BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37. [PMID: 21489257 DOI: 10.1186/1476-4598-10-37] [Cited by in Crossref: 135] [Cited by in F6Publishing: 142] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705-717. [PMID: 23219527 DOI: 10.1016/j.bcp.2012.11.016] [Cited by in Crossref: 622] [Cited by in F6Publishing: 595] [Article Influence: 62.2] [Reference Citation Analysis]
2 Yang L, Zhang J, Zhang S, Dong W, Lou X, Liu S. Quantitative evaluation of aldo-keto reductase expression in hepatocellular carcinoma (HCC) cell lines. Genomics Proteomics Bioinformatics 2013;11:230-40. [PMID: 23584128 DOI: 10.1016/j.gpb.2013.04.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chiarella P, Carbonari D, Iavicoli S. Utility of checklist to describe experimental methods for investigating molecular biomarkers. Biomarkers in Medicine 2015;9:989-95. [DOI: 10.2217/bmm.15.82] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
4 Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer 2016;15:64. [PMID: 27756327 DOI: 10.1186/s12943-016-0550-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
5 Huang CF, Zhang L, Ma SR, Zhao ZL, Wang WM, He KF, Zhao YF, Zhang WF, Liu B, Sun ZJ. Clinical significance of Keap1 and Nrf2 in oral squamous cell carcinoma. PLoS One. 2013;8:e83479. [PMID: 24386210 DOI: 10.1371/journal.pone.0083479] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
6 Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS, Balakrishna JP, Madhunapantula SV. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo. Biomedicines 2021;9:1119. [PMID: 34572304 DOI: 10.3390/biomedicines9091119] [Reference Citation Analysis]
7 Pettazzoni P, Ciamporcero E, Medana C, Pizzimenti S, Dal Bello F, Minero VG, Toaldo C, Minelli R, Uchida K, Dianzani MU, Pili R, Barrera G. Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells. Free Radical Biology and Medicine 2011;51:1610-8. [DOI: 10.1016/j.freeradbiomed.2011.07.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
8 Papierska K, Krajka-Kuźniak V, Paluszczak J, Kleszcz R, Skalski M, Studzińska-Sroka E, Baer-Dubowska W. Lichen-Derived Depsides and Depsidones Modulate the Nrf2, NF-κB and STAT3 Signaling Pathways in Colorectal Cancer Cells. Molecules 2021;26:4787. [PMID: 34443375 DOI: 10.3390/molecules26164787] [Reference Citation Analysis]
9 Huang H, Wu Y, Fu W, Wang X, Zhou L, Xu X, Huang F, Wu Y. Downregulation of Keap1 contributes to poor prognosis and Axitinib resistance of renal cell carcinoma via upregulation of Nrf2 expression. Int J Mol Med 2019;43:2044-54. [PMID: 30896860 DOI: 10.3892/ijmm.2019.4134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bidkhori G, Narimani Z, Hosseini Ashtiani S, Moeini A, Nowzari-Dalini A, Masoudi-Nejad A. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One 2013;8:e67552. [PMID: 23874428 DOI: 10.1371/journal.pone.0067552] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 6.9] [Reference Citation Analysis]
11 Garufi A, Giorno E, Gilardini Montani MS, Pistritto G, Crispini A, Cirone M, D'Orazi G. P62/SQSTM1/Keap1/NRF2 Axis Reduces Cancer Cells Death-Sensitivity in Response to Zn(II)-Curcumin Complex. Biomolecules 2021;11:348. [PMID: 33669070 DOI: 10.3390/biom11030348] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, Hayes DN, Major MB. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 2013;73:2199-210. [PMID: 23382044 DOI: 10.1158/0008-5472.CAN-12-4400] [Cited by in Crossref: 138] [Cited by in F6Publishing: 89] [Article Influence: 15.3] [Reference Citation Analysis]
13 Osman NATAG, Abd El-Maqsoud NMR, El Gelany SAA. Correlation of NQO1 and Nrf2 in Female Genital Tract Cancer and Their Precancerous Lesions (Cervix, Endometrium and Ovary). World J Oncol 2015;6:364-74. [PMID: 28983331 DOI: 10.14740/wjon931w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
14 Khan MA, Srivastava SK, Zubair H, Patel GK, Arora S, Khushman M, Carter JE, Gorman GS, Singh S, Singh AP. Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. J Biol Chem 2020;295:8413-24. [PMID: 32358063 DOI: 10.1074/jbc.RA119.011748] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
15 Hine CM, Mitchell JR. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction. J Clin Exp Pathol 2012;S4:7329. [PMID: 23505614 DOI: 10.4172/2161-0681.S4-004] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
16 Bansod S, Dodhiawala PB, Lim KH. Oncogenic KRAS-Induced Feedback Inflammatory Signaling in Pancreatic Cancer: An Overview and New Therapeutic Opportunities. Cancers (Basel) 2021;13:5481. [PMID: 34771644 DOI: 10.3390/cancers13215481] [Reference Citation Analysis]
17 Genrich G, Kruppa M, Lenk L, Helm O, Broich A, Freitag-Wolf S, Röcken C, Sipos B, Schäfer H, Sebens S. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1. BMC Cancer 2016;16:155. [PMID: 26915435 DOI: 10.1186/s12885-016-2191-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
18 Masuda Y, Vaziri ND, Takasu C, Li S, Robles L, Pham C, Le A, Vo K, Farzaneh SH, Stamos MJ. Salutary effect of pre-treatment with an Nrf2 inducer on ischemia reperfusion injury in the rat liver. Gastroenterol Hepatol (Que). 2014;1:1-7. [PMID: 25558293 DOI: 10.3968/5206] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
19 Zhang L, Li J, Ma J, Chen X, Chen K, Jiang Z, Zong L, Yu S, Li X, Xu Q, Lei J, Duan W, Li W, Shan T, Ma Q, Shen X. The Relevance of Nrf2 Pathway and Autophagy in Pancreatic Cancer Cells upon Stimulation of Reactive Oxygen Species. Oxid Med Cell Longev 2016;2016:3897250. [PMID: 26682003 DOI: 10.1155/2016/3897250] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
20 Duong HQ, You KS, Oh S, Kwak SJ, Seong YS. Silencing of NRF2 Reduces the Expression of ALDH1A1 and ALDH3A1 and Sensitizes to 5-FU in Pancreatic Cancer Cells. Antioxidants (Basel) 2017;6:E52. [PMID: 28671577 DOI: 10.3390/antiox6030052] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
21 Ishii T, Warabi E. Mechanism of Rapid Nuclear Factor-E2-Related Factor 2 (Nrf2) Activation via Membrane-Associated Estrogen Receptors: Roles of NADPH Oxidase 1, Neutral Sphingomyelinase 2 and Epidermal Growth Factor Receptor (EGFR). Antioxidants (Basel) 2019;8:E69. [PMID: 30889865 DOI: 10.3390/antiox8030069] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
22 Sirota R, Gibson D, Kohen R. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biol 2015;4:48-59. [PMID: 25498967 DOI: 10.1016/j.redox.2014.11.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
23 Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Samadi N. Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair 2017;54:13-21. [DOI: 10.1016/j.dnarep.2017.03.008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
24 Chang YJ, Huang YP, Li ZL, Chen CH. GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and Akt pathway after epirubicin treatment in colon cancer DLD-1 cells. PLoS One 2012;7:e35123. [PMID: 22529978 DOI: 10.1371/journal.pone.0035123] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]
25 Samatiwat P, Prawan A, Senggunprai L, Kukongviriyapan V. Repression of Nrf2 enhances antitumor effect of 5-fluorouracil and gemcitabine on cholangiocarcinoma cells. Naunyn-Schmiedeberg's Arch Pharmacol 2015;388:601-12. [DOI: 10.1007/s00210-015-1101-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
26 Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW, Lai ZQ, Lin ZX, Dunn K, Sanderson CM, Alghanem AF, Cross MJ, Ellis EC, Ingelman-Sundberg M, Malik HZ, Kitteringham NR, Goldring CE, Park BK. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med 2015;78:202-12. [PMID: 25445704 DOI: 10.1016/j.freeradbiomed.2014.11.003] [Cited by in Crossref: 113] [Cited by in F6Publishing: 111] [Article Influence: 14.1] [Reference Citation Analysis]
27 Copple IM. The Keap1-Nrf2 cell defense pathway--a promising therapeutic target? Adv Pharmacol. 2012;63:43-79. [PMID: 22776639 DOI: 10.1016/b978-0-12-398339-8.00002-1] [Cited by in Crossref: 106] [Cited by in F6Publishing: 61] [Article Influence: 10.6] [Reference Citation Analysis]
28 Cheng KC, Lin RJ, Cheng JY, Wang SH, Yu JC, Wu JC, Liang YJ, Hsu HM, Yu J, Yu AL. FAM129B, an antioxidative protein, reduces chemosensitivity by competing with Nrf2 for Keap1 binding. EBioMedicine 2019;45:25-38. [PMID: 31262713 DOI: 10.1016/j.ebiom.2019.06.022] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
29 Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, Schäfer H. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2013;32:4825-35. [PMID: 23108405 DOI: 10.1038/onc.2012.493] [Cited by in Crossref: 184] [Cited by in F6Publishing: 172] [Article Influence: 18.4] [Reference Citation Analysis]
30 Sano M, Homma T, Hayashi E, Noda H, Amano Y, Tsujimura R, Yamada T, Quattrochi B, Nemoto N. Clinicopathological characteristics of anaplastic carcinoma of the pancreas with rhabdoid features. Virchows Arch. 2014;465:531-538. [PMID: 25031015 DOI: 10.1007/s00428-014-1631-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
31 Grattarola M, Cucci MA, Roetto A, Dianzani C, Barrera G, Pizzimenti S. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radic Biol Med 2021;174:202-10. [PMID: 34364982 DOI: 10.1016/j.freeradbiomed.2021.08.006] [Reference Citation Analysis]
32 Bao Y, Wang W, Zhou Z, Sun C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS One 2014;9:e114764. [PMID: 25532034 DOI: 10.1371/journal.pone.0114764] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
33 Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021;10:510. [PMID: 33805928 DOI: 10.3390/antiox10040510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Panieri E, Telkoparan-Akillilar P, Suzen S, Saso L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules. 2020;10:791. [PMID: 32443774 DOI: 10.3390/biom10050791] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
35 Ferino A, Nicoletto G, D'Este F, Zorzet S, Lago S, Richter SN, Tikhomirov A, Shchekotikhin A, Xodo LE. Photodynamic Therapy for ras-Driven Cancers: Targeting G-Quadruplex RNA Structures with Bifunctional Alkyl-Modified Porphyrins. J Med Chem 2020;63:1245-60. [PMID: 31930916 DOI: 10.1021/acs.jmedchem.9b01577] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
36 Hocevar BA, Kamendulis LM, Pu X, Perkins SM, Wang ZY, Johnston EL, DeWitt JM, Li L, Loehrer PJ, Klaunig JE, Chiorean EG. Contribution of environment and genetics to pancreatic cancer susceptibility. PLoS One 2014;9:e90052. [PMID: 24651674 DOI: 10.1371/journal.pone.0090052] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
37 Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep 2016;43:99-105. [DOI: 10.1007/s11033-016-3942-x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 8.2] [Reference Citation Analysis]
38 Erkens R, Suvorava T, Sutton TR, Fernandez BO, Mikus-Lelinska M, Barbarino F, Flögel U, Kelm M, Feelisch M, Cortese-Krott MM. Nrf2 Deficiency Unmasks the Significance of Nitric Oxide Synthase Activity for Cardioprotection. Oxid Med Cell Longev 2018;2018:8309698. [PMID: 29854098 DOI: 10.1155/2018/8309698] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
39 Mohs A, Otto T, Schneider KM, Peltzer M, Boekschoten M, Holland CH, Hudert CA, Kalveram L, Wiegand S, Saez-Rodriguez J, Longerich T, Hengstler JG, Trautwein C. Hepatocyte-specific NRF2 activation controls fibrogenesis and carcinogenesis in steatohepatitis. J Hepatol 2021;74:638-48. [PMID: 33342543 DOI: 10.1016/j.jhep.2020.09.037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Liu Q, Zhao S, Meng F, Wang H, Sun L, Li G, Gao F, Chen F. Nrf2 Down-Regulation by Camptothecin Favors Inhibiting Invasion, Metastasis and Angiogenesis in Hepatocellular Carcinoma. Front Oncol 2021;11:661157. [PMID: 34178646 DOI: 10.3389/fonc.2021.661157] [Reference Citation Analysis]
41 Chen RH. Cullin 3 and Its Role in Tumorigenesis. Adv Exp Med Biol 2020;1217:187-210. [PMID: 31898229 DOI: 10.1007/978-981-15-1025-0_12] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021;167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
43 Khalil HS, Goltsov A, Langdon SP, Harrison DJ, Bown J, Deeni Y. Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells. J Biotechnol 2015;202:12-30. [PMID: 25449014 DOI: 10.1016/j.jbiotec.2014.09.027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
44 Yang J, Xu J, Zhang B, Tan Z, Meng Q, Hua J, Liu J, Wang W, Shi S, Yu X, Liang C. Ferroptosis: At the Crossroad of Gemcitabine Resistance and Tumorigenesis in Pancreatic Cancer. Int J Mol Sci 2021;22:10944. [PMID: 34681603 DOI: 10.3390/ijms222010944] [Reference Citation Analysis]
45 Linehan WM, Rouault TA. Molecular pathways: Fumarate hydratase-deficient kidney cancer--targeting the Warburg effect in cancer. Clin Cancer Res 2013;19:3345-52. [PMID: 23633457 DOI: 10.1158/1078-0432.CCR-13-0304] [Cited by in Crossref: 121] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
46 Wang Y, Wang Y, Zhang Z, Park JY, Guo D, Liao H, Yi X, Zheng Y, Zhang D, Chambers SK, Zheng W. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway. Oncotarget 2016;7:10363-72. [PMID: 26824415 DOI: 10.18632/oncotarget.7004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
47 Namani A, Liu K, Wang S, Zhou X, Liao Y, Wang H, Wang XJ, Tang X. Genome-wide global identification of NRF2 binding sites in A549 non-small cell lung cancer cells by ChIP-Seq reveals NRF2 regulation of genes involved in focal adhesion pathways. Aging (Albany NY). 2019;11:12600-12623. [PMID: 31884422 DOI: 10.18632/aging.102590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
48 Kavalappa YP, Udayawara Rudresh D, Gopal SS, Haranahalli Shivarudrappa A, Stephen NM, Rangiah K, Ponesakki G. β-carotene isolated from the marine red alga, Gracillaria sp. potently attenuates the growth of human hepatocellular carcinoma (HepG2) cells by modulating multiple molecular pathways. Journal of Functional Foods 2019;52:165-76. [DOI: 10.1016/j.jff.2018.11.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
49 Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S, Schäfer H. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells. PLoS One 2015;10:e0132978. [PMID: 26226105 DOI: 10.1371/journal.pone.0132978] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
50 Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á, León J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants (Basel) 2020;9:E1214. [PMID: 33276470 DOI: 10.3390/antiox9121214] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
51 Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018;34:21-43. [PMID: 29731393 DOI: 10.1016/j.ccell.2018.03.022] [Cited by in F6Publishing: 387] [Reference Citation Analysis]
52 Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I. Soluble factors from stellate cells induce pancreatic cancer cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification. Oncotarget 2016;7:36719-32. [PMID: 27167341 DOI: 10.18632/oncotarget.9165] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
53 Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020;33:966-97. [PMID: 31989830 DOI: 10.1089/ars.2020.8024] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
54 Fabrizio FP, Sparaneo A, Trombetta D, Muscarella LA. Epigenetic versus Genetic Deregulation of the KEAP1/NRF2 Axis in Solid Tumors: Focus on Methylation and Noncoding RNAs. Oxid Med Cell Longev 2018;2018:2492063. [PMID: 29643973 DOI: 10.1155/2018/2492063] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
55 Sun X, Dong M, Gao Y, Wang Y, Du L, Liu Y, Wang Q, Ji K, He N, Wang J, Zhang M, Gu Y, Song H, Zhai H, Feng L, Xu C, Liu Q. Metformin increases the radiosensitivity of non-small cell lung cancer cells by destabilizing NRF2. Biochemical Pharmacology 2022. [DOI: 10.1016/j.bcp.2022.114981] [Reference Citation Analysis]
56 Castracani CC, Longhitano L, Distefano A, Anfuso D, Kalampoka S, La Spina E, Astuto M, Avola R, Caruso M, Nicolosi D, Giallongo C, Tibullo D, Volti GL. Role of 17β-Estradiol on Cell Proliferation and Mitochondrial Fitness in Glioblastoma Cells. J Oncol 2020;2020:2314693. [PMID: 32148493 DOI: 10.1155/2020/2314693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
57 Zhou L, Yang C, Zhong W, Wang Q, Zhang D, Zhang J, Xie S, Xu M. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells. Biochem Pharmacol 2021;193:114813. [PMID: 34673014 DOI: 10.1016/j.bcp.2021.114813] [Reference Citation Analysis]
58 Zhang B, Wu J, Cai Y, Luo M, Wang B, Gu Y. TCF7L1 indicates prognosis and promotes proliferation through activation of Keap1/NRF2 in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2019;51:375-85. [PMID: 30811526 DOI: 10.1093/abbs/gmz015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
59 Chu X, He S, Liu Y, Liu Y, Feng F, Guo Q, Zhao L, Sun H. Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors. Chem Biol Interact 2021;351:109746. [PMID: 34780792 DOI: 10.1016/j.cbi.2021.109746] [Reference Citation Analysis]
60 Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY, Liu Y, Smiraglia DJ, Yegnasubramanian S, Nelson WG, Kong AN. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res (Phila). 2014;7:1186-1197. [PMID: 25266896 DOI: 10.1158/1940-6207.capr-14-0127] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
61 Zhan L, Zhang H, Zhang Q, Woods CG, Chen Y, Xue P, Dong J, Tokar EJ, Xu Y, Hou Y, Fu J, Yarborough K, Wang A, Qu W, Waalkes MP, Andersen ME, Pi J. Regulatory role of KEAP1 and NRF2 in PPARγ expression and chemoresistance in human non-small-cell lung carcinoma cells. Free Radic Biol Med 2012;53:758-68. [PMID: 22684020 DOI: 10.1016/j.freeradbiomed.2012.05.041] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
62 Wang Y, Zhang J, Huang ZH, Huang XH, Zheng WB, Yin XF, Li YL, Li B, He QY. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death Dis 2017;8:e2876. [PMID: 28617433 DOI: 10.1038/cddis.2017.265] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 6.4] [Reference Citation Analysis]
63 Wang F, Li H, Yan XG, Zhou ZW, Yi ZG, He ZX, Pan ST, Yang YX, Wang ZZ, Zhang X, Yang T, Qiu JX, Zhou SF. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells. Drug Des Devel Ther 2015;9:575-601. [PMID: 25632225 DOI: 10.2147/DDDT.S75221] [Cited by in Crossref: 13] [Cited by in F6Publishing: 29] [Article Influence: 1.9] [Reference Citation Analysis]
64 Nicco C, Batteux F. ROS Modulator Molecules with Therapeutic Potential in Cancers Treatments. Molecules 2017;23:E84. [PMID: 29301225 DOI: 10.3390/molecules23010084] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
65 Sun Q, Ye Z, Qin Y, Fan G, Ji S, Zhuo Q, Xu W, Liu W, Hu Q, Liu M, Zhang Z, Xu X, Yu X. Oncogenic function of TRIM2 in pancreatic cancer by activating ROS-related NRF2/ITGB7/FAK axis. Oncogene 2020;39:6572-88. [PMID: 32929153 DOI: 10.1038/s41388-020-01452-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Sun Y, Abdul Aziz A, Bowles K, Rushworth S. High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma. Cancer Lett 2018;412:37-45. [PMID: 29031566 DOI: 10.1016/j.canlet.2017.10.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
67 Telkoparan-Akillilar P, Suzen S, Saso L. Pharmacological Applications of Nrf2 Inhibitors as Potential Antineoplastic Drugs. Int J Mol Sci 2019;20:E2025. [PMID: 31022969 DOI: 10.3390/ijms20082025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
68 Cruz-Gregorio A, Martínez-Ramírez I, Pedraza-Chaverri J, Lizano M. Reprogramming of Energy Metabolism in Response to Radiotherapy in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019;11:E182. [PMID: 30764513 DOI: 10.3390/cancers11020182] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
69 Wu Z, Hui J. Crocin reverses 1-methyl-3-nitroso-1-nitroguanidine (MNNG)-induced malignant transformation in GES-1 cells through the Nrf2/Hippo signaling pathway. J Gastrointest Oncol 2020;11:1242-52. [PMID: 33456997 DOI: 10.21037/jgo-20-406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Karathedath S, Rajamani BM, Musheer Aalam SM, Abraham A, Varatharajan S, Krishnamurthy P, Mathews V, Velayudhan SR, Balasubramanian P. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS One 2017;12:e0177227. [PMID: 28505160 DOI: 10.1371/journal.pone.0177227] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
71 Panieri E, Saso L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid Med Cell Longev 2019;2019:8592348. [PMID: 31097977 DOI: 10.1155/2019/8592348] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
72 Wang M, Qi YY, Chen S, Sun DF, Wang S, Chen J, Li YQ, Han W, Yang XY. Expression of UDP-glucuronosyltransferase 1A, nuclear factor erythroid-E2-related factor 2 and Kelch-like ECH-associated protein 1 in colonic mucosa, adenoma and adenocarcinoma tissue. Oncol Lett. 2012;4:925-930. [PMID: 23162624 DOI: 10.3892/ol.2012.850] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
73 Sukumari-Ramesh S, Prasad N, Alleyne CH, Vender JR, Dhandapani KM. Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells. BMC Cancer 2015;15:118. [PMID: 25851054 DOI: 10.1186/s12885-015-1134-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
74 Kuang Y, Sechi M, Nurra S, Ljungman M, Neamati N. Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma. J Med Chem 2018;61:1576-94. [PMID: 29328656 DOI: 10.1021/acs.jmedchem.7b01463] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
75 Murugan NJ, Voutsadakis IA. Proteasome regulators in pancreatic cancer. World J Gastrointest Oncol 2022; 14(1): 38-54 [DOI: 10.4251/wjgo.v14.i1.38] [Reference Citation Analysis]
76 Basak P, Sadhukhan P, Sarkar P, Sil PC. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol Rep 2017;4:306-18. [PMID: 28959654 DOI: 10.1016/j.toxrep.2017.06.002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 12.8] [Reference Citation Analysis]
77 Ohnuma T, Sakamoto K, Shinoda A, Takagi C, Ohno S, Nishiyama T, Ogura K, Hiratsuka A. Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549 cells. Archives of Biochemistry and Biophysics 2017;635:66-73. [DOI: 10.1016/j.abb.2017.10.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
78 Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, Kim MP, Fleming JB. Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis 2021;12:693. [PMID: 34247201 DOI: 10.1038/s41419-021-03970-8] [Reference Citation Analysis]
79 Samatiwat P, Prawan A, Senggunprai L, Kukongviriyapan U, Kukongviriyapan V. Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents. Tumor Biol 2016;37:11495-507. [DOI: 10.1007/s13277-016-5015-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
80 van der Wijst MG, Huisman C, Mposhi A, Roelfes G, Rots MG. Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol 2015;9:1259-73. [PMID: 25841766 DOI: 10.1016/j.molonc.2015.03.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
81 Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal 2019;17:121. [PMID: 31511020 DOI: 10.1186/s12964-019-0435-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
82 Durand N, Storz P. Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev Anticancer Ther 2017;17:19-31. [PMID: 27841037 DOI: 10.1080/14737140.2017.1261017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
83 Zhang Q, Wei D, Tan M, Li H, Morgan MA, Sun Y. Transgenic expression of Sag/Rbx2 E3 causes early stage tumor promotion, late stage cytogenesis and acinar loss in the Kras-PDAC model. Neoplasia 2020;22:242-52. [PMID: 32339950 DOI: 10.1016/j.neo.2020.03.002] [Reference Citation Analysis]
84 Huang Y, Li W, Su ZY, Kong AN. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26:1401-1413. [PMID: 26419687 DOI: 10.1016/j.jnutbio.2015.08.001] [Cited by in Crossref: 199] [Cited by in F6Publishing: 188] [Article Influence: 28.4] [Reference Citation Analysis]
85 Ferino A, Rapozzi V, Xodo LE. The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. J Photochem Photobiol B 2020;202:111672. [PMID: 31778952 DOI: 10.1016/j.jphotobiol.2019.111672] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
86 Panieri E, Buha A, Telkoparan-Akillilar P, Cevik D, Kouretas D, Veskoukis A, Skaperda Z, Tsatsakis A, Wallace D, Suzen S, Saso L. Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020;9:E193. [PMID: 32106613 DOI: 10.3390/antiox9030193] [Cited by in F6Publishing: 41] [Reference Citation Analysis]
87 Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M, Levonen AL. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res 2014;122:281-320. [PMID: 24974185 DOI: 10.1016/B978-0-12-420117-0.00008-6] [Cited by in Crossref: 97] [Cited by in F6Publishing: 61] [Article Influence: 13.9] [Reference Citation Analysis]
88 Hayes AJ, Skouras C, Haugk B, Charnley RM. Keap1-Nrf2 signalling in pancreatic cancer. Int J Biochem Cell Biol 2015;65:288-99. [PMID: 26117456 DOI: 10.1016/j.biocel.2015.06.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
89 Boustani MR, Khoshnood RJ, Nikpasand F, Taleshi Z, Ahmadi K, Yahaghi E, Goudarzi PK. Overexpression of ubiquitin-specific protease 2a (USP2a) and nuclear factor erythroid 2-related factor 2 (Nrf2) in human gliomas. J Neurol Sci 2016;363:249-52. [PMID: 27000259 DOI: 10.1016/j.jns.2016.03.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
90 Sousa CM, Kimmelman AC. The complex landscape of pancreatic cancer metabolism. Carcinogenesis. 2014;35:1441-1450. [PMID: 24743516 DOI: 10.1093/carcin/bgu097] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 9.0] [Reference Citation Analysis]
91 Jiang LC, Tang SX. Keap1-Nrf2-ARE signaling pathway and gastric cancer chemoprevention. Shijie Huaren Xiaohua Zazhi 2014; 22(20): 2845-2850 [DOI: 10.11569/wcjd.v22.i20.2845] [Reference Citation Analysis]
92 Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci Rep 2020;10:17954. [PMID: 33087811 DOI: 10.1038/s41598-020-74847-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
93 Li C, Cheng L, Wu H, He P, Zhang Y, Yang Y, Chen J, Chen M. Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells. Mol Med Rep 2018;18:2541-50. [PMID: 30015918 DOI: 10.3892/mmr.2018.9288] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
94 Purohit V, Wang L, Yang H, Li J, Ney GM, Gumkowski ER, Vaidya AJ, Wang A, Bhardwaj A, Zhao E, Dolgalev I, Zamperone A, Abel EV, Magliano MPD, Crawford HC, Diolaiti D, Papagiannakopoulos TY, Lyssiotis CA, Simeone DM. ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes Dev 2021;35:218-33. [PMID: 33446568 DOI: 10.1101/gad.344184.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
95 Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang W, Yan F, Zhao Q, Cao J, Ying M, Gu Y, Zheng L, He Q, Yang B. The SIRT2-mediated deacetylation of AKR1C1 is required for suppressing its pro-metastasis function in Non-Small Cell Lung Cancer. Theranostics 2020;10:2188-200. [PMID: 32104503 DOI: 10.7150/thno.39151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
96 Cykowiak M, Krajka-Kuźniak V, Kleszcz R, Kucińska M, Szaefer H, Piotrowska-Kempisty H, Plewiński A, Murias M, Baer-Dubowska W. Comparison of the Impact of Xanthohumol and Phenethyl Isothiocyanate and Their Combination on Nrf2 and NF-κB Pathways in HepG2 Cells In Vitro and Tumor Burden In Vivo. Nutrients 2021;13:3000. [PMID: 34578877 DOI: 10.3390/nu13093000] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders. Front Pharmacol 2019;10:33. [PMID: 30778297 DOI: 10.3389/fphar.2019.00033] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
98 Philipson E, Engström C, Naredi P, Bourghardt Fagman J. High expression of p62/SQSTM1 predicts shorter survival for patients with pancreatic cancer. BMC Cancer 2022;22:347. [PMID: 35354432 DOI: 10.1186/s12885-022-09468-6] [Reference Citation Analysis]
99 Deng Y, Wu Y, Zhao P, Weng W, Ye M, Sun H, Xu M, Wang C. The Nrf2/HO-1 axis can be a prognostic factor in clear cell renal cell carcinoma. Cancer Manag Res 2019;11:1221-30. [PMID: 30799949 DOI: 10.2147/CMAR.S188046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
100 Kasai S, Arakawa N, Okubo A, Shigeeda W, Yasuhira S, Masuda T, Akasaka T, Shibazaki M, Maesawa C. NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG. PLoS One 2016;11:e0153181. [PMID: 27045471 DOI: 10.1371/journal.pone.0153181] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
101 Xiang Y, Ye W, Huang C, Yu D, Chen H, Deng T, Zhang F, Lou B, Zhang J, Shi K, Chen B, Zhou M. Brusatol Enhances the Chemotherapy Efficacy of Gemcitabine in Pancreatic Cancer via the Nrf2 Signalling Pathway. Oxid Med Cell Longev 2018;2018:2360427. [PMID: 29849873 DOI: 10.1155/2018/2360427] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 9.3] [Reference Citation Analysis]
102 Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
103 Huang CF, Deng WW, Zhang L, Zhang WF, Sun ZJ. Expression of LC3, LAMP2, KEAP1 and NRF2 in Salivary Adenoid Cystic Carcinoma. Pathol Oncol Res 2016;22:109-14. [PMID: 26350055 DOI: 10.1007/s12253-015-9981-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
104 Cykowiak M, Krajka-kuźniak V. Role of Nrf2 in Pancreatic Cancer. Antioxidants 2022;11:98. [DOI: 10.3390/antiox11010098] [Reference Citation Analysis]
105 Shabaik YH, Millard M, Neamati N. Mechanistic evaluation of a novel small molecule targeting mitochondria in pancreatic cancer cells. PLoS One 2013;8:e54346. [PMID: 23349858 DOI: 10.1371/journal.pone.0054346] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
106 Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S, Fagman JB, Browne CD, Umemura A, Valasek MA, Kessler H, Tarin D, Goggins M, Reya T, Diaz-Meco M, Moscat J, Karin M. Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell 2017;32:824-839.e8. [PMID: 29153842 DOI: 10.1016/j.ccell.2017.10.011] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 12.6] [Reference Citation Analysis]
107 Sklirou A, Papanagnou E, Fokialakis N, Trougakos IP. Cancer chemoprevention via activation of proteostatic modules. Cancer Letters 2018;413:110-21. [DOI: 10.1016/j.canlet.2017.10.034] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
108 Kari E, Teppo HR, Haapasaari KM, Kuusisto MEL, Lemma A, Karihtala P, Pirinen R, Soini Y, Jantunen E, Turpeenniemi-Hujanen T, Kuittinen O. Nuclear factor erythroid 2-related factors 1 and 2 are able to define the worst prognosis group among high-risk diffuse large B cell lymphomas treated with R-CHOEP. J Clin Pathol 2019;72:316-21. [PMID: 30755497 DOI: 10.1136/jclinpath-2018-205584] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
109 MacEwan DJ, Barrera LN, Keadsanti S, Rushworth SA, Shah NM, Yuan T, Zaitseva L. Understanding life and death decisions in human leukaemias. Biochem Soc Trans 2014;42:747-51. [PMID: 25109952 DOI: 10.1042/BST20140127] [Reference Citation Analysis]
110 Sharma PK, Varshney R. 2-Deoxy-D-glucose and 6-aminonicotinamide-mediated Nrf2 down regulation leads to radiosensitization of malignant cells via abrogation of GSH-mediated defense. Free Radic Res 2012;46:1446-57. [PMID: 22946929 DOI: 10.3109/10715762.2012.724771] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
111 Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L, Yang H. lncRNA SLC7A11-AS1 Promotes Chemoresistance by Blocking SCFβ-TRCP-Mediated Degradation of NRF2 in Pancreatic Cancer. Mol Ther Nucleic Acids 2020;19:974-85. [PMID: 32036249 DOI: 10.1016/j.omtn.2019.11.035] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
112 Sun X, Wang Q, Wang Y, Du L, Xu C, Liu Q. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage. Int J Mol Sci 2016;17:E997. [PMID: 27347930 DOI: 10.3390/ijms17070997] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
113 Isohookana J, Haapasaari KM, Soini Y, Karihtala P. Keap1 expression has independent prognostic value in pancreatic adenocarcinomas. Diagn Pathol 2015;10:28. [PMID: 25879528 DOI: 10.1186/s13000-015-0258-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
114 Kha ML, Hesse L, Deisinger F, Sipos B, Röcken C, Arlt A, Sebens S, Helm O, Schäfer H. The antioxidant transcription factor Nrf2 modulates the stress response and phenotype of malignant as well as premalignant pancreatic ductal epithelial cells by inducing expression of the ATF3 splicing variant ΔZip2. Oncogene 2019;38:1461-76. [PMID: 30302023 DOI: 10.1038/s41388-018-0518-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
115 Li L, Leung PS. Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol 2014;53:224-36. [PMID: 24875648 DOI: 10.1016/j.biocel.2014.05.021] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.8] [Reference Citation Analysis]
116 Sun Y, Ren J, Wang F. [6]-Gingerol impedes 7,12-dimethylbenz(a)anthracene-induced inflammation and cell proliferation-associated hamster buccal pouch carcinogenesis through modulating Nrf2 signaling events. J Biochem Mol Toxicol 2021;35:e22689. [PMID: 33347680 DOI: 10.1002/jbt.22689] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
117 Ji X, Wang H, Zhu J, Zhu L, Pan H, Li W, Zhou Y, Cong Z, Yan F, Chen S. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Int J Cancer 2014;135:574-84. [PMID: 24374745 DOI: 10.1002/ijc.28699] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 7.8] [Reference Citation Analysis]
118 Abu-Alainin W, Gana T, Liloglou T, Olayanju A, Barrera LN, Ferguson R, Campbell F, Andrews T, Goldring C, Kitteringham N, Park BK, Nedjadi T, Schmid MC, Slupsky JR, Greenhalf W, Neoptolemos JP, Costello E. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. J Pathol 2016;238:423-33. [PMID: 26497117 DOI: 10.1002/path.4665] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
119 Choi B, Kwak M. Shadows of NRF2 in cancer: Resistance to chemotherapy. Current Opinion in Toxicology 2016;1:20-8. [DOI: 10.1016/j.cotox.2016.08.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
120 Limonciel A, Wilmes A, Aschauer L, Radford R, Bloch KM, Mcmorrow T, Pfaller W, van Delft JH, Slattery C, Ryan MP, Lock EA, Jennings P. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch Toxicol 2012;86:1741-51. [DOI: 10.1007/s00204-012-0897-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
121 Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection “gone astray”: Nrf2 and its role in cancer. Onco Targets Ther. 2014;7:1497-1518. [PMID: 25210464 DOI: 10.2147/ott.s36624] [Cited by in Crossref: 17] [Cited by in F6Publishing: 38] [Article Influence: 2.1] [Reference Citation Analysis]
122 Avdović EH, Petrović IP, Stevanović MJ, Saso L, Dimitrić Marković JM, Filipović ND, Živić MŽ, Cvetić Antić TN, Žižić MV, Todorović NV, Vukić M, Trifunović SR, Marković ZS. Synthesis and Biological Screening of New 4-Hydroxycoumarin Derivatives and Their Palladium(II) Complexes. Oxid Med Cell Longev 2021;2021:8849568. [PMID: 34007407 DOI: 10.1155/2021/8849568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016;48:541-67. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 13.0] [Reference Citation Analysis]
124 Xiang Y, Dai S, Li D, Zhu X, Su J, Chen B, Wu M. Brusatol inhibits the invasion and migration of pancreatic cancer cells by suppressing the NRF2/NF-κB/STAT3 signal cascade. Journal of Functional Foods 2022;92:105024. [DOI: 10.1016/j.jff.2022.105024] [Reference Citation Analysis]
125 Khalil HS, Langdon SP, Kankia IH, Bown J, Deeni YY. NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. Oxid Med Cell Longev 2016;2016:4148791. [PMID: 26770651 DOI: 10.1155/2016/4148791] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
126 Sebens S, Bauer I, Geismann C, Grage-Griebenow E, Ehlers S, Kruse ML, Arlt A, Schäfer H. Inflammatory macrophages induce Nrf2 transcription factor-dependent proteasome activity in colonic NCM460 cells and thereby confer anti-apoptotic protection. J Biol Chem 2011;286:40911-21. [PMID: 21990354 DOI: 10.1074/jbc.M111.274902] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
127 Lomeli N, Bota DA, Davies KJA. Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clin Sci (Lond) 2017;131:2573-99. [PMID: 29070521 DOI: 10.1042/CS20160982] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
128 Arlt A, Schäfer H, Kalthoff H. The ‘N-factors’ in pancreatic cancer: functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis. 2012;1:e35. [PMID: 23552468 DOI: 10.1038/oncsis.2012.35] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
129 Ribas V, García-Ruiz C, Fernández-Checa JC. Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med 2016;5:22. [PMID: 27455839 DOI: 10.1186/s40169-016-0106-5] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 13.5] [Reference Citation Analysis]
130 Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS, Bae I. HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep 2014;4:7201. [PMID: 25467193 DOI: 10.1038/srep07201] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
131 Malarz K, Zych D, Gawecki R, Kuczak M, Musioł R, Mrozek-Wilczkiewicz A. New derivatives of 4'-phenyl-2,2':6',2″-terpyridine as promising anticancer agents. Eur J Med Chem 2021;212:113032. [PMID: 33261897 DOI: 10.1016/j.ejmech.2020.113032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
132 Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 2019;217:155-63. [PMID: 30528773 DOI: 10.1016/j.lfs.2018.12.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
133 Taguchi K, Yamamoto M. The KEAP1-NRF2 System in Cancer. Front Oncol 2017;7:85. [PMID: 28523248 DOI: 10.3389/fonc.2017.00085] [Cited by in Crossref: 176] [Cited by in F6Publishing: 170] [Article Influence: 35.2] [Reference Citation Analysis]
134 van der Wijst MG, Brown R, Rots MG. Nrf2, the master redox switch: The Achilles' heel of ovarian cancer? Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014;1846:494-509. [DOI: 10.1016/j.bbcan.2014.09.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
135 Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 2011;286:40725-33. [PMID: 21926171 DOI: 10.1074/jbc.M111.275495] [Cited by in Crossref: 202] [Cited by in F6Publishing: 115] [Article Influence: 18.4] [Reference Citation Analysis]
136 Duong HQ, Yi YW, Kang HJ, Hong YB, Tang W, Wang A, Seong YS, Bae I. Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine. Int J Oncol 2014;44:959-69. [PMID: 24366069 DOI: 10.3892/ijo.2013.2229] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
137 Zhou Y, Wang K, Zhou Y, Li T, Yang M, Wang R, Chen Y, Cao M, Hu R. HEATR1 deficiency promotes pancreatic cancer proliferation and gemcitabine resistance by up-regulating Nrf2 signaling. Redox Biol 2020;29:101390. [PMID: 31785531 DOI: 10.1016/j.redox.2019.101390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
138 Zhao M, Xu H, Zhang B, Hong B, Yan W, Zhang J. Impact of nuclear factor erythroid-derived 2–like 2 and p62/sequestosome expression on prognosis of patients with gliomas. Human Pathology 2015;46:843-9. [DOI: 10.1016/j.humpath.2015.02.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
139 Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 2013;27:2179-91. [PMID: 24142871 DOI: 10.1101/gad.225680.113] [Cited by in Crossref: 729] [Cited by in F6Publishing: 699] [Article Influence: 81.0] [Reference Citation Analysis]
140 Peng CY, You BJ, Lee CL, Wu YC, Lin WH, Lu TL, Chang F, Lee HZ. The Roles of 4β-Hydroxywithanolide E from Physalis peruviana on the Nrf2-Anti-Oxidant System and the Cell Cycle in Breast Cancer Cells. Am J Chin Med 2016;44:617-36. [DOI: 10.1142/s0192415x16500348] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
141 Zhang X, Li T, Gong ES, Liu RH. Antiproliferative Activity of Ursolic Acid in MDA-MB-231 Human Breast Cancer Cells through Nrf2 Pathway Regulation. J Agric Food Chem 2020;68:7404-15. [PMID: 32551573 DOI: 10.1021/acs.jafc.0c03202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
142 Yi YW, Oh S. Comparative analysis of NRF2-responsive gene expression in AcPC-1 pancreatic cancer cell line. Genes Genomics 2015;37:97-109. [PMID: 25540678 DOI: 10.1007/s13258-014-0253-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
143 Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017;6:e371. [PMID: 28805788 DOI: 10.1038/oncsis.2017.65] [Cited by in Crossref: 145] [Cited by in F6Publishing: 147] [Article Influence: 29.0] [Reference Citation Analysis]
144 Zhou S, Ye W, Shao Q, Zhang M, Liang J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 2013;88:706-15. [PMID: 24126138 DOI: 10.1016/j.critrevonc.2013.09.001] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 6.9] [Reference Citation Analysis]
145 Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, Luo J. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 2021;40:1706-20. [PMID: 33531626 DOI: 10.1038/s41388-021-01660-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
146 Pölönen P, Jawahar Deen A, Leinonen HM, Jyrkkänen HK, Kuosmanen S, Mononen M, Jain A, Tuomainen T, Pasonen-Seppänen S, Hartikainen JM, Mannermaa A, Nykter M, Tavi P, Johansen T, Heinäniemi M, Levonen AL. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene 2019;38:7473-90. [PMID: 31444413 DOI: 10.1038/s41388-019-0956-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
147 Hafez AM, Harb OA, Alattar AZ, Hefzi N, Ahmed RZ, Shaker SE, Ibrahim A, El-Taher AK. Clinico-pathological and prognostic implications of Srx, Nrf2, and PROX1 expression in gastric cancer and adjacent non-neoplastic mucosa - an immunohistochemical study. Contemp Oncol (Pozn) 2020;24:229-40. [PMID: 33531870 DOI: 10.5114/wo.2020.102671] [Reference Citation Analysis]
148 Ferino A, Xodo LE. Effect of DNA Glycosylases OGG1 and Neil1 on Oxidized G-Rich Motif in the KRAS Promoter. Int J Mol Sci 2021;22:1137. [PMID: 33498912 DOI: 10.3390/ijms22031137] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
149 Wang J, Liu Z, Hu T, Han L, Yu S, Yao Y, Ruan Z, Tian T, Huang T, Wang M, Jing L, Nan K, Liang X. Nrf2 promotes progression of non-small cell lung cancer through activating autophagy. Cell Cycle 2017;16:1053-62. [PMID: 28402166 DOI: 10.1080/15384101.2017.1312224] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
150 Hayden A, Douglas J, Sommerlad M, Andrews L, Gould K, Hussain S, Thomas GJ, Packham G, Crabb SJ. The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. Urol Oncol 2014;32:806-14. [PMID: 24837013 DOI: 10.1016/j.urolonc.2014.02.006] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 7.3] [Reference Citation Analysis]
151 Li K, Zhong C, Wang B, He J, Bi J. Nrf2 expression participates in growth and differentiation of endometrial carcinoma cells in vitro and in vivo. J Mol Histol 2014;45:161-7. [PMID: 24048968 DOI: 10.1007/s10735-013-9538-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]