BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation. 2008;5:10. [PMID: 18348728 DOI: 10.1186/1742-2094-5-10] [Cited by in Crossref: 320] [Cited by in F6Publishing: 310] [Article Influence: 22.9] [Reference Citation Analysis]
Number Citing Articles
1 Abdel-salam OME, Youness ER, Mohammed NA, Omara EA, Sleem AA. Effect of ketamine on oxidative stress following lipopolysaccharide administration. Comp Clin Pathol 2015;24:53-63. [DOI: 10.1007/s00580-013-1854-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
2 Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 2013;28:25-43. [PMID: 23078985 DOI: 10.1016/j.bbi.2012.09.013] [Cited by in Crossref: 104] [Cited by in F6Publishing: 104] [Article Influence: 10.4] [Reference Citation Analysis]
3 Zahr NM, Luong R, Sullivan EV, Pfefferbaum A. Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol. Alcohol Clin Exp Res 2010;34:1858-70. [PMID: 20662804 DOI: 10.1111/j.1530-0277.2010.01274.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
4 Meneses G, Rosetti M, Espinosa A, Florentino A, Bautista M, Díaz G, Olvera G, Bárcena B, Fleury A, Adalid-Peralta L, Lamoyi E, Fragoso G, Sciutto E. Recovery from an acute systemic and central LPS-inflammation challenge is affected by mouse sex and genetic background. PLoS One 2018;13:e0201375. [PMID: 30133465 DOI: 10.1371/journal.pone.0201375] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
5 Nuttall JR. The plausibility of maternal toxicant exposure and nutritional status as contributing factors to the risk of autism spectrum disorders. Nutritional Neuroscience 2015;20:209-18. [DOI: 10.1080/1028415x.2015.1103437] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
6 Tishkina AO, Stepanichev MY, Lazareva NA, Kulagina AO, Gulyaeva NV. The glial response in the rodent hippocampus to systemic administration of bacterial lipopolysaccharide. Neurochem J 2014;8:144-7. [DOI: 10.1134/s1819712414020111] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
7 Jhala SS, Hazell AS. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: Consequences of impaired oxidative metabolism. Neurochemistry International 2011;58:248-60. [DOI: 10.1016/j.neuint.2010.11.019] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 5.5] [Reference Citation Analysis]
8 Pascual M, Montesinos J, Guerri C. Role of the innate immune system in the neuropathological consequences induced by adolescent binge drinking. J Neurosci Res 2018;96:765-80. [PMID: 29214654 DOI: 10.1002/jnr.24203] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
9 Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A. Alcohol and Alzheimer's Disease-Does Alcohol Dependence Contribute to Beta-Amyloid Deposition, Neuroinflammation and Neurodegeneration in Alzheimer's Disease? Alcohol Alcohol 2017;52:151-8. [PMID: 27915236 DOI: 10.1093/alcalc/agw092] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
10 Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl) 2016;233:1543-57. [PMID: 25787746 DOI: 10.1007/s00213-015-3906-1] [Cited by in Crossref: 121] [Cited by in F6Publishing: 109] [Article Influence: 17.3] [Reference Citation Analysis]
11 Monnig MA. Immune activation and neuroinflammation in alcohol use and HIV infection: evidence for shared mechanisms. Am J Drug Alcohol Abuse 2017;43:7-23. [PMID: 27532935 DOI: 10.1080/00952990.2016.1211667] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
12 Jones JD. Potential of Glial Cell Modulators in the Management of Substance Use Disorders. CNS Drugs 2020;34:697-722. [PMID: 32246400 DOI: 10.1007/s40263-020-00721-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Wong EL, Strohm A, Atlas J, Lamantia C, Majewska AK. Dynamics of microglia and dendritic spines in early adolescent cortex after developmental alcohol exposure. Dev Neurobiol 2021. [PMID: 34228891 DOI: 10.1002/dneu.22843] [Reference Citation Analysis]
14 Coppens V, Morrens M, Destoop M, Dom G. The Interplay of Inflammatory Processes and Cognition in Alcohol Use Disorders-A Systematic Review. Front Psychiatry 2019;10:632. [PMID: 31572234 DOI: 10.3389/fpsyt.2019.00632] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
15 Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020;10:E1030. [PMID: 32664441 DOI: 10.3390/biom10071030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Parikh MC, Patel SN, Shen Y, Lau-Cam CA. Role of taurine on the actions of alcohol against systemic and cardiac biochemical changes in the diabetic rat. Adv Exp Med Biol 2015;803:313-38. [PMID: 25833507 DOI: 10.1007/978-3-319-15126-7_25] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Sanchez JJ, Noor S, Davies S, Savage D, Milligan ED. Prenatal alcohol exposure is a risk factor for adult neuropathic pain via aberrant neuroimmune function. J Neuroinflammation 2017;14:254. [PMID: 29258553 DOI: 10.1186/s12974-017-1030-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
18 Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021;131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Reference Citation Analysis]
19 Flores-bastías O, Karahanian E. Neuroinflammation produced by heavy alcohol intake is due to loops of interactions between Toll-like 4 and TNF receptors, peroxisome proliferator-activated receptors and the central melanocortin system: A novel hypothesis and new therapeutic avenues. Neuropharmacology 2018;128:401-7. [DOI: 10.1016/j.neuropharm.2017.11.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
20 Bray JG, Reyes KC, Roberts AJ, Gruol DL. Altered hippocampal synaptic function in transgenic mice with increased astrocyte expression of CCL2 after withdrawal from chronic alcohol. Neuropharmacology 2018;135:113-25. [PMID: 29499275 DOI: 10.1016/j.neuropharm.2018.02.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
21 Doremus-Fitzwater TL, Paniccia JE, Gano A, Vore AS, Deak T. Differential effects of acute versus chronic stress on ethanol sensitivity: Evidence for interactions on both behavioral and neuroimmune outcomes. Brain Behav Immun 2018;70:141-56. [PMID: 29458194 DOI: 10.1016/j.bbi.2018.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
22 Grifasi IR, McIntosh SE, Thomas RD, Lysle DT, Thiele TE, Marshall SA. Characterization of the Hippocampal Neuroimmune Response to Binge-Like Ethanol Consumption in the Drinking in the Dark Model. Neuroimmunomodulation 2019;26:19-32. [PMID: 30625475 DOI: 10.1159/000495210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012;134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Cited by in Crossref: 115] [Cited by in F6Publishing: 114] [Article Influence: 11.5] [Reference Citation Analysis]
24 Shukla PK, Meena AS, Dalal K, Canelas C, Samak G, Pierre JF, Rao R. Chronic stress and corticosterone exacerbate alcohol-induced tissue injury in the gut-liver-brain axis. Sci Rep 2021;11:826. [PMID: 33436875 DOI: 10.1038/s41598-020-80637-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Balan I, Beattie MC, O'Buckley TK, Aurelian L, Morrow AL. Endogenous Neurosteroid (3α,5α)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci Rep 2019;9:1220. [PMID: 30718548 DOI: 10.1038/s41598-018-37409-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
26 Alfonso-Loeches S, Pascual M, Gómez-Pinedo U, Pascual-Lucas M, Renau-Piqueras J, Guerri C. Toll-like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia 2012;60:948-64. [PMID: 22431236 DOI: 10.1002/glia.22327] [Cited by in Crossref: 75] [Cited by in F6Publishing: 67] [Article Influence: 7.5] [Reference Citation Analysis]
27 Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 2013;59:52-62. [PMID: 23867237 DOI: 10.1016/j.nbd.2013.07.002] [Cited by in Crossref: 84] [Cited by in F6Publishing: 83] [Article Influence: 9.3] [Reference Citation Analysis]
28 Leclercq S, de Timary P, Delzenne NM, Stärkel P. The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017;7:e1048. [PMID: 28244981 DOI: 10.1038/tp.2017.15] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 15.2] [Reference Citation Analysis]
29 Irwin MR, Olmstead R, Valladares EM, Breen EC, Ehlers CL. Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biol Psychiatry 2009;66:191-5. [PMID: 19185287 DOI: 10.1016/j.biopsych.2008.12.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.2] [Reference Citation Analysis]
30 Knapp DJ, Whitman BA, Wills TA, Angel RA, Overstreet DH, Criswell HE, Ming Z, Breese GR. Cytokine involvement in stress may depend on corticotrophin releasing factor to sensitize ethanol withdrawal anxiety. Brain Behav Immun 2011;25 Suppl 1:S146-54. [PMID: 21377524 DOI: 10.1016/j.bbi.2011.02.018] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 4.5] [Reference Citation Analysis]
31 Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJ. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2015;39:445-54. [PMID: 25703036 DOI: 10.1111/acer.12639] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 12.0] [Reference Citation Analysis]
32 Guden DS, Temiz-Resitoglu M, Senol SP, Kibar D, Yilmaz SN, Tunctan B, Malik KU, Sahan-Firat S. mTOR inhibition as a possible pharmacological target in the management of systemic inflammatory response and associated neuroinflammation by lipopolysaccharide challenge in rats. Can J Physiol Pharmacol 2021;99:921-34. [PMID: 33641344 DOI: 10.1139/cjpp-2020-0487] [Reference Citation Analysis]
33 Baxter-potter LN, Henricks AM, Berger AL, Bieniasz KV, Lugo JM, Mclaughlin RJ. Alcohol vapor exposure differentially impacts mesocorticolimbic cytokine expression in a sex-, region-, and duration-specific manner. Neuroscience 2017;346:238-46. [DOI: 10.1016/j.neuroscience.2017.01.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
34 Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Ehlers CL, Conti B. Time course of microglia activation and brain and blood cytokine/chemokine levels following chronic ethanol exposure and protracted withdrawal in rats. Alcohol 2019;76:37-45. [PMID: 30554034 DOI: 10.1016/j.alcohol.2018.07.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
35 Qin L, Crews FT. NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation 2012;9:5. [PMID: 22240163 DOI: 10.1186/1742-2094-9-5] [Cited by in Crossref: 130] [Cited by in F6Publishing: 154] [Article Influence: 13.0] [Reference Citation Analysis]
36 Yang Q, Liu R, Yu Q, Bi Y, Liu G. Metabolic regulation of inflammasomes in inflammation. Immunology 2019;157:95-109. [PMID: 30851192 DOI: 10.1111/imm.13056] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
37 Topper LA, Baculis BC, Valenzuela CF. Exposure of neonatal rats to alcohol has differential effects on neuroinflammation and neuronal survival in the cerebellum and hippocampus. J Neuroinflammation 2015;12:160. [PMID: 26337952 DOI: 10.1186/s12974-015-0382-9] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 8.0] [Reference Citation Analysis]
38 Nennig SE, Fulenwider HD, Chimberoff SH, Smith BM, Eskew JE, Sequeira MK, Karlsson C, Liang C, Chen JF, Heilig M, Schank JR. Selective Lesioning of Nuclear Factor-κB Activated Cells in the Nucleus Accumbens Shell Attenuates Alcohol Place Preference. Neuropsychopharmacology 2018;43:1032-40. [PMID: 28901327 DOI: 10.1038/npp.2017.214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
39 Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol 2018;9:81. [PMID: 29487525 DOI: 10.3389/fphar.2018.00081] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
40 Doremus-Fitzwater TL, Buck HM, Bordner K, Richey L, Jones ME, Deak T. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure. Alcohol Clin Exp Res 2014;38:2186-98. [PMID: 25156612 DOI: 10.1111/acer.12481] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 7.9] [Reference Citation Analysis]
41 Hill AJ, Drever N, Yin H, Tamayo E, Saade G, Bytautiene E. The role of NADPH oxidase in a mouse model of fetal alcohol syndrome. Am J Obstet Gynecol 2014;210:466.e1-5. [PMID: 24334207 DOI: 10.1016/j.ajog.2013.12.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
42 Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, Carson RE, Ding YS, Cosgrove KP. Endotoxin-induced systemic inflammation activates microglia: [¹¹C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 2012;63:232-9. [PMID: 22776451 DOI: 10.1016/j.neuroimage.2012.06.055] [Cited by in Crossref: 140] [Cited by in F6Publishing: 142] [Article Influence: 14.0] [Reference Citation Analysis]
43 Antón M, Alén F, Gómez de Heras R, Serrano A, Pavón FJ, Leza JC, García-bueno B, Rodríguez de Fonseca F, Orio L. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration: OEA blocks ethanol TLR4 signaling. Addiction Biology 2017;22:724-41. [DOI: 10.1111/adb.12365] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 8.2] [Reference Citation Analysis]
44 Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ. Alcohol alters IL-6 Signal Transduction in the CNS of Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021;41:733-50. [PMID: 32447612 DOI: 10.1007/s10571-020-00879-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
45 Guggenmos M, Schmack K, Sekutowicz M, Garbusow M, Sebold M, Sommer C, Smolka MN, Wittchen HU, Zimmermann US, Heinz A, Sterzer P. Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence. Transl Psychiatry 2017;7:1279. [PMID: 29225356 DOI: 10.1038/s41398-017-0037-y] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
46 Qin L, Zou J, Barnett A, Vetreno RP, Crews FT, Coleman LG Jr. TRAIL Mediates Neuronal Death in AUD: A Link between Neuroinflammation and Neurodegeneration. Int J Mol Sci 2021;22:2547. [PMID: 33806288 DOI: 10.3390/ijms22052547] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Guo Z, Li J. Chlorogenic Acid Prevents Alcohol-induced Brain Damage in Neonatal Rat. Transl Neurosci 2017;8:176-81. [PMID: 29318034 DOI: 10.1515/tnsci-2017-0024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
48 Coleman LG Jr, Zou J, Crews FT. Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J Neuroinflammation 2020;17:27. [PMID: 31954398 DOI: 10.1186/s12974-019-1678-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
49 Zou JY, Crews FT. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 2014;9:e87915. [PMID: 24551070 DOI: 10.1371/journal.pone.0087915] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Chastain LG, Franklin T, Gangisetty O, Cabrera MA, Mukherjee S, Shrivastava P, Jabbar S, Sarkar DK. Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology 2019;44:1579-88. [PMID: 30737481 DOI: 10.1038/s41386-019-0326-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
51 Reale M, Costantini E, Jagarlapoodi S, Khan H, Belwal T, Cichelli A. Relationship of Wine Consumption with Alzheimer's Disease. Nutrients 2020;12:E206. [PMID: 31941117 DOI: 10.3390/nu12010206] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
52 Qin L, Crews FT. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2014;38:657-71. [PMID: 24117525 DOI: 10.1111/acer.12272] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
53 Vetreno RP, Patel Y, Patel U, Walter TJ, Crews FT. Adolescent intermittent ethanol reduces serotonin expression in the adult raphe nucleus and upregulates innate immune expression that is prevented by exercise. Brain Behav Immun 2017;60:333-45. [PMID: 27647531 DOI: 10.1016/j.bbi.2016.09.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
54 Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, Nixon K. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 2014;54:103-13. [PMID: 24842804 DOI: 10.1016/j.pnpbp.2014.05.003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 6.3] [Reference Citation Analysis]
55 González-reimers E, Sánchez-pérez M, Santolaria-fernández F, Abreu-gonzález P, De la Vega-prieto M, Viña-rodríguez J, Alemán-valls M, Rodríguez-gaspar M. Changes in cytokine levels during admission and mortality in acute alcoholic hepatitis. Alcohol 2012;46:433-40. [DOI: 10.1016/j.alcohol.2011.10.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
56 Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016;3:11. [PMID: 27148536 DOI: 10.3389/fnut.2016.00011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
57 Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021;81:459-85. [PMID: 33843671 DOI: 10.3233/JAD-201418] [Reference Citation Analysis]
58 Kim SR, Chung ES, Bok E, Baik HH, Chung YC, Won SY, Joe E, Kim TH, Kim SS, Jin MY, Choi SH, Jin BK. Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation. J Neurosci Res 2010;88:1537-48. [PMID: 20025058 DOI: 10.1002/jnr.22318] [Cited by in Crossref: 8] [Cited by in F6Publishing: 18] [Article Influence: 0.7] [Reference Citation Analysis]
59 Orhan C, Kucuk O, Tuzcu M, Sahin N, Komorowski JR, Sahin K. Effect of supplementing chromium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high-fat diet. Food Sci Nutr 2019;7:183-94. [PMID: 30680172 DOI: 10.1002/fsn3.851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
60 Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020;14:5. [PMID: 32063838 DOI: 10.3389/fncel.2020.00005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021;45:1908-26. [PMID: 34486128 DOI: 10.1111/acer.14694] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zou JY, Crews FT. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 2014;9:e87915. [PMID: 24551070 DOI: 10.1371/journal.pone.0087915] [Cited by in Crossref: 97] [Cited by in F6Publishing: 106] [Article Influence: 12.1] [Reference Citation Analysis]
63 Mira RG, Tapia-rojas C, Pérez MJ, Jara C, Vergara EH, Quintanilla RA, Cerpa W. Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug and Alcohol Dependence 2019;205:107628. [DOI: 10.1016/j.drugalcdep.2019.107628] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
64 Bandiera S, Caletti G, Giustina CLD, Hansen AW, Deniz BF, Confortim HD, Pulcinelli RR, Nin MS, Silva LOP, Gomez R. Changes in behavioral and neuronal parameters by alcohol, cigarette, or their combined use in rats. Behav Pharmacol 2019;30:490-9. [PMID: 30724798 DOI: 10.1097/FBP.0000000000000476] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
65 Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L, Rodríguez de Fonseca F, Giné E, López-Moreno JA. The Immune System through the Lens of Alcohol Intake and Gut Microbiota. Int J Mol Sci 2021;22:7485. [PMID: 34299105 DOI: 10.3390/ijms22147485] [Reference Citation Analysis]
66 Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021;12:641286. [PMID: 34777031 DOI: 10.3389/fpsyt.2021.641286] [Reference Citation Analysis]
67 Crews FT, Zou J, Coleman LG Jr. Extracellular microvesicles promote microglia-mediated pro-inflammatory responses to ethanol. J Neurosci Res 2021;99:1940-56. [PMID: 33611821 DOI: 10.1002/jnr.24813] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
68 Suryanarayanan A, Carter JM, Landin JD, Morrow AL, Werner DF, Spigelman I. Role of interleukin-10 (IL-10) in regulation of GABAergic transmission and acute response to ethanol. Neuropharmacology 2016;107:181-8. [PMID: 27016017 DOI: 10.1016/j.neuropharm.2016.03.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
69 El-shoura EA, Messiha BA, Sharkawi SM, Hemeida RA. Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways. European Journal of Pharmacology 2018;834:305-17. [DOI: 10.1016/j.ejphar.2018.07.046] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
70 Aurelian L, Balan I. GABAAR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019;236:3023-43. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
71 Dragone T, Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology in Vitro 2014;28:1126-35. [DOI: 10.1016/j.tiv.2014.05.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
72 Gadad BS, Vargas-Medrano J, Ramos EI, Najera K, Fagan M, Forero A, Thompson PM. Altered levels of interleukins and neurotrophic growth factors in mood disorders and suicidality: an analysis from periphery to central nervous system. Transl Psychiatry 2021;11:341. [PMID: 34078872 DOI: 10.1038/s41398-021-01452-1] [Reference Citation Analysis]
73 Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020;44:320-39. [PMID: 31782169 DOI: 10.1111/acer.14253] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
74 Gano A, Doremus-Fitzwater TL, Deak T. Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure. Brain Res 2016;1646:62-72. [PMID: 27208497 DOI: 10.1016/j.brainres.2016.05.027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
75 Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales. Pharmacol Rev 2012;64:1004-26. [PMID: 22966039 DOI: 10.1124/pr.112.005850] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
76 González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol 2014; 20(40): 14660-14671 [PMID: 25356029 DOI: 10.3748/wjg.v20.i40.14660] [Cited by in CrossRef: 88] [Cited by in F6Publishing: 78] [Article Influence: 11.0] [Reference Citation Analysis]
77 Gruol DL, Vo K, Bray JG, Roberts AJ. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci 2014;8:29. [PMID: 24772072 DOI: 10.3389/fnint.2014.00029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
78 Zou J, Crews FT. Inflammasome-IL-1β Signaling Mediates Ethanol Inhibition of Hippocampal Neurogenesis. Front Neurosci 2012;6:77. [PMID: 22661925 DOI: 10.3389/fnins.2012.00077] [Cited by in Crossref: 69] [Cited by in F6Publishing: 75] [Article Influence: 6.9] [Reference Citation Analysis]
79 Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain. Brain Sci 2016;6:E31. [PMID: 27537918 DOI: 10.3390/brainsci6030031] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
80 Massey VL, Qin L, Cabezas J, Caballeria J, Sancho-Bru P, Bataller R, Crews FT. TLR7-let-7 Signaling Contributes to Ethanol-Induced Hepatic Inflammatory Response in Mice and in Alcoholic Hepatitis. Alcohol Clin Exp Res 2018;42:2107-22. [PMID: 30103265 DOI: 10.1111/acer.13871] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
81 Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend 2017;180:156-70. [PMID: 28892721 DOI: 10.1016/j.drugalcdep.2017.08.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
82 Tiwari V, Kuhad A, Chopra K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav Brain Res 2009;203:296-303. [PMID: 19464322 DOI: 10.1016/j.bbr.2009.05.016] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
83 Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. 2010;30:8285-8295. [PMID: 20554880 DOI: 10.1523/jneurosci.0976-10.2010] [Cited by in Crossref: 347] [Cited by in F6Publishing: 200] [Article Influence: 28.9] [Reference Citation Analysis]
84 Akhtar F, Rouse CA, Catano G, Montalvo M, Ullevig SL, Asmis R, Kharbanda K, Maffi SK. Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. J Neuroinflammation 2017;14:195. [PMID: 28962577 DOI: 10.1186/s12974-017-0965-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
85 Hanak C, Benoit J, Fabry L, Hein M, Verbanck P, de Witte P, Walter H, Dexter DT, Ward RJ. Changes in Pro-Inflammatory Markers in Detoxifying Chronic Alcohol Abusers, Divided by Lesch Typology, Reflect Cognitive Dysfunction. Alcohol and Alcoholism 2017;52:529-34. [DOI: 10.1093/alcalc/agx043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
86 Niciu MJ, Henter ID, Sanacora G, Zarate CA Jr. Glial abnormalities in substance use disorders and depression: does shared glutamatergic dysfunction contribute to comorbidity? World J Biol Psychiatry 2014;15:2-16. [PMID: 24024876 DOI: 10.3109/15622975.2013.829585] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
87 Crews FT, Lawrimore CJ, Walter TJ, Coleman LG Jr. The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017;122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Cited by in Crossref: 124] [Cited by in F6Publishing: 121] [Article Influence: 24.8] [Reference Citation Analysis]
88 Lutz JA, Carter M, Fields L, Barron S, Littleton JM. Altered relation between lipopolysaccharide-induced inflammatory response and excitotoxicity in rat organotypic hippocampal slice cultures during ethanol withdrawal. Alcohol Clin Exp Res 2015;39:827-35. [PMID: 25845566 DOI: 10.1111/acer.12705] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
89 Mead EA, Boulghassoul-pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022;12:804222. [DOI: 10.3389/fgene.2021.804222] [Reference Citation Analysis]
90 Alikunju S, Abdul Muneer PM, Zhang Y, Szlachetka AM, Haorah J. The inflammatory footprints of alcohol-induced oxidative damage in neurovascular components. Brain Behav Immun 2011;25 Suppl 1:S129-36. [PMID: 21262340 DOI: 10.1016/j.bbi.2011.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
91 Riester K, Brawek B, Savitska D, Fröhlich N, Zirdum E, Mojtahedi N, Heneka MT, Garaschuk O. In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav Immun 2020;87:243-55. [PMID: 31837418 DOI: 10.1016/j.bbi.2019.12.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
92 Topper LA, Valenzuela CF. Effect of repeated alcohol exposure during the third trimester-equivalent on messenger RNA levels for interleukin-1β, chemokine (C-C motif) ligand 2, and interleukin 10 in the developing rat brain after injection of lipopolysaccharide. Alcohol 2014;48:773-80. [PMID: 25446642 DOI: 10.1016/j.alcohol.2014.09.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
93 Tiwari V, Chopra K. Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signaling and cell death cascade in neonatal rat brain: Resveratrol and alcohol-induced neuronal apoptosis. Journal of Neurochemistry 2011. [DOI: 10.1111/j.1471-4159.2011.07236.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 39] [Article Influence: 1.2] [Reference Citation Analysis]
94 Fernandez-Lizarbe S, Pascual M, Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 2009;183:4733-44. [PMID: 19752239 DOI: 10.4049/jimmunol.0803590] [Cited by in Crossref: 240] [Cited by in F6Publishing: 223] [Article Influence: 18.5] [Reference Citation Analysis]
95 Omata Y, Saito Y, Fujita K, Ogawa Y, Nishio K, Yoshida Y, Niki E. Induction of adaptive response and enhancement of PC12 cell tolerance by lipopolysaccharide primarily through the upregulation of glutathione S-transferase A3 via Nrf2 activation. Free Radic Biol Med 2008;45:1437-45. [PMID: 18793714 DOI: 10.1016/j.freeradbiomed.2008.08.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
96 Seemiller LR, Gould TJ. The effects of adolescent alcohol exposure on learning and related neurobiology in humans and rodents. Neurobiol Learn Mem 2020;172:107234. [PMID: 32428585 DOI: 10.1016/j.nlm.2020.107234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Crews FT, Vetreno RP. Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol 2014;118:315-57. [PMID: 25175868 DOI: 10.1016/B978-0-12-801284-0.00010-5] [Cited by in Crossref: 86] [Cited by in F6Publishing: 54] [Article Influence: 12.3] [Reference Citation Analysis]
98 Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021:S0889-1591(21)00287-7. [PMID: 34343618 DOI: 10.1016/j.bbi.2021.07.023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
99 Alfonso-Loeches S, Ureña-Peralta J, Morillo-Bargues MJ, Gómez-Pinedo U, Guerri C. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB. Neurochem Res 2016;41:193-209. [PMID: 26555554 DOI: 10.1007/s11064-015-1760-5] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 9.0] [Reference Citation Analysis]
100 Gruol DL. Alcohol–Chemokine Interaction and Neurotransmission. In: Cui C, Grandison L, Noronha A, editors. Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Boston: Springer US; 2013. pp. 387-424. [DOI: 10.1007/978-1-4614-4729-0_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
101 Vetreno RP, Lawrimore CJ, Rowsey PJ, Crews FT. Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin. Front Neurosci 2018;12:200. [PMID: 29643762 DOI: 10.3389/fnins.2018.00200] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
102 Lowe PP, Morel C, Ambade A, Iracheta-Vellve A, Kwiatkowski E, Satishchandran A, Furi I, Cho Y, Gyongyosi B, Catalano D, Lefebvre E, Fischer L, Seyedkazemi S, Schafer DP, Szabo G. Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations. J Neuroinflammation 2020;17:296. [PMID: 33036616 DOI: 10.1186/s12974-020-01972-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
103 Lippai D, Bala S, Petrasek J, Csak T, Levin I, Kurt-Jones EA, Szabo G. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J Leukoc Biol 2013;94:171-82. [PMID: 23625200 DOI: 10.1189/jlb.1212659] [Cited by in Crossref: 122] [Cited by in F6Publishing: 116] [Article Influence: 13.6] [Reference Citation Analysis]
104 McClintick JN, Tischfield JA, Deng L, Kapoor M, Xuei X, Edenberg HJ. Ethanol activates immune response in lymphoblastoid cells. Alcohol 2019;79:81-91. [PMID: 30639126 DOI: 10.1016/j.alcohol.2019.01.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
105 West RK, Najjar LZ, Leasure JL. Exercise-driven restoration of the alcohol-damaged brain. Int Rev Neurobiol 2019;147:219-67. [PMID: 31607356 DOI: 10.1016/bs.irn.2019.07.003] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Helms CM, Messaoudi I, Jeng S, Freeman WM, Vrana KE, Grant KA. A longitudinal analysis of circulating stress-related proteins and chronic ethanol self-administration in cynomolgus macaques. Alcohol Clin Exp Res 2012;36:995-1003. [PMID: 22141444 DOI: 10.1111/j.1530-0277.2011.01685.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
107 Rodriguez-Gonzalez A, Orio L. Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy? Curr Pharm Des 2020;26:2426-37. [PMID: 31969090 DOI: 10.2174/1381612826666200122153541] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
108 Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015;28:55-93. [DOI: 10.1007/s12640-015-9528-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
109 Lawrimore CJ, Coleman LG, Crews FT. Ethanol induces interferon expression in neurons via TRAIL: role of astrocyte-to-neuron signaling. Psychopharmacology (Berl) 2019;236:2881-97. [PMID: 30610351 DOI: 10.1007/s00213-018-5153-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
110 Vore AS, Doremus-Fitzwater T, Gano A, Deak T. Adolescent Ethanol Exposure Leads to Stimulus-Specific Changes in Cytokine Reactivity and Hypothalamic-Pituitary-Adrenal Axis Sensitivity in Adulthood. Front Behav Neurosci 2017;11:78. [PMID: 28522965 DOI: 10.3389/fnbeh.2017.00078] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
111 Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs 2013;11:4328-49. [PMID: 24184795 DOI: 10.3390/md11114328] [Cited by in Crossref: 124] [Cited by in F6Publishing: 98] [Article Influence: 13.8] [Reference Citation Analysis]
112 Chen PB, Wang H, Liu Y, Lin S, Chou H, Sheen L. Immunomodulatory activities of polysaccharides from Chlorella pyrenoidosa in a mouse model of Parkinson's disease. Journal of Functional Foods 2014;11:103-13. [DOI: 10.1016/j.jff.2014.08.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
113 Lanquetin A, Leclercq S, de Timary P, Segobin S, Naveau M, Coulbault L, Maccioni P, Lorrai I, Colombo G, Vivien D, Rubio M, Pitel AL. Role of inflammation in alcohol-related brain abnormalities: a translational study. Brain Commun 2021;3:fcab154. [PMID: 34396111 DOI: 10.1093/braincomms/fcab154] [Reference Citation Analysis]
114 Liu B, Barber DS, Stevens SM. Stable Isotope Labeling with Amino Acids in Cell Culture-Based Proteomic Analysis of Ethanol-Induced Protein Expression Profiles in Microglia. In: Kobeissy FH, editor. Psychiatric Disorders. Totowa: Humana Press; 2012. pp. 551-65. [DOI: 10.1007/978-1-61779-458-2_35] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
115 Neupane SP. Psychoneuroimmunology: The new frontier in suicide research. Brain Behav Immun Health 2021;17:100344. [PMID: 34589823 DOI: 10.1016/j.bbih.2021.100344] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Saba W, Goutal S, Auvity S, Kuhnast B, Coulon C, Kouyoumdjian V, Buvat I, Leroy C, Tournier N. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using 18 F-DPA-714: Imaging alcohol neuroimmunity. Addiction Biology 2018;23:1000-9. [DOI: 10.1111/adb.12548] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
117 Moon KH, Tajuddin N, Brown J 3rd, Neafsey EJ, Kim HY, Collins MA. Phospholipase A2, oxidative stress, and neurodegeneration in binge ethanol-treated organotypic slice cultures of developing rat brain. Alcohol Clin Exp Res 2014;38:161-9. [PMID: 23909864 DOI: 10.1111/acer.12221] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
118 Barton EA, Lu Y, Megjhani M, Maynard ME, Kulkarni PM, Roysam B, Leasure JL. Binge alcohol alters exercise-driven neuroplasticity. Neuroscience 2017;343:165-73. [PMID: 27932309 DOI: 10.1016/j.neuroscience.2016.11.041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
119 Gu Y, Wu Z, Zeng F, Jiang M, Teeling JL, Ni J, Takahashi I. Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis Induces Bone Loss-Correlated Alzheimer's Disease-Like Pathologies in Middle-Aged Mice. J Alzheimers Dis 2020;78:61-74. [PMID: 32925065 DOI: 10.3233/JAD-200689] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
120 Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. Int Rev Neurobiol 2019;148:101-68. [PMID: 31733663 DOI: 10.1016/bs.irn.2019.09.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
121 Ge S, Murugesan N, Pachter JS. Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation. J Mol Neurosci 2009;39:269-83. [PMID: 19340610 DOI: 10.1007/s12031-009-9197-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
122 Wang S, Xu M, Li F, Wang X, Bower KA, Frank JA, Lu Y, Chen G, Zhang Z, Ke Z, Shi X, Luo J. Ethanol promotes mammary tumor growth and angiogenesis: the involvement of chemoattractant factor MCP-1. Breast Cancer Res Treat 2012;133:1037-48. [PMID: 22160640 DOI: 10.1007/s10549-011-1902-7] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 4.4] [Reference Citation Analysis]
123 Trachtman JN. Vision and the hypothalamus. Optometry - Journal of the American Optometric Association 2010;81:100-15. [DOI: 10.1016/j.optm.2009.07.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
124 Tibbo AJ, Baillie GS. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells 2020;9:E1254. [PMID: 32438615 DOI: 10.3390/cells9051254] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
125 Benjamins JA, Nedelkoska L, Lisak RP, Hannigan JH, Sokol RJ. Cytokines Reduce Toxic Effects of Ethanol on Oligodendroglia. Neurochem Res 2011;36:1677-86. [DOI: 10.1007/s11064-011-0401-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
126 Neupane SP, Skulberg A, Skulberg KR, Aass HC, Bramness JG. Cytokine Changes following Acute Ethanol Intoxication in Healthy Men: A Crossover Study. Mediators Inflamm 2016;2016:3758590. [PMID: 28090151 DOI: 10.1155/2016/3758590] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
127 Kelso ML, Liput DJ, Eaves DW, Nixon K. Upregulated vimentin suggests new areas of neurodegeneration in a model of an alcohol use disorder. Neuroscience 2011;197:381-93. [PMID: 21958862 DOI: 10.1016/j.neuroscience.2011.09.019] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 4.5] [Reference Citation Analysis]
128 West RK, Wooden JI, Barton EA, Leasure JL. Recurrent binge ethanol is associated with significant loss of dentate gyrus granule neurons in female rats despite concomitant increase in neurogenesis. Neuropharmacology 2019;148:272-83. [PMID: 30659841 DOI: 10.1016/j.neuropharm.2019.01.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
129 Stowell RD, Majewska AK. Acute ethanol exposure rapidly alters cerebellar and cortical microglial physiology. Eur J Neurosci 2021;54:5834-43. [PMID: 32064695 DOI: 10.1111/ejn.14706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
130 Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Aguirre CA, Singh M, Ehlers CL, Conti B. Time Course of Blood and Brain Cytokine/Chemokine Levels Following Adolescent Alcohol Exposure and Withdrawal in Rats. Alcohol Clin Exp Res 2019;43:2547-58. [PMID: 31589333 DOI: 10.1111/acer.14209] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
131 Henriques JF, Portugal CC, Canedo T, Relvas JB, Summavielle T, Socodato R. Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicology Letters 2018;283:21-31. [DOI: 10.1016/j.toxlet.2017.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
132 Peng H, Geil Nickell CR, Chen KY, McClain JA, Nixon K. Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 2017;62:29-40. [PMID: 28755749 DOI: 10.1016/j.alcohol.2017.02.175] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 8.4] [Reference Citation Analysis]
133 Mayfield J, Ferguson L, Harris RA. Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol 2013;23:513-20. [PMID: 23434064 DOI: 10.1016/j.conb.2013.01.024] [Cited by in Crossref: 125] [Cited by in F6Publishing: 124] [Article Influence: 13.9] [Reference Citation Analysis]
134 Hammad AM, Alasmari F, Sari Y, Scott Hall F, Tiwari AK. Alcohol and Cocaine Exposure Modulates ABCB1 and ABCG2 Transporters in Male Alcohol-Preferring Rats. Mol Neurobiol 2019;56:1921-32. [PMID: 29978425 DOI: 10.1007/s12035-018-1153-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
135 Correa F, De Laurentiis A, Franchi AM. Ethanol downregulates N-acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms. Eur J Pharmacol 2016;786:224-33. [PMID: 27266665 DOI: 10.1016/j.ejphar.2016.06.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
136 Priyanka SH, Syam Das S, Thushara AJ, Rauf AA, Indira M. All Trans Retinoic Acid Attenuates Markers of Neuroinflammation in Rat Brain by Modulation of SIRT1 and NFκB. Neurochem Res 2018;43:1791-801. [DOI: 10.1007/s11064-018-2595-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
137 Cruz C, Meireles M, Silva SM. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation. Neurotoxicology 2017;60:107-15. [PMID: 28408342 DOI: 10.1016/j.neuro.2017.04.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
138 Breese GR, Knapp DJ. Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol 2016;52:9-23. [PMID: 27139233 DOI: 10.1016/j.alcohol.2016.01.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
139 Kane CJ, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, Phelan PS, Drew PD. Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice. Alcohol Clin Exp Res. 2014;38:384-391. [PMID: 24033454 DOI: 10.1111/acer.12244] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 8.3] [Reference Citation Analysis]
140 Salehi E, Mashayekh M, Taheri F, Gholami M, Motaghinejad M, Safari S, Sepehr A. Curcumin Can be Acts as Effective agent for Prevent or Treatment of Alcohol-induced Toxicity in Hepatocytes: An Illustrated Mechanistic Review. Iran J Pharm Res 2021;20:418-36. [PMID: 34400970 DOI: 10.22037/ijpr.2020.112852.13985] [Reference Citation Analysis]
141 Crews FT, Qin L, Sheedy D, Vetreno RP, Zou J. High mobility group box 1/Toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry 2013;73:602-12. [PMID: 23206318 DOI: 10.1016/j.biopsych.2012.09.030] [Cited by in Crossref: 166] [Cited by in F6Publishing: 155] [Article Influence: 16.6] [Reference Citation Analysis]
142 Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP. Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 2009;29:9839-49. [PMID: 19657036 DOI: 10.1523/JNEUROSCI.2496-09.2009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 108] [Article Influence: 11.9] [Reference Citation Analysis]
143 Frank MG, Watkins LR, Maier SF. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 2011;25 Suppl 1:S21-8. [PMID: 21256955 DOI: 10.1016/j.bbi.2011.01.005] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 5.6] [Reference Citation Analysis]
144 McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, Nixon K. Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun 2011;25 Suppl 1:S120-8. [PMID: 21262339 DOI: 10.1016/j.bbi.2011.01.006] [Cited by in Crossref: 119] [Cited by in F6Publishing: 113] [Article Influence: 10.8] [Reference Citation Analysis]
145 Szabo G, Lippai D. Converging Actions of Alcohol on Liver and Brain Immune Signaling. Neuroimmune Signaling in Drug Actions and Addictions. Elsevier; 2014. pp. 359-80. [DOI: 10.1016/b978-0-12-801284-0.00011-7] [Cited by in Crossref: 54] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
146 Cui C, Shurtleff D, Harris RA. Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol 2014;118:1-12. [PMID: 25175859 DOI: 10.1016/B978-0-12-801284-0.00001-4] [Cited by in Crossref: 74] [Cited by in F6Publishing: 51] [Article Influence: 10.6] [Reference Citation Analysis]
147 Farkas A, Kemény L. Alcohol, liver, systemic inflammation and skin: a focus on patients with psoriasis. Skin Pharmacol Physiol 2013;26:119-26. [PMID: 23549156 DOI: 10.1159/000348865] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
148 Stärkel P, Leclercq S, de Timary P, Schnabl B. Intestinal dysbiosis and permeability: the yin and yang in alcohol dependence and alcoholic liver disease. Clin Sci (Lond) 2018;132:199-212. [PMID: 29352076 DOI: 10.1042/CS20171055] [Cited by in Crossref: 41] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
149 Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 2009;44:115-27. [PMID: 18940959 DOI: 10.1093/alcalc/agn079] [Cited by in Crossref: 354] [Cited by in F6Publishing: 339] [Article Influence: 25.3] [Reference Citation Analysis]
150 Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021;15:650785. [PMID: 33935636 DOI: 10.3389/fnins.2021.650785] [Reference Citation Analysis]
151 Asatryan L, Khoja S, Rodgers KE, Alkana RL, Tsukamoto H, Davies DL. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice. J Neuroimmunol 2015;285:169-79. [PMID: 26198936 DOI: 10.1016/j.jneuroim.2015.06.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
152 Liu M, Guo S, Huang D, Hu D, Wu Y, Zhou W, Song W. Chronic Alcohol Exposure Alters Gene Expression and Neurodegeneration Pathways in the Brain of Adult Mice. J Alzheimers Dis 2022. [PMID: 35034908 DOI: 10.3233/JAD-215508] [Reference Citation Analysis]
153 Ezquer F, Morales P, Quintanilla ME, Santapau D, Lespay-Rebolledo C, Ezquer M, Herrera-Marschitz M, Israel Y. Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Sci Rep. 2018;8:4325. [PMID: 29567966 DOI: 10.1038/s41598-018-22750-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
154 Kuracha MR, Thomas P, Tobi M, McVicker BL. Role of cell-free network communication in alcohol-associated disorders and liver metastasis. World J Gastroenterol 2021; 27(41): 7080-7099 [DOI: 10.3748/wjge.v27.i41.7080] [Reference Citation Analysis]
155 Crews FT, Walter TJ, Coleman LG Jr, Vetreno RP. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl) 2017;234:1483-98. [PMID: 28210782 DOI: 10.1007/s00213-017-4560-6] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 15.8] [Reference Citation Analysis]
156 Bray JG, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol. Neuroscience 2017;354:88-100. [PMID: 28431906 DOI: 10.1016/j.neuroscience.2017.04.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
157 Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome-microglia connections via the gut-brain axis. J Exp Med 2019;216:41-59. [PMID: 30385457 DOI: 10.1084/jem.20180794] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 22.0] [Reference Citation Analysis]
158 Bajo M, Varodayan FP, Madamba SG, Robert AJ, Casal LM, Oleata CS, Siggins GR, Roberto M. IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala. Front Pharmacol 2015;6:49. [PMID: 25852553 DOI: 10.3389/fphar.2015.00049] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
159 Miranda-Mendez A, Lugo-Baruqui A, Armendariz-Borunda J. Molecular basis and current treatment for alcoholic liver disease. Int J Environ Res Public Health. 2010;7:1872-1888. [PMID: 20622998 DOI: 10.3390/ijerph7051872] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
160 Zhang K, Luo J. Role of MCP-1 and CCR2 in alcohol neurotoxicity. Pharmacol Res 2019;139:360-6. [PMID: 30472461 DOI: 10.1016/j.phrs.2018.11.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
161 Karlsson C, Schank JR, Rehman F, Stojakovic A, Björk K, Barbier E, Solomon M, Tapocik J, Engblom D, Thorsell A, Heilig M. Proinflammatory signaling regulates voluntary alcohol intake and stress-induced consumption after exposure to social defeat stress in mice: Cytokines, alcohol and stress. Addiction Biology 2017;22:1279-88. [DOI: 10.1111/adb.12416] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
162 Chang GQ, Karatayev O, Halkina V, Edelstien J, Ramirez E, Leibowitz SF. Hypothalamic CCL2/CCR2 Chemokine System: Role in Sexually Dimorphic Effects of Maternal Ethanol Exposure on Melanin-Concentrating Hormone and Behavior in Adolescent Offspring. J Neurosci 2018;38:9072-90. [PMID: 30201767 DOI: 10.1523/JNEUROSCI.0637-18.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
163 Agostini JF, Toé HCZD, Vieira KM, Baldin SL, Costa NLF, Cruz CU, Longo L, Machado MM, da Silveira TR, Schuck PF, Rico EP. Cholinergic System and Oxidative Stress Changes in the Brain of a Zebrafish Model Chronically Exposed to Ethanol. Neurotox Res 2018;33:749-58. [DOI: 10.1007/s12640-017-9816-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
164 Wei Z, Chen L, Zhang J, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in substance use disorders: a meta‐analysis of 74 studies. Addiction 2020;115:2257-67. [DOI: 10.1111/add.15160] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
165 Zahr NM. Peripheral TNFα elevations in abstinent alcoholics are associated with hepatitis C infection. PLoS One 2018;13:e0191586. [PMID: 29408932 DOI: 10.1371/journal.pone.0191586] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
166 Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2013;4:48-63. [PMID: 23336044 DOI: 10.1021/cn300186b] [Cited by in Crossref: 186] [Cited by in F6Publishing: 170] [Article Influence: 18.6] [Reference Citation Analysis]
167 Melkumyan M, Snyder AE, Bingaman SS, Arnold AC, Silberman Y. Astrocytes play a critical role in mediating the effect of acute ethanol on central amygdala glutamatergic transmission. Neuropharmacology 2021;205:108918. [PMID: 34896402 DOI: 10.1016/j.neuropharm.2021.108918] [Reference Citation Analysis]
168 Robinson G, Most D, Ferguson LB, Mayfield J, Harris RA, Blednov YA. Neuroimmune pathways in alcohol consumption: evidence from behavioral and genetic studies in rodents and humans. Int Rev Neurobiol 2014;118:13-39. [PMID: 25175860 DOI: 10.1016/B978-0-12-801284-0.00002-6] [Cited by in Crossref: 63] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
169 Terasaki LS, Schwarz JM. Effects of Moderate Prenatal Alcohol Exposure during Early Gestation in Rats on Inflammation across the Maternal-Fetal-Immune Interface and Later-Life Immune Function in the Offspring. J Neuroimmune Pharmacol 2016;11:680-92. [PMID: 27318824 DOI: 10.1007/s11481-016-9691-8] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
170 Marshall SA, McKnight KH, Blose AK, Lysle DT, Thiele TE. Modulation of Binge-like Ethanol Consumption by IL-10 Signaling in the Basolateral Amygdala. J Neuroimmune Pharmacol 2017;12:249-59. [PMID: 27640210 DOI: 10.1007/s11481-016-9709-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
171 Santos-Molina L, Herrerias A, Zawatsky CN, Gunduz-Cinar O, Cinar R, Iyer MR, Wood CM, Lin Y, Gao B, Kunos G, Godlewski G. Effects of a Peripherally Restricted Hybrid Inhibitor of CB1 Receptors and iNOS on Alcohol Drinking Behavior and Alcohol-Induced Endotoxemia. Molecules 2021;26:5089. [PMID: 34443679 DOI: 10.3390/molecules26165089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
172 Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci. 2011;48:19-47. [PMID: 21657944 DOI: 10.3109/10408363.2011.580567] [Cited by in Crossref: 165] [Cited by in F6Publishing: 140] [Article Influence: 15.0] [Reference Citation Analysis]
173 Nutt D, Hayes A, Fonville L, Zafar R, Palmer EOC, Paterson L, Lingford-Hughes A. Alcohol and the Brain. Nutrients 2021;13:3938. [PMID: 34836193 DOI: 10.3390/nu13113938] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Tiwari V, Chopra K. Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology 2012;224:519-35. [DOI: 10.1007/s00213-012-2779-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
175 Most D, Ferguson L, Harris RA. Molecular basis of alcoholism. Handb Clin Neurol 2014;125:89-111. [PMID: 25307570 DOI: 10.1016/B978-0-444-62619-6.00006-9] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
176 Yuan CP, Wang W, Liu JX. Neuro-endocrine-immune network and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2010; 18(19): 2024-2028 [DOI: 10.11569/wcjd.v18.i19.2024] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
177 Dukay B, Walter FR, Vigh JP, Barabási B, Hajdu P, Balassa T, Migh E, Kincses A, Hoyk Z, Szögi T, Borbély E, Csoboz B, Horváth P, Fülöp L, Penke B, Vígh L, Deli MA, Sántha M, Tóth ME. Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury. J Neuroinflammation 2021;18:22. [PMID: 33423680 DOI: 10.1186/s12974-020-02070-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Yang L, Xu B, Yuan C, Dai Z, Wang Y, Li Q, Yang Q, Li N, Qing H. The Antioxidative Action of ZTP by Increasing Nrf2/ARE Signal Pathway. Evid Based Complement Alternat Med 2019;2019:5421528. [PMID: 30984274 DOI: 10.1155/2019/5421528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
179 Crabbe JC, Harris RA, Koob GF. Preclinical studies of alcohol binge drinking. Ann N Y Acad Sci 2011;1216:24-40. [PMID: 21272009 DOI: 10.1111/j.1749-6632.2010.05895.x] [Cited by in Crossref: 133] [Cited by in F6Publishing: 124] [Article Influence: 12.1] [Reference Citation Analysis]
180 Coleman LG Jr, Zou J, Crews FT. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 2017;14:22. [PMID: 28118842 DOI: 10.1186/s12974-017-0799-4] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 17.6] [Reference Citation Analysis]
181 Daulatzai MA. Pathogenesis of cognitive dysfunction in patients with obstructive sleep apnea: a hypothesis with emphasis on the nucleus tractus solitarius. Sleep Disord 2012;2012:251096. [PMID: 23470865 DOI: 10.1155/2012/251096] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
182 Mitchell CM, El Jordi O, Yamamoto BK. Inflammatory mechanisms of abused drugs. Role of Inflammation in Environmental Neurotoxicity. Elsevier; 2019. pp. 133-68. [DOI: 10.1016/bs.ant.2018.10.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
183 Blednov YA, Ponomarev I, Geil C, Bergeson S, Koob GF, Harris RA. Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 2012;17:108-20. [PMID: 21309947 DOI: 10.1111/j.1369-1600.2010.00284.x] [Cited by in Crossref: 169] [Cited by in F6Publishing: 165] [Article Influence: 15.4] [Reference Citation Analysis]
184 Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System. Alcohol Clin Exp Res 2016;40:2260-70. [PMID: 27650785 DOI: 10.1111/acer.13208] [Cited by in Crossref: 116] [Cited by in F6Publishing: 107] [Article Influence: 19.3] [Reference Citation Analysis]
185 Coleman LG Jr, Zou J, Qin L, Crews FT. HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun 2018;72:61-77. [PMID: 29102800 DOI: 10.1016/j.bbi.2017.10.027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
186 Corrigan F, Hutchinson M. Are the effects of alcohol on the CNS influenced by Toll-like receptor signaling? Expert Rev Clin Immunol 2012;8:201-3. [PMID: 22390481 DOI: 10.1586/eci.11.99] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
187 Sun J, Zhang S, Zhang X, Zhang X, Dong H, Qian Y. IL-17A is implicated in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation. J Neuroinflammation 2015;12:165. [PMID: 26373740 DOI: 10.1186/s12974-015-0394-5] [Cited by in Crossref: 63] [Cited by in F6Publishing: 57] [Article Influence: 9.0] [Reference Citation Analysis]
188 Roberto M, Patel RR, Bajo M. Ethanol and Cytokines in the Central Nervous System. Handb Exp Pharmacol 2018;248:397-431. [PMID: 29236160 DOI: 10.1007/164_2017_77] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
189 Coleman LG Jr, He J, Lee J, Styner M, Crews FT. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol Clin Exp Res 2011;35:671-88. [PMID: 21223304 DOI: 10.1111/j.1530-0277.2010.01385.x] [Cited by in Crossref: 113] [Cited by in F6Publishing: 116] [Article Influence: 10.3] [Reference Citation Analysis]
190 Nwachukwu KN, Evans WA, Sides TR, Trevisani CP, Davis A, Marshall SA. Chemogenetic manipulation of astrocytic signaling in the basolateral amygdala reduces binge-like alcohol consumption in male mice. J Neurosci Res 2021;99:1957-72. [PMID: 33844860 DOI: 10.1002/jnr.24841] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
191 Ehrlich D, Pirchl M, Humpel C. Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. Neuroscience 2012;205:154-66. [PMID: 22244974 DOI: 10.1016/j.neuroscience.2011.12.054] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 4.6] [Reference Citation Analysis]
192 Thompson WL, Karpus WJ, Van Eldik LJ. MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 2008;5:35. [PMID: 18706086 DOI: 10.1186/1742-2094-5-35] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 4.4] [Reference Citation Analysis]
193 Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 2020;52:222-40. [PMID: 31924476 DOI: 10.1016/j.immuni.2019.12.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 26.5] [Reference Citation Analysis]
194 Wong EL, Stowell RD, Majewska AK. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Front Synaptic Neurosci 2017;9:11. [PMID: 28674490 DOI: 10.3389/fnsyn.2017.00011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
195 Mota BC, Kelly ÁM. Exercise alters LPS-induced glial activation in the mouse brain. Neuronal Signal 2020;4:NS20200003. [PMID: 33304620 DOI: 10.1042/NS20200003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
196 Coleman LG Jr, Liu W, Oguz I, Styner M, Crews FT. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility. Pharmacol Biochem Behav 2014;116:142-51. [PMID: 24275185 DOI: 10.1016/j.pbb.2013.11.021] [Cited by in Crossref: 85] [Cited by in F6Publishing: 84] [Article Influence: 9.4] [Reference Citation Analysis]
197 Romero-acevedo L, González-reimers E, Martín-gonzález MC, González-díaz A, Quintero-platt G, Reyes-suárez P, Martínez-martínez D, Santolaria-fernández F. Handgrip strength and lean mass are independently related to brain atrophy among alcoholics. Clinical Nutrition 2019;38:1439-46. [DOI: 10.1016/j.clnu.2018.06.965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
198 Neupane SP. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression. Front Immunol 2016;7:655. [PMID: 28082989 DOI: 10.3389/fimmu.2016.00655] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
199 Nixon K, Morris SA, Liput DJ, Kelso ML. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders. Alcohol 2010;44:39-56. [PMID: 20113873 DOI: 10.1016/j.alcohol.2009.11.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.4] [Reference Citation Analysis]
200 Zahr NM, Kaufman KL, Harper CG. Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol. 2011;7:284-294. [PMID: 21487421 DOI: 10.1038/nrneurol.2011.42] [Cited by in Crossref: 181] [Cited by in F6Publishing: 149] [Article Influence: 16.5] [Reference Citation Analysis]
201 Silverstein PS, Kumar A. HIV-1 and alcohol: interactions in the central nervous system. Alcohol Clin Exp Res 2014;38:604-10. [PMID: 24134164 DOI: 10.1111/acer.12282] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
202 Baradaran Z, Vakilian A, Zare M, Hashemzehi M, Hosseini M, Dinpanah H, Beheshti F. Metformin improved memory impairment caused by chronic ethanol consumption during adolescent to adult period of rats: Role of oxidative stress and neuroinflammation. Behav Brain Res 2021;411:113399. [PMID: 34087254 DOI: 10.1016/j.bbr.2021.113399] [Reference Citation Analysis]
203 Lawrimore CJ, Crews FT. Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron-Like SH-SY5Y and Microglia-Like BV2. Alcohol Clin Exp Res 2017;41:939-54. [PMID: 28273337 DOI: 10.1111/acer.13368] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 8.6] [Reference Citation Analysis]
204 Babenko NA, Semenova YA. Sphingolipid Turnover in the Hippocampus and Cognitive Dysfunction in Alcoholized Rats: Correction with the Help of Alimentary n-3 Fatty Acids. Neurophysiology 2010;42:169-74. [DOI: 10.1007/s11062-010-9147-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
205 Umhau JC, Schwandt M, Solomon MG, Yuan P, Nugent A, Zarate CA, Drevets WC, Hall SD, George DT, Heilig M. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism. Alcohol Clin Exp Res 2014;38:1301-6. [PMID: 24689518 DOI: 10.1111/acer.12367] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
206 Ji A, Diao H, Wang X, Yang R, Zhang J, Luo W, Cao R, Cao Z, Wang F, Cai T. n-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. NeuroToxicology 2012;33:780-8. [DOI: 10.1016/j.neuro.2012.02.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
207 Tiwari V, Chopra K. Resveratrol abrogates alcohol-induced cognitive deficits by attenuating oxidative-nitrosative stress and inflammatory cascade in the adult rat brain. Neurochem Int. 2013;62:861-869. [PMID: 23422878 DOI: 10.1016/j.neuint.2013.02.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 6.1] [Reference Citation Analysis]
208 Marshall SA, Geil CR, Nixon K. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration. Brain Sci 2016;6:E16. [PMID: 27240410 DOI: 10.3390/brainsci6020016] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 9.0] [Reference Citation Analysis]
209 Byun K, Bayarsaikhan D, Bayarsaikhan E, Son M, Oh S, Lee J, Son HI, Won MH, Kim SU, Song BJ, Lee B. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans. PLoS One 2014;9:e104699. [PMID: 25140518 DOI: 10.1371/journal.pone.0104699] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
210 Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019;43:425-38. [PMID: 30589435 DOI: 10.1111/acer.13946] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
211 Silva-Gotay A, Davis J, Tavares ER, Richardson HN. Alcohol drinking during early adolescence activates microglial cells and increases frontolimbic Interleukin-1 beta and Toll-like receptor 4 gene expression, with heightened sensitivity in male rats compared to females. Neuropharmacology 2021;197:108698. [PMID: 34252404 DOI: 10.1016/j.neuropharm.2021.108698] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
212 Willette AA, Bendlin BB, McLaren DG, Canu E, Kastman EK, Kosmatka KJ, Xu G, Field AS, Alexander AL, Colman RJ, Weindruch RH, Coe CL, Johnson SC. Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage 2010;51:987-94. [PMID: 20298794 DOI: 10.1016/j.neuroimage.2010.03.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 41] [Article Influence: 2.8] [Reference Citation Analysis]
213 Baganz NL, Lindler KM, Zhu CB, Smith JT, Robson MJ, Iwamoto H, Deneris ES, Hewlett WA, Blakely RD. A requirement of serotonergic p38α mitogen-activated protein kinase for peripheral immune system activation of CNS serotonin uptake and serotonin-linked behaviors. Transl Psychiatry 2015;5:e671. [PMID: 26529424 DOI: 10.1038/tp.2015.168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
214 Dehkordi NG, Noorbakhshnia M, Ghaedi K, Esmaeili A, Dabaghi M. Omega-3 fatty acids prevent LPS-induced passive avoidance learning and memory and CaMKII-α gene expression impairments in hippocampus of rat. Pharmacological Reports 2015;67:370-5. [DOI: 10.1016/j.pharep.2014.10.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
215 Ahearn OC, Watson MN, Rawls SM. Chemokines, cytokines and substance use disorders. Drug Alcohol Depend 2021;220:108511. [PMID: 33465606 DOI: 10.1016/j.drugalcdep.2021.108511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
216 Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R, Nath C. A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sciences 2012;90:713-20. [DOI: 10.1016/j.lfs.2012.03.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
217 Melbourne JK, Thompson KR, Peng H, Nixon K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. Prog Mol Biol Transl Sci 2019;167:179-221. [PMID: 31601404 DOI: 10.1016/bs.pmbts.2019.06.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
218 Fitri LE, Sardjono TW, Rahmah Z, Siswanto B, Handono K, Dachlan YP. Low Fetal Weight is Directly Caused by Sequestration of Parasites and Indirectly by IL-17 and IL-10 Imbalance in the Placenta of Pregnant Mice with Malaria. Korean J Parasitol 2015;53:189-96. [PMID: 25925177 DOI: 10.3347/kjp.2015.53.2.189] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
219 Harricharan R, Abboussi O, Daniels WM. Addiction: A dysregulation of satiety and inflammatory processes. Brain Research in Addiction. Elsevier; 2017. pp. 65-91. [DOI: 10.1016/bs.pbr.2017.07.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
220 Johansson EM, García-Gutiérrez MS, Moscoso-Castro M, Manzanares J, Valverde O. Reduced Contextual Discrimination following Alcohol Consumption or MDMA Administration in Mice. PLoS One 2015;10:e0142978. [PMID: 26566284 DOI: 10.1371/journal.pone.0142978] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
221 Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, Koob G, Richardson HN, Lombardo J, Hoffman PL, Tabakoff B. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J 2015;282:3556-78. [PMID: 26183165 DOI: 10.1111/febs.13358] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
222 Coleman LG Jr, Crews FT. Innate Immune Signaling and Alcohol Use Disorders. Handb Exp Pharmacol 2018;248:369-96. [PMID: 29500721 DOI: 10.1007/164_2018_92] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 11.7] [Reference Citation Analysis]
223 Fernández-Rodríguez C, González-Reimers E, Quintero-Platt G, de la Vega-Prieto MJ, Pérez-Hernández O, Martín-González C, Espelosín-Ortega E, Romero-Acevedo L, Santolaria-Fernández F. Homocysteine, Liver Function Derangement and Brain Atrophy in Alcoholics. Alcohol Alcohol 2016;51:691-7. [PMID: 27261471 DOI: 10.1093/alcalc/agw031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
224 Fox HC, D'Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, Sinha R. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol. 2012;27:156-166. [PMID: 22389080 DOI: 10.1002/hup.1251] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 7.7] [Reference Citation Analysis]
225 Rao PS, Ahmed S, Sari Y. Effects of ceftriaxone on systemic and central expression of anti- and pro-inflammatory cytokines in alcohol-preferring (P) rats exposed to ethanol. Alcohol Alcohol 2014;49:390-8. [PMID: 24743029 DOI: 10.1093/alcalc/agu019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
226 Persidsky Y, Ho W, Ramirez SH, Potula R, Abood ME, Unterwald E, Tuma R. HIV-1 infection and alcohol abuse: neurocognitive impairment, mechanisms of neurodegeneration and therapeutic interventions. Brain Behav Immun 2011;25 Suppl 1:S61-70. [PMID: 21397004 DOI: 10.1016/j.bbi.2011.03.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 5.5] [Reference Citation Analysis]
227 Qin L, Liu Y, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013;61:855-68. [PMID: 23536230 DOI: 10.1002/glia.22479] [Cited by in Crossref: 159] [Cited by in F6Publishing: 151] [Article Influence: 17.7] [Reference Citation Analysis]
228 Yang J, Xue X, Tian H, Wang X, Dong Y, Wang F, Zhao Y, Yao X, Cui W, Wu C. Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages. Pharmacology & Therapeutics 2014;144:321-37. [DOI: 10.1016/j.pharmthera.2014.07.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
229 Zhou DX, Zhao Y, Baker JA, Gu Q, Hamre KM, Yue J, Jones BC, Cook MN, Lu L. The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network. PLoS One 2017;12:e0178689. [PMID: 28575045 DOI: 10.1371/journal.pone.0178689] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
230 Vetreno RP, Crews FT. Current hypotheses on the mechanisms of alcoholism. Handb Clin Neurol 2014;125:477-97. [PMID: 25307591 DOI: 10.1016/B978-0-444-62619-6.00027-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
231 González-Reimers E, Fernández-Rodríguez CM, Candelaria Martín-González M, Hernández-Betancor I, Abreu-González P, José de la Vega-Prieto M, Elvira-Cabrera O, Santolaria-Fernández F. Antioxidant vitamins and brain dysfunction in alcoholics. Alcohol Alcohol 2014;49:45-50. [PMID: 24070686 DOI: 10.1093/alcalc/agt150] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
232 Babenko N. Brain, Fish Oil-Enriched Diet, and Sphingolipids. Fish and Fish Oil in Health and Disease Prevention. Elsevier; 2016. pp. 263-72. [DOI: 10.1016/b978-0-12-802844-5.00024-5] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
233 Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Reference Citation Analysis]
234 Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2018;11:490. [PMID: 30687006 DOI: 10.3389/fnmol.2018.00490] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
235 Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 2010;35:2510-20. [PMID: 20827273 DOI: 10.1038/npp.2010.116] [Cited by in Crossref: 183] [Cited by in F6Publishing: 178] [Article Influence: 15.3] [Reference Citation Analysis]
236 Crews FT, Vetreno RP. Addiction, adolescence, and innate immune gene induction. Front Psychiatry 2011;2:19. [PMID: 21629837 DOI: 10.3389/fpsyt.2011.00019] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
237 Ward RJ, Lallemand F, de Witte P. Influence of adolescent heavy session drinking on the systemic and brain innate immune system. Alcohol Alcohol 2014;49:193-7. [PMID: 24532587 DOI: 10.1093/alcalc/agu002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
238 Nennig SE, Schank JR. The Role of NFkB in Drug Addiction: Beyond Inflammation. Alcohol Alcohol 2017;52:172-9. [PMID: 28043969 DOI: 10.1093/alcalc/agw098] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 11.2] [Reference Citation Analysis]
239 Boero G, Porcu P, Morrow AL. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol Stress 2020;12:100203. [PMID: 31879693 DOI: 10.1016/j.ynstr.2019.100203] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
240 Freeman K, Brureau A, Vadigepalli R, Staehle MM, Brureau MM, Gonye GE, Hoek JB, Hooper DC, Schwaber JS. Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei. J Neuroinflammation 2012;9:97. [PMID: 22626265 DOI: 10.1186/1742-2094-9-97] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
241 Vetreno RP, Crews FT. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and Toll-like receptors in the adult prefrontal cortex. Neuroscience 2012;226:475-88. [PMID: 22986167 DOI: 10.1016/j.neuroscience.2012.08.046] [Cited by in Crossref: 110] [Cited by in F6Publishing: 110] [Article Influence: 11.0] [Reference Citation Analysis]
242 Kuracha MR, Thomas P, Tobi M, McVicker BL. Role of cell-free network communication in alcohol-associated disorders and liver metastasis. World J Gastroenterol 2021; 27(41): 7080-7099 [PMID: 34887629 DOI: 10.3748/wjg.v27.i41.7080] [Reference Citation Analysis]
243 Kume H, Okazaki K, Yamaji T, Sasaki H. A newly designed enteral formula containing whey peptides and fermented milk product protects mice against concanavalin A-induced hepatitis by suppressing overproduction of inflammatory cytokines. Clin Nutr 2012;31:283-9. [PMID: 22119211 DOI: 10.1016/j.clnu.2011.10.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
244 Tyler RE, Kim SW, Guo M, Jang YJ, Damadzic R, Stodden T, Vendruscolo LF, Koob GF, Wang G, Wiers CE, Volkow ND. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: A comparison between in vivo and in vitro TSPO radioligand binding. Eur J Neurosci 2019. [DOI: 10.1111/ejn.14392] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
245 Yun JA, Jeong KS, Ahn YS, Han Y, Choi KS. The Interaction of Inflammatory Markers and Alcohol-Use on Cognitive Function in Korean Male Firefighters. Psychiatry Investig 2021;18:205-13. [PMID: 33685038 DOI: 10.30773/pi.2020.0101] [Reference Citation Analysis]
246 Harris RA, Blednov YA. Neuroimmune Genes and Alcohol Drinking Behavior. In: Cui C, Grandison L, Noronha A, editors. Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Boston: Springer US; 2013. pp. 425-40. [DOI: 10.1007/978-1-4614-4729-0_13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
247 Roche M, Finn DP. Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2010;3:2517-53. [PMID: 27713365 DOI: 10.3390/ph3082517] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 3.7] [Reference Citation Analysis]
248 Min LJ, Mogi M, Shudou M, Jing F, Tsukuda K, Ohshima K, Iwanami J, Horiuchi M. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension 2012;59:1079-88. [PMID: 22454480 DOI: 10.1161/HYPERTENSIONAHA.112.192401] [Cited by in Crossref: 69] [Cited by in F6Publishing: 31] [Article Influence: 6.9] [Reference Citation Analysis]
249 Guerri C, Pascual M. Role of Toll-Like Receptor 4 in Alcohol-Induced Neuroinflammation and Behavioral Dysfunctions. In: Cui C, Grandison L, Noronha A, editors. Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Boston: Springer US; 2013. pp. 279-306. [DOI: 10.1007/978-1-4614-4729-0_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
250 Bell-temin H, Zhang P, Chaput D, King MA, You M, Liu B, Stevens SM. Quantitative Proteomic Characterization of Ethanol-Responsive Pathways in Rat Microglial Cells. J Proteome Res 2013;12:2067-77. [DOI: 10.1021/pr301038f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
251 Palmer E, Tyacke R, Sastre M, Lingford-Hughes A, Nutt D, Ward RJ. Alcohol Hangover: Underlying Biochemical, Inflammatory and Neurochemical Mechanisms. Alcohol Alcohol 2019;54:196-203. [PMID: 30916313 DOI: 10.1093/alcalc/agz016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
252 Reyes REN, Al Omran AJ, Davies DL, Asatryan L. Antibiotic-induced disruption of commensal microbiome linked to increases in binge-like ethanol consumption behavior. Brain Res 2020;1747:147067. [PMID: 32827548 DOI: 10.1016/j.brainres.2020.147067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
253 Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 2018;15:197. [PMID: 29976212 DOI: 10.1186/s12974-018-1241-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
254 Lawrimore CJ, Coleman LG, Zou J, Crews FT. Ethanol Induction of Innate Immune Signals Across BV2 Microglia and SH-SY5Y Neuroblastoma Involves Induction of IL-4 and IL-13. Brain Sci 2019;9:E228. [PMID: 31510019 DOI: 10.3390/brainsci9090228] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
255 Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, Hamid AA, Ugusman A, Kumar J. Alcohol Use Disorder, Neurodegeneration, Alzheimer's and Parkinson's Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Front Cell Neurosci 2020;14:282. [PMID: 33061892 DOI: 10.3389/fncel.2020.00282] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
256 Zou J, Crews F. Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-κB and proinflammatory cytokines. Alcohol Clin Exp Res 2010;34:777-89. [PMID: 20201932 DOI: 10.1111/j.1530-0277.2010.01150.x] [Cited by in Crossref: 111] [Cited by in F6Publishing: 107] [Article Influence: 9.3] [Reference Citation Analysis]
257 Jacobsen JHW, Hutchinson MR, Mustafa S. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy. Current Opinion in Pharmacology 2016;26:131-7. [DOI: 10.1016/j.coph.2015.10.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
258 Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring. Neuroscience 2015;310:163-75. [PMID: 26365610 DOI: 10.1016/j.neuroscience.2015.09.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
259 Tiwari V, Chopra K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience 2013;244:147-58. [DOI: 10.1016/j.neuroscience.2013.03.042] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
260 Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype. Neurobiol Dis 2013;54:239-51. [PMID: 23313316 DOI: 10.1016/j.nbd.2012.12.016] [Cited by in Crossref: 147] [Cited by in F6Publishing: 143] [Article Influence: 16.3] [Reference Citation Analysis]
261 Bray JG, Reyes KC, Roberts AJ, Ransohoff RM, Gruol DL. Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Neuropharmacology 2013;67:115-25. [PMID: 23164616 DOI: 10.1016/j.neuropharm.2012.11.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
262 Weil ZM, Corrigan JD, Karelina K. Alcohol abuse after traumatic brain injury: Experimental and clinical evidence. Neuroscience & Biobehavioral Reviews 2016;62:89-99. [DOI: 10.1016/j.neubiorev.2016.01.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
263 Ayers-Ringler JR, Jia YF, Qiu YY, Choi DS. Role of astrocytic glutamate transporter in alcohol use disorder. World J Psychiatr 2016; 6(1): 31-42 [PMID: 27014596 DOI: 10.5498/wjp.v6.i1.31] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
264 Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res 2010;68:261-75. [PMID: 20804792 DOI: 10.1016/j.neures.2010.08.007] [Cited by in Crossref: 177] [Cited by in F6Publishing: 168] [Article Influence: 14.8] [Reference Citation Analysis]
265 Chapp AD, Behnke JE, Driscoll KM, Fan Y, Hoban E, Shan Z, Zhang L, Chen QH. Acetate Mediates Alcohol Excitotoxicity in Dopaminergic-like PC12 Cells. ACS Chem Neurosci 2019;10:235-45. [PMID: 30247872 DOI: 10.1021/acschemneuro.8b00189] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
266 Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
267 Sirivelu MP, MohanKumar PS, MohanKumar SM. Differential effects of systemic interleukin-1β on gene expression in brainstem noradrenergic nuclei. Life Sci 2012;90:77-81. [PMID: 22036618 DOI: 10.1016/j.lfs.2011.10.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
268 Chaturvedi LS, Zhang P, Basson MD. Effects of extracellular pressure and alcohol on the microglial response to inflammatory stimulation. Am J Surg 2012;204:602-6. [PMID: 23140827 DOI: 10.1016/j.amjsurg.2012.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
269 Drieu A, Lanquetin A, Levard D, Glavan M, Campos F, Quenault A, Lemarchand E, Naveau M, Pitel AL, Castillo J, Vivien D, Rubio M. Alcohol exposure-induced neurovascular inflammatory priming impacts ischemic stroke and is linked with brain perivascular macrophages. JCI Insight 2020;5:129226. [PMID: 31990687 DOI: 10.1172/jci.insight.129226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
270 Tarr AJ, Chen Q, Wang Y, Sheridan JF, Quan N. Neural and behavioral responses to low-grade inflammation. Behav Brain Res 2012;235:334-41. [PMID: 22898545 DOI: 10.1016/j.bbr.2012.07.038] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
271 Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2020;14:601111. [PMID: 33574742 DOI: 10.3389/fnbeh.2020.601111] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
272 Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2019;177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 14.3] [Reference Citation Analysis]
273 Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020;212:107573. [PMID: 32437827 DOI: 10.1016/j.pharmthera.2020.107573] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
274 Donev R, Thome J. Inflammation: good or bad for ADHD? Atten Defic Hyperact Disord 2010;2:257-66. [PMID: 21432611 DOI: 10.1007/s12402-010-0038-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
275 Das SK, Mukherjee S, Vasudevan DM. Effects of long term ethanol consumption mediated oxidative stress on neovessel generation in liver. Toxicol Mech Methods. 2012;22:375-382. [PMID: 22394347 DOI: 10.3109/15376516.2012.666651] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
276 Vetreno RP, Qin L, Coleman LG Jr, Crews FT. Increased Toll-like Receptor-MyD88-NFκB-Proinflammatory neuroimmune signaling in the orbitofrontal cortex of humans with alcohol use disorder. Alcohol Clin Exp Res 2021;45:1747-61. [PMID: 34415075 DOI: 10.1111/acer.14669] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
277 López-Pedrajas R, Ramírez-Lamelas DT, Muriach B, Sánchez-Villarejo MV, Almansa I, Vidal-Gil L, Romero FJ, Barcia JM, Muriach M. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum. Front Cell Neurosci 2015;9:279. [PMID: 26283916 DOI: 10.3389/fncel.2015.00279] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
278 Nelson TE, Hao C, Manos J, Ransohoff RM, Gruol DL. Altered hippocampal synaptic transmission in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Brain Behav Immun 2011;25 Suppl 1:S106-19. [PMID: 21356306 DOI: 10.1016/j.bbi.2011.02.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 2.8] [Reference Citation Analysis]
279 Kane CJ, Drew PD. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol 2016;100:951-9. [PMID: 27462100 DOI: 10.1189/jlb.3MR0416-171R] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
280 Crews FT, Zou J, Qin L. Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 2011;25 Suppl 1:S4-S12. [PMID: 21402143 DOI: 10.1016/j.bbi.2011.03.003] [Cited by in Crossref: 206] [Cited by in F6Publishing: 188] [Article Influence: 18.7] [Reference Citation Analysis]
281 Schneider R, Bandiera S, Souza DG, Bellaver B, Caletti G, Quincozes-santos A, Elisabetsky E, Gomez R. N-acetylcysteine Prevents Alcohol Related Neuroinflammation in Rats. Neurochem Res 2017;42:2135-41. [DOI: 10.1007/s11064-017-2218-8] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
282 Kalk NJ, Guo Q, Owen D, Cherian R, Erritzoe D, Gilmour A, Ribeiro AS, McGonigle J, Waldman A, Matthews P, Cavanagh J, McInnes I, Dar K, Gunn R, Rabiner EA, Lingford-Hughes AR. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a [11C]PBR28 PET study. Transl Psychiatry 2017;7:e996. [PMID: 28072413 DOI: 10.1038/tp.2016.264] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 7.4] [Reference Citation Analysis]
283 Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013;24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
284 Kane CJ, Phelan KD, Han L, Smith RR, Xie J, Douglas JC, Drew PD. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-γ agonists. Brain Behav Immun 2011;25 Suppl 1:S137-45. [PMID: 21376806 DOI: 10.1016/j.bbi.2011.02.016] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 7.0] [Reference Citation Analysis]
285 Wang Y, Wang X, Li H, Xu M, Frank J, Luo J. Binge ethanol exposure induces endoplasmic reticulum stress in the brain of adult mice. Toxicol Appl Pharmacol 2018;356:172-81. [PMID: 30114398 DOI: 10.1016/j.taap.2018.08.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
286 Blednov YA, Benavidez JM, Geil C, Perra S, Morikawa H, Harris RA. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 2011;25 Suppl 1:S92-S105. [PMID: 21266194 DOI: 10.1016/j.bbi.2011.01.008] [Cited by in Crossref: 162] [Cited by in F6Publishing: 154] [Article Influence: 14.7] [Reference Citation Analysis]
287 Richey L, Doremus-Fitzwater TL, Buck HM, Deak T. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure. Pharmacol Biochem Behav 2012;103:284-94. [PMID: 22921768 DOI: 10.1016/j.pbb.2012.08.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
288 Petralia MC, Mazzon E, Mangano K, Fagone P, Di Marco R, Falzone L, Basile MS, Nicoletti F, Cavalli E. Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders. Exp Ther Med 2020;19:1755-62. [PMID: 32104230 DOI: 10.3892/etm.2020.8410] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
289 Franklin KM, Hauser SR, Lasek AW, McClintick J, Ding ZM, McBride WJ, Bell RL. Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacology (Berl) 2015;232:2251-62. [PMID: 25585681 DOI: 10.1007/s00213-014-3852-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
290 Valenta JP, Gonzales RA. Chronic Intracerebroventricular Infusion of Monocyte Chemoattractant Protein-1 Leads to a Persistent Increase in Sweetened Ethanol Consumption During Operant Self-Administration But Does Not Influence Sucrose Consumption in Long-Evans Rats. Alcohol Clin Exp Res 2016;40:187-95. [PMID: 26683974 DOI: 10.1111/acer.12928] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
291 Zhang L, Chen J, Meng J, Zhang Y, Liu Y, Zhan C, Chen X, Zhang L, Liang C. Effect of alcohol on chronic pelvic pain and prostatic inflammation in a mouse model of experimental autoimmune prostatitis. Prostate 2019;79:1466-76. [DOI: 10.1002/pros.23866] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
292 Jain N, Oswal N, Chawla AS, Agrawal T, Biswas M, Vrati S, Rath S, George A, Bal V, Medigeshi GR. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function. PLoS Negl Trop Dis 2017;11:e0005329. [PMID: 28151989 DOI: 10.1371/journal.pntd.0005329] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
293 Pereira PA, Gonçalves E, Silva A, Millner T, Madeira MD. Effects of chronic alcohol consumption and withdrawal on the cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei of the rat: An unbiased stereological study. Neurotoxicology 2020;76:58-66. [PMID: 31634498 DOI: 10.1016/j.neuro.2019.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
294 Tay TL, Béchade C, D'Andrea I, St-Pierre MK, Henry MS, Roumier A, Tremblay ME. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Front Mol Neurosci 2017;10:421. [PMID: 29354029 DOI: 10.3389/fnmol.2017.00421] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 20.5] [Reference Citation Analysis]
295 Ahlers KE, Karaçay B, Fuller L, Bonthius DJ, Dailey ME. Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia 2015;63:1694-713. [PMID: 25856413 DOI: 10.1002/glia.22835] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 7.6] [Reference Citation Analysis]
296 Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 2010; 16(11): 1304-1313 [PMID: 20238396 DOI: 10.3748/wjg.v16.i11.1304] [Cited by in CrossRef: 135] [Cited by in F6Publishing: 123] [Article Influence: 11.3] [Reference Citation Analysis]
297 Kane CJ, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, Drew PD. Effects of ethanol on immune response in the brain: region-specific changes in aged mice. J Neuroinflammation 2013;10:66. [PMID: 23701841 DOI: 10.1186/1742-2094-10-66] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
298 Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020;6:47-66. [PMID: 33680846 DOI: 10.3233/BPL-190095] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
299 Basu Mallik S, Mudgal J, Hall S, Kinra M, Grant GD, Nampoothiri M, Anoopkumar-Dukie S, Arora D. Remedial effects of caffeine against depressive-like behaviour in mice by modulation of neuroinflammation and BDNF. Nutr Neurosci 2021;:1-9. [PMID: 33814004 DOI: 10.1080/1028415X.2021.1906393] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
300 Blednov YA, Benavidez JM, Black M, Harris RA. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front Neurosci 2014;8:129. [PMID: 24904269 DOI: 10.3389/fnins.2014.00129] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
301 Pandey R, Ghorpade A. Cytosolic phospholipase A2 regulates alcohol-mediated astrocyte inflammatory responses in HIV-associated neurocognitive disorders. Cell Death Discov 2015;1:15045. [PMID: 27551474 DOI: 10.1038/cddiscovery.2015.45] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
302 Marshall SA, Casachahua JD, Rinker JA, Blose AK, Lysle DT, Thiele TE. IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. Brain Behav Immun 2016;51:258-67. [PMID: 26365025 DOI: 10.1016/j.bbi.2015.09.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
303 Woodcock EA, Hillmer AT, Mason GF, Cosgrove KP. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. Mol Neuropsychiatry 2019;5:125-46. [PMID: 31312635 DOI: 10.1159/000499621] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
304 Lundgaard I, Wang W, Eberhardt A, Vinitsky HS, Reeves BC, Peng S, Lou N, Hussain R, Nedergaard M. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep 2018;8:2246. [PMID: 29396480 DOI: 10.1038/s41598-018-20424-y] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
305 Doremus-Fitzwater TL, Gano A, Paniccia JE, Deak T. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure. Physiol Behav 2015;148:131-44. [PMID: 25708278 DOI: 10.1016/j.physbeh.2015.02.032] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
306 Qin L, Crews FT. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflammation 2012;9:130. [PMID: 22709825 DOI: 10.1186/1742-2094-9-130] [Cited by in Crossref: 96] [Cited by in F6Publishing: 107] [Article Influence: 9.6] [Reference Citation Analysis]
307 Crews FT, Boettiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 2009;93:237-47. [PMID: 19410598 DOI: 10.1016/j.pbb.2009.04.018] [Cited by in Crossref: 415] [Cited by in F6Publishing: 371] [Article Influence: 31.9] [Reference Citation Analysis]
308 A Quinteros D, Witt Hansen A, Bellaver B, Bobermin LD, R Pulcinelli R, Bandiera S, Caletti G, Bitencourt PER, Quincozes-Santos A, Gomez R. Combined Exposure to Alcohol and Tobacco Smoke Changes Oxidative, Inflammatory, and Neurotrophic Parameters in Different Areas of the Brains of Rats. ACS Chem Neurosci 2019;10:1336-46. [PMID: 30653286 DOI: 10.1021/acschemneuro.8b00412] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
309 Whitman BA, Knapp DJ, Werner DF, Crews FT, Breese GR. The cytokine mRNA increase induced by withdrawal from chronic ethanol in the sterile environment of brain is mediated by CRF and HMGB1 release. Alcohol Clin Exp Res 2013;37:2086-97. [PMID: 23895427 DOI: 10.1111/acer.12189] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 5.9] [Reference Citation Analysis]
310 Crews FT, Fisher R, Deason C, Vetreno RP. Loss of Basal Forebrain Cholinergic Neurons Following Adolescent Binge Ethanol Exposure: Recovery With the Cholinesterase Inhibitor Galantamine. Front Behav Neurosci 2021;15:652494. [PMID: 33716687 DOI: 10.3389/fnbeh.2021.652494] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
311 Poole LG, Dolin CE, Arteel GE. Organ-Organ Crosstalk and Alcoholic Liver Disease. Biomolecules 2017;7:E62. [PMID: 28812994 DOI: 10.3390/biom7030062] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
312 Walter TJ, Crews FT. Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal. J Neuroinflammation 2017;14:86. [PMID: 28427424 DOI: 10.1186/s12974-017-0856-z] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 13.6] [Reference Citation Analysis]
313 Li Q, Liu D, Pan F, Ho CSH, Ho RCM. Ethanol Exposure Induces Microglia Activation and Neuroinflammation through TLR4 Activation and SENP6 Modulation in the Adolescent Rat Hippocampus. Neural Plast 2019;2019:1648736. [PMID: 31781182 DOI: 10.1155/2019/1648736] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
314 Pascual M, Baliño P, Alfonso-Loeches S, Aragón CM, Guerri C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011;25 Suppl 1:S80-91. [PMID: 21352907 DOI: 10.1016/j.bbi.2011.02.012] [Cited by in Crossref: 145] [Cited by in F6Publishing: 129] [Article Influence: 13.2] [Reference Citation Analysis]
315 Nelson BS, Sequeira MK, Schank JR. Bidirectional relationship between alcohol intake and sensitivity to social defeat: association with Tacr1 and Avp expression. Addict Biol 2018;23:142-53. [PMID: 28150369 DOI: 10.1111/adb.12494] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
316 Wang Y, Wen W, Li H, Clementino M, Xu H, Xu M, Ma M, Frank J, Luo J. MANF is neuroprotective against ethanol-induced neurodegeneration through ameliorating ER stress. Neurobiol Dis 2021;148:105216. [PMID: 33296727 DOI: 10.1016/j.nbd.2020.105216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
317 Han M, Böhlke M, Maher T, Kim J. Alcohol exposure increases manganese accumulation in the brain and exacerbates manganese-induced neurotoxicity in mice. Arch Toxicol 2021;95:3665-79. [PMID: 34590183 DOI: 10.1007/s00204-021-03166-1] [Reference Citation Analysis]
318 Choi SH, Lee AY, Park CH, Shin YS, Cho EJ. Protective effect of Carthamus tinctorius L. seed on oxidative stress and cognitive impairment induced by chronic alcohol consumption in mice. Food Sci Biotechnol 2018;27:1475-84. [PMID: 30319858 DOI: 10.1007/s10068-018-0472-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]