Analysis]
696 Ware MJ, Godin B, Singh N, Majithia R, Shamsudeen S, Serda RE, Meissner KE, Rees P, Summers HD. Analysis of the influence of cell heterogeneity on nanoparticle dose response. ACS Nano 2014;8:6693-700. [PMID: 24923782 DOI: 10.1021/nn502356f] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
697 Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S. Intracellular signal modulation by nanomaterials. Adv Exp Med Biol 2014;811:111-34. [PMID: 24683030 DOI: 10.1007/978-94-017-8739-0_7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
698 Verma ML, Puri M, Barrow CJ. Recent trends in nanomaterials immobilised enzymes for biofuel production. Critical Reviews in Biotechnology 2013;36:108-19. [DOI: 10.3109/07388551.2014.928811] [Cited by in Crossref: 128] [Cited by in F6Publishing: 131] [Article Influence: 16.0] [Reference Citation Analysis]
699 Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 2014;8:465-76. [PMID: 23586395 DOI: 10.3109/17435390.2013.796534] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 6.0] [Reference Citation Analysis]
700 Lagopati N, Tsilibary EP, Falaras P, Papazafiri P, Pavlatou EA, Kotsopoulou E, Kitsiou P. Effect of nanostructured TiO₂ crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int J Nanomedicine 2014;9:3219-30. [PMID: 25061298 DOI: 10.2147/IJN.S62972] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
701 Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn HG, Erdmann H. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 2014;28:1280-9. [PMID: 24997297 DOI: 10.1016/j.tiv.2014.06.005] [Cited by in Crossref: 105] [Cited by in F6Publishing: 112] [Article Influence: 13.1] [Reference Citation Analysis]
702 Kermanizadeh A, Gaiser BK, Johnston H, Brown DM, Stone V. Toxicological effect of engineered nanomaterials on the liver. Br J Pharmacol 2014;171:3980-7. [PMID: 24111818 DOI: 10.1111/bph.12421] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
703 Amarnath K, Dhanabal J, Agarwal I, Seshadry S. Cytotoxicity induction by ethanolic extract of Acalypha indica loaded casein-chitosan microparticles in human prostate cancer cell line in vitro. Biomedicine & Preventive Nutrition 2014;4:445-50. [DOI: 10.1016/j.bionut.2013.03.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
704 Colombo S, Zeng X, Ragelle H, Foged C. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opinion on Drug Delivery 2014;11:1481-95. [DOI: 10.1517/17425247.2014.927439] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
705 Hua J, Vijver MG, Ahmad F, Richardson MK, Peijnenburg WJ. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. Environ Toxicol Chem 2014;33:1774-82. [PMID: 24839162 DOI: 10.1002/etc.2615] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 7.8] [Reference Citation Analysis]
706 Nogueira DR, Mitjans M, Rolim CM, Vinardell MP. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies. Nanomaterials (Basel) 2014;4:454-84. [PMID: 28344232 DOI: 10.3390/nano4020454] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
707 Graves J. The Safety of Nanomaterials: What We Know and What We Need to Know. Nanoscience and Nanoengineering 2014. [DOI: 10.1201/b16957-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
708 Rückerl R, Hampel R, Breitner S, Cyrys J, Kraus U, Carter J, Dailey L, Devlin RB, Diaz-Sanchez D, Koenig W, Phipps R, Silbajoris R, Soentgen J, Soukup J, Peters A, Schneider A. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int 2014;70:32-49. [PMID: 24907704 DOI: 10.1016/j.envint.2014.05.013] [Cited by in Crossref: 97] [Cited by in F6Publishing: 102] [Article Influence: 12.1] [Reference Citation Analysis]
709 Fang G, Zheng Y, Zeng C, Chen Y, Lin SM. Comparisons of annual ambient air pollutant concentrations and dry deposition flux variations for day and nighttime in middle Taiwan. Environ Earth Sci 2014;72:4325-34. [DOI: 10.1007/s12665-014-3332-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
710 He W, Wamer W, Xia Q, Yin J, Fu PP. Enzyme-Like Activity of Nanomaterials. Journal of Environmental Science and Health, Part C 2014;32:186-211. [DOI: 10.1080/10590501.2014.907462] [Cited by in Crossref: 122] [Cited by in F6Publishing: 109] [Article Influence: 15.3] [Reference Citation Analysis]
711 Martirosyan A, Schneider YJ. Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 2014;11:5720-50. [PMID: 24879486 DOI: 10.3390/ijerph110605720] [Cited by in Crossref: 168] [Cited by in F6Publishing: 176] [Article Influence: 21.0] [Reference Citation Analysis]
712 Buzulukov YP, Arianova EA, Demin VF, Safenkova IV, Gmoshinski IV, Tutelyan VA. Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis. Biol Bull Russ Acad Sci 2014;41:255-63. [DOI: 10.1134/s1062359014030042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
713 Shvedova AA, Kisin ER, Murray AR, Mouithys-Mickalad A, Stadler K, Mason RP, Kadiiska M. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radic Biol Med 2014;73:154-65. [PMID: 24863695 DOI: 10.1016/j.freeradbiomed.2014.05.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
714 Trisolino A. Nanomedicine: Building a Bridge Between Science and Law. Nanoethics 2014;8:141-63. [DOI: 10.1007/s11569-014-0193-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
715 Polonini HC, Brandão HM, Raposo NR, Mouton L, Yéprémian C, Couté A, Brayner R. Ecotoxicological studies of micro- and nanosized barium titanate on aquatic photosynthetic microorganisms. Aquat Toxicol 2014;154:58-70. [PMID: 24862688 DOI: 10.1016/j.aquatox.2014.05.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
716 Laloy J, Lozano O, Alpan L, Mejia J, Toussaint O, Masereel B, Dogné JM, Lucas S. Can TiC nanoparticles produce toxicity in oral administration to rats? Toxicol Rep 2014;1:172-87. [PMID: 28962237 DOI: 10.1016/j.toxrep.2014.03.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
717 Faust JJ, Doudrick K, Yang Y, Westerhoff P, Capco DG. Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation. Cell Biol Toxicol 2014;30:169-88. [PMID: 24817113 DOI: 10.1007/s10565-014-9278-1] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 10.3] [Reference Citation Analysis]
718 Fang G, Zheng Y. Diurnal ambient air particles, metallic elements dry deposition, concentrations study during year of 2012–2013 at a traffic site. Atmospheric Environment 2014;88:39-46. [DOI: 10.1016/j.atmosenv.2014.01.055] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
719 Verleysen E, De Temmerman P, Van Doren E, Abi Daoud Francisco M, Mast J. Quantitative characterization of aggregated and agglomerated titanium dioxide nanomaterials by transmission electron microscopy. Powder Technology 2014;258:180-8. [DOI: 10.1016/j.powtec.2014.03.010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
720 Dong S, Gao Z, Shen X, Xue H, Li X. Comparative Proteomic Analysis Shows an Elevation of Mdh1 Associated with Hepatotoxicity Induced by Copper Nanoparticle in Rats. Journal of Integrative Agriculture 2014;13:1073-81. [DOI: 10.1016/s2095-3119(13)60389-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
721 Hedberg Y, Midander K. Size matters: Mechanism of metal release from 316L stainless steel particles is governed by size-dependent properties of the surface oxide. Materials Letters 2014;122:223-6. [DOI: 10.1016/j.matlet.2014.02.034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
722 Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, Derk R, Stueckle TA, Porter DW, Sager T, Gou H, Dinu CZ, Wu N, Mercer RR, Rojanasakul Y. Effect of fiber length on carbon nanotube-induced fibrogenesis. Int J Mol Sci 2014;15:7444-61. [PMID: 24786100 DOI: 10.3390/ijms15057444] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 7.0] [Reference Citation Analysis]
723 Li Y, Chen T. Genotoxicity of Silver Nanoparticles *. In: Sahu SC, Casciano DA, editors. Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology. Chichester: John Wiley & Sons, Ltd; 2014. pp. 87-98. [DOI: 10.1002/9781118856017.ch4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
724 Fahmy SR, Abdel-Ghaffar F, Bakry FA, Sayed DA. Ecotoxicological effect of sublethal exposure to zinc oxide nanoparticles on freshwater snail Biomphalaria alexandrina. Arch Environ Contam Toxicol 2014;67:192-202. [PMID: 24736985 DOI: 10.1007/s00244-014-0020-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
725 Zhang H, Pokhrel S, Ji Z, Meng H, Wang X, Lin S, Chang CH, Li L, Li R, Sun B, Wang M, Liao YP, Liu R, Xia T, Mädler L, Nel AE. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co₃O₄ p-type semiconductor in cells and the lung. J Am Chem Soc 2014;136:6406-20. [PMID: 24673286 DOI: 10.1021/ja501699e] [Cited by in Crossref: 114] [Cited by in F6Publishing: 114] [Article Influence: 14.3] [Reference Citation Analysis]
726 Qu D, Sun W, Chen Y, Zhou J, Liu C. Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract. Int J Nanomedicine 2014;9:1871-82. [PMID: 24790429 DOI: 10.2147/IJN.S58732] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
727 Filippi C, Pryde A, Cowan P, Lee T, Hayes P, Donaldson K, Plevris J, Stone V. Toxicology of ZnO and TiO 2 nanoparticles on hepatocytes: Impact on metabolism and bioenergetics. Nanotoxicology 2013;9:126-34. [DOI: 10.3109/17435390.2014.895437] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
728 Mo Y, Wan R, Tollerud DJ, Zhang Q. Nanomaterials. Cancer and Inflammation Mechanisms 2014. [DOI: 10.1002/9781118826621.ch17] [Reference Citation Analysis]
729 Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 2014;8:2118-33. [PMID: 24617523 DOI: 10.1021/nn404871p] [Cited by in Crossref: 107] [Cited by in F6Publishing: 112] [Article Influence: 13.4] [Reference Citation Analysis]
730 Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, Pan X, Lin A, Zhao Y, Zhang C, Zhou Q, Wang L, Hong F. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS One 2014;9:e92230. [PMID: 24658543 DOI: 10.1371/journal.pone.0092230] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 10.5] [Reference Citation Analysis]
731 Lin CD, Kou YY, Liao CY, Li CH, Huang SP, Cheng YW, Liao WC, Chen HX, Wu PL, Kang JJ, Lee CC, Lai CH. Zinc oxide nanoparticles impair bacterial clearance by macrophages. Nanomedicine (Lond) 2014;9:1327-39. [PMID: 24628689 DOI: 10.2217/nnm.14.48] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
732 Piret J, Mejia J, Lucas S, Zouboulis CC, Saout C, Toussaint O. Sonicated and stirred copper oxide nanoparticles induce similar toxicity and pro-inflammatory response in N-hTERT keratinocytes and SZ95 sebocytes. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2337-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
733 Lee YH, Cheng FY, Chiu HW, Tsai JC, Fang CY, Chen CW, Wang YJ. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 2014;35:4706-15. [PMID: 24630838 DOI: 10.1016/j.biomaterials.2014.02.021] [Cited by in Crossref: 220] [Cited by in F6Publishing: 236] [Article Influence: 27.5] [Reference Citation Analysis]
734 Yang Y, Westerhoff P. Presence in, and Release of, Nanomaterials from Consumer Products. In: Capco DG, Chen Y, editors. Nanomaterial. Dordrecht: Springer Netherlands; 2014. pp. 1-17. [DOI: 10.1007/978-94-017-8739-0_1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
735 Faust JJ, Masserano BM, Mielke AH, Abraham A, Capco DG. Engineered Nanoparticles Induced Brush Border Disruption in a Human Model of the Intestinal Epithelium. In: Capco DG, Chen Y, editors. Nanomaterial. Dordrecht: Springer Netherlands; 2014. pp. 55-72. [DOI: 10.1007/978-94-017-8739-0_4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
736 Vecchio G, Fenech M, Pompa PP, Voelcker NH. Lab-on-a-Chip-Based High-Throughput Screening of the Genotoxicity of Engineered Nanomaterials. Small 2014;10:2721-34. [DOI: 10.1002/smll.201303359] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]
737 Movia D, Gerard V, Maguire CM, Jain N, Bell AP, Nicolosi V, O'neill T, Scholz D, Gun'ko Y, Volkov Y, Prina-mello A. A safe-by-design approach to the development of gold nanoboxes as carriers for internalization into cancer cells. Biomaterials 2014;35:2543-57. [DOI: 10.1016/j.biomaterials.2013.12.057] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
738 He X, Aker WG, Leszczynski J, Hwang H. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. Journal of Food and Drug Analysis 2014;22:128-46. [DOI: 10.1016/j.jfda.2014.01.011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
739 Rao V. Systems Approach to Biosafety and Risk Assessment of Engineered Nanomaterials. Appl Biosaf 2014;19:11-19. [DOI: 10.1177/153567601401900102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
740 Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stürzenbaum SR. Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2014;160:75-85. [DOI: 10.1016/j.cbpc.2013.12.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
741 Delgado-buenrostro NL, Medina-reyes EI, Lastres-becker I, Freyre-fonseca V, Ji Z, Hernández-pando R, Marquina B, Pedraza-chaverri J, Espada S, Cuadrado A, Chirino YI. Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release: NRF2 Protects Against TIO 2 NPS Induced-Inflammation. Environ Toxicol 2015;30:782-92. [DOI: 10.1002/tox.21957] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
742 Mendoza A, Torres-Hernandez JA, Ault JG, Pedersen-Lane JH, Gao D, Lawrence DA. Silica nanoparticles induce oxidative stress and inflammation of human peripheral blood mononuclear cells. Cell Stress Chaperones 2014;19:777-90. [PMID: 24535706 DOI: 10.1007/s12192-014-0502-y] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
743 Holzer M, Bihari P, Praetner M, Uhl B, Reichel C, Fent J, Vippola M, Lakatos S, Krombach F. Carbon-based nanomaterials accelerate arteriolar thrombus formation in the murine microcirculation independently of their shape. J Appl Toxicol 2014;34:1167-76. [PMID: 24531921 DOI: 10.1002/jat.2996] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
744 Liu X, Zhang Y, Li J, Wang D, Wu Y, Li Y, Lu Z, Yu SC, Li R, Yang X. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. Int J Nanomedicine 2014;9:823-39. [PMID: 24596461 DOI: 10.2147/IJN.S56339] [Cited by in Crossref: 8] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
745 Botelho MC, Costa C, Silva S, Costa S, Dhawan A, Oliveira PA, Teixeira JP. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomedicine & Pharmacotherapy 2014;68:59-64. [DOI: 10.1016/j.biopha.2013.08.006] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 6.6] [Reference Citation Analysis]
746 Chauhan R, Reddy A, Abraham J. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl Nanosci 2015;5:63-71. [DOI: 10.1007/s13204-014-0292-7] [Cited by in Crossref: 53] [Cited by in F6Publishing: 60] [Article Influence: 6.6] [Reference Citation Analysis]
747 Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 2014;22:64-75. [PMID: 24673904 DOI: 10.1016/j.jfda.2014.01.005] [Cited by in Crossref: 816] [Cited by in F6Publishing: 652] [Article Influence: 102.0] [Reference Citation Analysis]
748 Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014;118:1246-55. [PMID: 24417356 DOI: 10.1021/jp410764f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
749 Ku BK, Deye GJ, Turkevich LA. Efficacy of screens in removing long fibers from an aerosol stream--sample preparation technique for toxicology studies. Inhal Toxicol 2014;26:70-83. [PMID: 24417374 DOI: 10.3109/08958378.2013.854851] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
750 Meißner T, Oelschlägel K, Potthoff A. Dispersion of nanomaterials used in toxicological studies: a comparison of sonication approaches demonstrated on TiO2 P25. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-013-2228-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
751 Malek A, Mattison DR. Drug development for use during pregnancy: impact of the placenta. Expert Review of Obstetrics & Gynecology 2014;5:437-54. [DOI: 10.1586/eog.10.29] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
752 Hondroulis E, Nelson J, Li C. Biomarker analysis for nanotoxicology. Biomarkers in Toxicology 2014. [DOI: 10.1016/b978-0-12-404630-6.00040-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
753 Liu D, Shahbazi M, Bimbo L, Hirvonen J, Santos H. Biocompatibility of porous silicon for biomedical applications. Porous Silicon for Biomedical Applications. Elsevier; 2014. pp. 129-81. [DOI: 10.1533/9780857097156.1.129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
754 Torrens F, Castellano G. Nanostructures Cluster Models in Solution. Advances in Systems Analysis, Software Engineering, and High Performance Computing 2014. [DOI: 10.4018/978-1-4666-6252-0.ch012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
755 Hobson D, Guy R. Nanotoxicology. Encyclopedia of Toxicology 2014. [DOI: 10.1016/b978-0-12-386454-3.01045-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
756 Faunce T, Bruce A, Donohoo A. Nanomaterial Governance, Planetary Health, and the Sustainocene Transition. Nanotechnology Environmental Health and Safety. Elsevier; 2014. pp. 365-94. [DOI: 10.1016/b978-1-4557-3188-6.00015-3] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
757 Daloiso V, Spagnolo AG. Ethics Research Committees in Reviewing Nanotechnology Clinical Trials Protocols. The International Library of Ethics, Law and Technology 2014. [DOI: 10.1007/978-94-017-9103-8_6] [Reference Citation Analysis]
758 Wang L, Tong S, Toloo G(, Yu W. RETRACTED: Submicrometer particles and their effects on the association between air temperature and mortality in Brisbane, Australia. Environmental Research 2014;128:70-7. [DOI: 10.1016/j.envres.2013.11.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
759 Elliott KC. Ethical and Societal Values in Nanotoxicology. The International Library of Ethics, Law and Technology 2014. [DOI: 10.1007/978-1-4020-6817-1_10] [Reference Citation Analysis]
760 Jain V, Bharatam PV. Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs. Nanoscale 2014;6:2476. [DOI: 10.1039/c3nr05400d] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
761 Baalousha M, How W, Valsami-jones E, Lead JR. Overview of Environmental Nanoscience. Nanoscience and the Environment 2014. [DOI: 10.1016/b978-0-08-099408-6.00001-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
762 Chen T, Chuang K, Chiang L, Chen C, Yeh C, Wang L, Gregory C, Jones T, Bérubé K, Lee C, Chuang H, Cheng T. Characterization of the interactions between protein and carbon black. Journal of Hazardous Materials 2014;264:127-35. [DOI: 10.1016/j.jhazmat.2013.10.055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
763 Kumar A, Kumar P, Anandan A, Fernandes TF, Ayoko GA, Biskos G. Engineered Nanomaterials: Knowledge Gaps in Fate, Exposure, Toxicity, and Future Directions. Journal of Nanomaterials 2014;2014:1-16. [DOI: 10.1155/2014/130198] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
764 Choi J, Tsyusko OV, Unrine JM, Chatterjee N, Ahn J, Yang X, Thornton BL, Ryde IT, Starnes D, Meyer JN. A micro-sized model for the in vivo study of nanoparticle toxicity: what has Caenorhabditis elegans taught us? Environ Chem 2014;11:227. [DOI: 10.1071/en13187] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
765 Elliott KC. Risk, Precaution, and Nanotechnology. Ethics and Emerging Technologies 2014. [DOI: 10.1057/9781137349088_27] [Reference Citation Analysis]
766 Blázquez Sánchez M. Sampling protocols for testing the safety of polymer nanocomposites. Health and Environmental Safety of Nanomaterials 2014. [DOI: 10.1533/9780857096678.2.63] [Reference Citation Analysis]
767 Uysal Unalan I, Cerri G, Marcuzzo E, Cozzolino CA, Farris S. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 2014;4:29393-428. [DOI: 10.1039/c4ra01778a] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 9.5] [Reference Citation Analysis]
768 Izak-Nau E, Kenesei K, Murali K, Voetz M, Eiden S, Puntes VF, Duschl A, Madarász E. Interaction of differently functionalized fluorescent silica nanoparticles with neural stem- and tissue-type cells. Nanotoxicology 2014;8 Suppl 1:138-48. [PMID: 24344716 DOI: 10.3109/17435390.2013.864427] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 3.3] [Reference Citation Analysis]
769 Schreiber N, Ströbele M, Kopf J, Hochscheid R, Kotte E, Weber P, Hansen T, Bockhorn H, Müller B. Lung Alterations Following Single or Multiple Low-Dose Carbon Black Nanoparticle Aspirations in Mice. Journal of Toxicology and Environmental Health, Part A 2013;76:1317-32. [DOI: 10.1080/15287394.2013.853634] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
770 Gehr P, Clift MJ, Brandenberger C, Lehmann A, Herzog F, Rothen-Rutishauser B. Endocytosis of environmental and engineered micro- and nanosized particles. Compr Physiol 2011;1:1159-74. [PMID: 23733639 DOI: 10.1002/cphy.c100035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
771 Mateo D, Morales P, Ávalos A, Haza AI. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicology Mechanisms and Methods 2013;24:161-72. [DOI: 10.3109/15376516.2013.869783] [Cited by in Crossref: 64] [Cited by in F6Publishing: 73] [Article Influence: 7.1] [Reference Citation Analysis]
772 Wu C, Liu H. Determinants of Metals Exposure to Metalworking Fluid Among Metalworkers in Taiwan. Archives of Environmental & Occupational Health 2013;69:131-8. [DOI: 10.1080/19338244.2012.750589] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
773 Schulte PA, Geraci CL, Murashov V, Kuempel ED, Zumwalde RD, Castranova V, Hoover MD, Hodson L, Martinez KF. Occupational safety and health criteria for responsible development of nanotechnology. J Nanopart Res 2014;16:2153. [PMID: 24482607 DOI: 10.1007/s11051-013-2153-9] [Cited by in Crossref: 81] [Cited by in F6Publishing: 56] [Article Influence: 9.0] [Reference Citation Analysis]
774 . An Occupational Exposure Assessment for Engineered Nanoparticles Used in Semiconductor Fabrication. The Annals of Occupational Hygiene 2014. [DOI: 10.1093/annhyg/met064] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
775 Park EJ, Roh J, Kim Y, Park K. Induction of Inflammatory Responses by Carbon Fullerene (C60) in Cultured RAW264.7 Cells and in Intraperitoneally Injected Mice. Toxicol Res 2010;26:267-73. [PMID: 24278534 DOI: 10.5487/TR.2010.26.4.267] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
776 Feng L, Zhang Y, Jiang M, Mo Y, Wan R, Jia Z, Tollerud DJ, Zhang X, Zhang Q. Up-regulation of Gadd45α after exposure to metal nanoparticles: the role of hypoxia inducible factor 1α. Environ Toxicol 2015;30:490-9. [PMID: 24277352 DOI: 10.1002/tox.21926] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
777 Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014;32:711-26. [PMID: 24252561 DOI: 10.1016/j.biotechadv.2013.11.006] [Cited by in Crossref: 361] [Cited by in F6Publishing: 371] [Article Influence: 40.1] [Reference Citation Analysis]
778 Gonçalves DM, Girard D. Evidence That Polyhydroxylated C 60 Fullerenes (Fullerenols) Amplify the Effect of Lipopolysaccharides to Induce Rapid Leukocyte Infiltration in Vivo. Chem Res Toxicol 2013;26:1884-92. [DOI: 10.1021/tx4002622] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
779 Kelley MA, Hebert VY, Thibeaux TM, Orchard MA, Hasan F, Cormier SA, Thevenot PT, Lomnicki SM, Varner KJ, Dellinger B, Latimer BM, Dugas TR. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chem Res Toxicol 2013;26:1862-71. [PMID: 24224526 DOI: 10.1021/tx400227s] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
780 Anandharamakrishnan C. Nanoencapsulation of Food Bioactive Compounds. Techniques for Nanoencapsulation of Food Ingredients. New York: Springer; 2014. pp. 1-6. [DOI: 10.1007/978-1-4614-9387-7_1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
781 Skuland T, Ovrevik J, Låg M, Refsnes M. Role of size and surface area for pro-inflammatory responses to silica nanoparticles in epithelial lung cells: importance of exposure conditions. Toxicol In Vitro 2014;28:146-55. [PMID: 24211531 DOI: 10.1016/j.tiv.2013.10.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
782 Courbiere B, Auffan M, Rollais R, Tassistro V, Bonnefoy A, Botta A, Rose J, Orsière T, Perrin J. Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes. Int J Mol Sci 2013;14:21613-28. [PMID: 24185910 DOI: 10.3390/ijms141121613] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 5.3] [Reference Citation Analysis]
783 Müller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials 2014;35:1074-88. [PMID: 24183166 DOI: 10.1016/j.biomaterials.2013.10.041] [Cited by in Crossref: 97] [Cited by in F6Publishing: 90] [Article Influence: 10.8] [Reference Citation Analysis]
784 Cho WS, Duffin R, Bradley M, Megson IL, MacNee W, Lee JK, Jeong J, Donaldson K. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 2013;10:55. [PMID: 24156363 DOI: 10.1186/1743-8977-10-55] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 8.9] [Reference Citation Analysis]
785</