BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri ED, Ganopoulos I, Flemetakis E, Tsaftaris AS. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC Plant Biol 2012;12:166. [PMID: 22985436 DOI: 10.1186/1471-2229-12-166] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Kumar D, Hazra S, Datta R, Chattopadhyay S. Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci Rep 2016;6:36867. [PMID: 27845361 DOI: 10.1038/srep36867] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
2 Lechat MM, Brun G, Montiel G, Véronési C, Simier P, Thoiron S, Pouvreau JB, Delavault P. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J Exp Bot 2015;66:3129-40. [PMID: 25821070 DOI: 10.1093/jxb/erv119] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
3 Wang L, Yin X, Cheng C, Wang H, Guo R, Xu X, Zhao J, Zheng Y, Wang X. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol Genet Genomics 2015;290:825-46. [DOI: 10.1007/s00438-014-0961-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
4 Wang L, Bao W, Xu W, Huang M, Zhu G, Zhao H, Bai H, Chen C, Chen J, Liu H, Wuyun T. Transcriptome analysis reveals genes associated with kernel size in apricots cultivated for kernel consumption (Prunus armeniaca × Prunus sibirica). Scientia Horticulturae 2022;302:111141. [DOI: 10.1016/j.scienta.2022.111141] [Reference Citation Analysis]
5 Zhang Y, Tang D, Lin X, Ding M, Tong Z. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC Plant Biol 2018;18:176. [PMID: 30176795 DOI: 10.1186/s12870-018-1394-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
6 Gogoi M, Borchetia S, Bandyopadhyay T. Computational identification and analysis of MADS box genes in Camellia sinensis. Bioinformation 2015;11:115-21. [PMID: 25914445 DOI: 10.6026/97320630011115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
7 Zhou F, Han Y, Wang Y, Yao C, Zhang Y. Overexpression of Polypogon fugax Type I–Like MADS-Box Gene PfAGL28 Affects Flowering Time and Pod Formation in Transgenic Arabidopsis. Plant Mol Biol Rep. [DOI: 10.1007/s11105-021-01312-8] [Reference Citation Analysis]
8 Kennedy A, Geuten K. The Role of FLOWERING LOCUS C Relatives in Cereals. Front Plant Sci 2020;11:617340. [PMID: 33414801 DOI: 10.3389/fpls.2020.617340] [Reference Citation Analysis]
9 Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, Collakova E. Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos. Biology (Basel) 2013;2:1311-37. [PMID: 24833227 DOI: 10.3390/biology2041311] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
10 Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R. Barley: a translational model for adaptation to climate change. New Phytol 2015;206:913-31. [PMID: 25605349 DOI: 10.1111/nph.13266] [Cited by in Crossref: 117] [Cited by in F6Publishing: 73] [Article Influence: 16.7] [Reference Citation Analysis]
11 Uthup TK, Saha T, Ravindran M, Bini K. Impact of an intragenic retrotransposon on the structural integrity and evolution of a major isoprenoid biosynthesis pathway gene in Hevea brasiliensis. Plant Physiol Biochem 2013;73:176-88. [PMID: 24128694 DOI: 10.1016/j.plaphy.2013.09.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
12 Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat Commun 2013;4. [DOI: 10.1038/ncomms3280] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 9.4] [Reference Citation Analysis]
13 Kapazoglou A, Drosou V, Argiriou A, Tsaftaris AS. The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC Plant Biol 2013;13:172. [PMID: 24175960 DOI: 10.1186/1471-2229-13-172] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
14 Victoria D, Aliki K, Venetia K, Georgios M, Zoe H. Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress. Plant Growth Regul 2018;84:81-94. [DOI: 10.1007/s10725-017-0323-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Dingkuhn M, Pasco R, Pasuquin JM, Damo J, Soulié J, Raboin L, Dusserre J, Sow A, Manneh B, Shrestha S, Balde A, Kretzschmar T. Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 1. Phenology. Journal of Experimental Botany 2017;68:4369-88. [DOI: 10.1093/jxb/erx249] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kujur A, Saxena MS, Bajaj D, Laxmi, Parida SK. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J Biosci 2013;38:971-87. [DOI: 10.1007/s12038-013-9388-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
17 Staroske N, Conrad U, Kumlehn J, Hensel G, Radchuk R, Erban A, Kopka J, Weschke W, Weber H. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. J Exp Bot 2016;67:2675-87. [PMID: 26951372 DOI: 10.1093/jxb/erw102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
18 Zhao Y, Su C. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize. Sci Rep 2019;9:16112. [PMID: 31695075 DOI: 10.1038/s41598-019-52222-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
19 Drosou V, Kapazoglou A, Letsiou S, Tsaftaris AS, Argiriou A. Drought induces variation in the DNA methylation status of the barley HvDME promoter. J Plant Res 2021;134:1351-62. [PMID: 34510287 DOI: 10.1007/s10265-021-01342-z] [Reference Citation Analysis]
20 Yruela I. Plant development regulation: Overview and perspectives. Journal of Plant Physiology 2015;182:62-78. [DOI: 10.1016/j.jplph.2015.05.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]