1 |
Chen H, Chen J, Liu Y, Li B, Li H, Zhang X, Lv C, Dong H. Wearable Dual-Signal NH(3) Sensor with High Sensitivity for Non-invasive Diagnosis of Chronic Kidney Disease. Langmuir 2023;39:3420-30. [PMID: 36880227 DOI: 10.1021/acs.langmuir.2c03347] [Reference Citation Analysis]
|
2 |
Sharma R, Zang W, Tabartehfarahani A, Lam A, Huang X, Sivakumar AD, Thota C, Yang S, Dickson RP, Sjoding MW, Bisco E, Mahmood CC, Diaz KM, Sautter N, Ansari S, Ward KR, Fan X. Portable Breath-Based Volatile Organic Compound Monitoring for the Detection of COVID-19 During the Circulation of the SARS-CoV-2 Delta Variant and the Transition to the SARS-CoV-2 Omicron Variant. JAMA Netw Open 2023;6:e230982. [PMID: 36853606 DOI: 10.1001/jamanetworkopen.2023.0982] [Reference Citation Analysis]
|
3 |
Lee B, Lee J, Lee J, Park I, Lee D. Breath Gas Sensors for Diabetes and Lung Cancer Diagnosis. KSS 2023;32:1-9. [DOI: 10.46670/jsst.2023.32.1.1] [Reference Citation Analysis]
|
4 |
Wu W, Liu T, Haick H. Electronic Nose Sensors for Healthcare. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00097-2] [Reference Citation Analysis]
|
5 |
Schmidt F, Kohlbrenner D, Malesevic S, Huang A, Klein SD, Puhan MA, Kohler M. Mapping the landscape of lung cancer breath analysis: A scoping review (ELCABA). Lung Cancer 2023;175:131-40. [PMID: 36529115 DOI: 10.1016/j.lungcan.2022.12.003] [Reference Citation Analysis]
|
6 |
Patsiris S, Karpouza A, Exarchos T, Vlamos P. Exhaled Breath Analysis in Neurodegenerative Diseases. Handbook of Computational Neurodegeneration 2023. [DOI: 10.1007/978-3-319-75479-6_67-2] [Reference Citation Analysis]
|
7 |
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022;24. [PMID: 36613569 DOI: 10.3390/ijms24010129] [Reference Citation Analysis]
|
8 |
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Comparative Analysis of Pre- and Post-Surgery Exhaled Breath Profiles of Volatile Organic Compounds of Patients with Lung Cancer and Benign Tumors. J Anal Chem 2022;77:1547-1552. [DOI: 10.1134/s1061934822120036] [Reference Citation Analysis]
|
9 |
Landini N, Malagù C, Guidi V. Review – Nanostructured chemoresistive sensors as detectors of volatile biomarkers for medical screening purposes of mundane and oncological human pathologies. Sensors and Actuators B: Chemical 2022;371:132493. [DOI: 10.1016/j.snb.2022.132493] [Reference Citation Analysis]
|
10 |
Sharma R, Zang W, Tabartehfarahani A, Lam A, Huang X, Sivakumar AD, Thota C, Yang S, Dickson RP, Sjoding MW, Bisco E, Mahmood CC, Diaz KM, Sautter N, Ansari S, Ward KR, Fan X. Portable Breath-Based Volatile Organic Compound Monitoring for the Detection of COVID-19: Challenges of Emerging Variants.. [DOI: 10.1101/2022.09.06.22279649] [Reference Citation Analysis]
|
11 |
Avian C, Mahali MI, Putro NAS, Prakosa SW, Leu JS. Fx-Net and PureNet: Convolutional Neural Network architecture for discrimination of Chronic Obstructive Pulmonary Disease from smokers and healthy subjects through electronic nose signals. Comput Biol Med 2022;148:105913. [PMID: 35940164 DOI: 10.1016/j.compbiomed.2022.105913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Owida HA, Al-ayyad M, Al-nabulsi JI, Ali S. Emerging Development of Auto-Charging Sensors for Respiration Monitoring. International Journal of Biomaterials 2022;2022:1-12. [DOI: 10.1155/2022/7098989] [Reference Citation Analysis]
|
13 |
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Reference Citation Analysis]
|
14 |
Zhao J, Zhang S, Sun Y, Zhou N, Yu H, Zhang H, Jia D. Wearable Optical Sensing in the Medical Internet of Things (MIoT) for Pervasive Medicine: Opportunities and Challenges. ACS Photonics. [DOI: 10.1021/acsphotonics.2c00898] [Reference Citation Analysis]
|
15 |
Арутюнян ВМ, Ереванский государственный университет, Ереван, Армения. Использование в медицине полупроводниковых сенсоров газов, изготовленных из наноматериалов. Physics 2022;57:386-401. [DOI: 10.54503/0002-3035-2022-57.3-386] [Reference Citation Analysis]
|
16 |
Karthick G, Pankajavalli P. Chronic Obstructive Pulmonary Disease Prediction using Internet of Things-Spiro System and Fuzzy-Based Quantum Neural Network Classifier. Theoretical Computer Science 2022. [DOI: 10.1016/j.tcs.2022.08.021] [Reference Citation Analysis]
|
17 |
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Volatile Organic Compounds in Exhaled Breath as Biomarkers of Lung Cancer: Advances and Potential Problems. J Anal Chem 2022;77:785-810. [DOI: 10.1134/s106193482207005x] [Reference Citation Analysis]
|
18 |
Reeves N, Phillips S, Hughes A, Maddocks S, Bates M, Torkington J, Robins L, Cornish J. Volatile Organic Compounds in the Early Diagnosis of Non-healing Surgical Wounds: A Systematic Review. World J Surg. [DOI: 10.1007/s00268-022-06548-3] [Reference Citation Analysis]
|
19 |
Hong JM, Lee H, Menon NV, Lim CT, Lee LP, Ong CWM. Point-of-care diagnostic tests for tuberculosis disease. Sci Transl Med 2022;14:eabj4124. [PMID: 35385338 DOI: 10.1126/scitranslmed.abj4124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Subhashini K, Aishwarya V, Nandhini K, Saraswathi P. Acquisition and Analysis of Respiratory Signal. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT) 2022. [DOI: 10.1109/ic3iot53935.2022.9767939] [Reference Citation Analysis]
|
21 |
Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath Analysis: A Promising Tool for Disease Diagnosis—The Role of Sensors. Sensors 2022;22:1238. [DOI: 10.3390/s22031238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
|
22 |
Chouvarda I, Perantoni E, Steiropoulos P. Respiratory decision support systems. Wearable Sensing and Intelligent Data Analysis for Respiratory Management 2022. [DOI: 10.1016/b978-0-12-823447-1.00008-7] [Reference Citation Analysis]
|
23 |
Priya M, Subha P, Jayaraj M, Rajeev Kumar K. Gas sensing properties of high energy facet exposed octahedral SnO2 nanoparticles. Materials Today: Proceedings 2022;62:763-766. [DOI: 10.1016/j.matpr.2022.03.672] [Reference Citation Analysis]
|
24 |
Lueno M, Dobrowolny H, Gescher D, Gbaoui L, Meyer-Lotz G, Hoeschen C, Frodl T. Volatile Organic Compounds From Breath Differ Between Patients With Major Depression and Healthy Controls. Front Psychiatry 2022;13:819607. [PMID: 35903642 DOI: 10.3389/fpsyt.2022.819607] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
25 |
Aroutiounian VM, Yerevan State University. Exhaled Breath Semiconductor Sensors for Diagnostics of Respiratory Diseases. Arm J Phys 2022. [DOI: 10.54503/18291171-2022.15.1-13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
El-aawar H. Detecting a Coronavirus Through Breathing Using 3D Modeling and Artificial Intelligence. Human Interaction, Emerging Technologies and Future Systems V 2022. [DOI: 10.1007/978-3-030-85540-6_109] [Reference Citation Analysis]
|
27 |
Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021;194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
28 |
Hung T, Chung M, Lin G, Shen C. Piezoelectric microsensor for selective detection of low concentrations of ammonia. Solid-State Electronics 2021;186:108191. [DOI: 10.1016/j.sse.2021.108191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
29 |
Zaim O, Diouf A, El Bari N, Lagdali N, Benelbarhdadi I, Ajana FZ, Llobet E, Bouchikhi B. Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue. Anal Chim Acta 2021;1184:339028. [PMID: 34625262 DOI: 10.1016/j.aca.2021.339028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Zhou M, Guo F, Duanmu F, Shen Z. Enhanced sensing performance toward alcohols using copper oxide based on exposed crystal facet driven catalytic oxidation. J Mater Sci: Mater Electron 2021;32:26676-26687. [DOI: 10.1007/s10854-021-07045-4] [Reference Citation Analysis]
|
31 |
Gashimova E, Osipova A, Temerdashev A, Porkhanov V, Polyakov I, Perunov D, Dmitrieva E. Exhaled breath analysis using GC-MS and an electronic nose for lung cancer diagnostics. Anal Methods 2021;13:4793-804. [PMID: 34581316 DOI: 10.1039/d1ay01163d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
32 |
Pathak AK, Viphavakit C. VOC Biomarker Monitoring for Diabetes Through Exhaled Breath Using Ag/P-TiO 2 Composite Plasmonic Sensor. IEEE Sensors J 2021;21:22631-7. [DOI: 10.1109/jsen.2021.3104766] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
33 |
Abumeeiz M, Elliott L, Olla P. Use of Breath Analysis for Diagnosing COVID-19: Opportunities, Challenges, and Considerations for Future Pandemic Responses. Disaster Med Public Health Prep 2021;:1-4. [PMID: 34649631 DOI: 10.1017/dmp.2021.317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Aroutiounian VM. Hydrogen Peroxide Semiconductor Sensors. J Contemp Phys 2021;56:332-351. [DOI: 10.3103/s1068337221040046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
35 |
Brasier N, Osthoff M, De Ieso F, Eckstein J. Next-Generation Digital Biomarkers for Tuberculosis and Antibiotic Stewardship: Perspective on Novel Molecular Digital Biomarkers in Sweat, Saliva, and Exhaled Breath. J Med Internet Res 2021;23:e25907. [PMID: 34420925 DOI: 10.2196/25907] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
36 |
Kampara RK, Sonia T, Balamurugan D, Jeyaprakash BG. Formaldehyde vapour sensing property of electrospun NiO nanograins. Front Mater Sci 2021;15:416-30. [DOI: 10.1007/s11706-021-0559-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
37 |
Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, Hargadon B, Free RC, Monks PS, Brightling CE, Greening NJ, Siddiqui S. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry. ERJ Open Res 2021;7:00139-2021. [PMID: 34235208 DOI: 10.1183/23120541.00139-2021] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
38 |
Wang H, Ma J, Zhang J, Feng Y, Vijjapu MT, Yuvaraja S, Surya SG, Salama KN, Dong C, Wang Y, Kuang Q, Tshabalala ZP, Motaung DE, Liu X, Yang J, Fu H, Yang X, An X, Zhou S, Zi B, Liu Q, Urso M, Zhang B, Akande AA, Prasad AK, Hung CM, Van Duy N, Hoa ND, Wu K, Zhang C, Kumar R, Kumar M, Kim Y, Wu J, Wu Z, Yang X, Vanalakar SA, Luo J, Kan H, Li M, Jang HW, Orlandi MO, Mirzaei A, Kim HW, Kim SS, Uddin ASMI, Wang J, Xia Y, Wongchoosuk C, Nag A, Mukhopadhyay S, Saxena N, Kumar P, Do JS, Lee JH, Hong S, Jeong Y, Jung G, Shin W, Park J, Bruzzi M, Zhu C, Gerald RE 2nd, Huang J. Gas sensing materials roadmap. J Phys Condens Matter 2021;33. [PMID: 33794513 DOI: 10.1088/1361-648X/abf477] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
39 |
Abbaszadeh A, Makouei S, Meshgini S. Ammonia measurement in exhaled human breath using PCF sensor for medical applications. Photonics and Nanostructures - Fundamentals and Applications 2021;44:100917. [DOI: 10.1016/j.photonics.2021.100917] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Koureas M, Kalompatsios D, Amoutzias GD, Hadjichristodoulou C, Gourgoulianis K, Tsakalof A. Comparison of Targeted and Untargeted Approaches in Breath Analysis for the Discrimination of Lung Cancer from Benign Pulmonary Diseases and Healthy Persons. Molecules 2021;26:2609. [PMID: 33946997 DOI: 10.3390/molecules26092609] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
41 |
Monedeiro F, Monedeiro-Milanowski M, Ratiu IA, Brożek B, Ligor T, Buszewski B. Needle Trap Device-GC-MS for Characterization of Lung Diseases Based on Breath VOC Profiles. Molecules 2021;26:1789. [PMID: 33810121 DOI: 10.3390/molecules26061789] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
42 |
Rodríguez-Aguilar M, Díaz de León-Martínez L, Gorocica-Rosete P, Pérez-Padilla R, Domínguez-Reyes CA, Tenorio-Torres JA, Ornelas-Rebolledo O, Mehta G, Zamora-Mendoza BN, Flores-Ramírez R. Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Preliminary results of COPD, lung cancer and breast cancer. Clin Chim Acta 2021;518:83-92. [PMID: 33766555 DOI: 10.1016/j.cca.2021.03.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
43 |
Velez JSG, Muller A. Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity. Meas Sci Technol 2021;32:045501. [DOI: 10.1088/1361-6501/abd11e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
44 |
Patsiris S, Karpouza A, Exarchos T, Vlamos P. Exhaled Breath Analysis in Neurodegenerative Diseases. Handbook of Computational Neurodegeneration 2021. [DOI: 10.1007/978-3-319-75479-6_67-1] [Reference Citation Analysis]
|
45 |
Mule NM, Patil DD, Kaur M. A comprehensive survey on investigation techniques of exhaled breath (EB) for diagnosis of diseases in human body. Informatics in Medicine Unlocked 2021;26:100715. [DOI: 10.1016/j.imu.2021.100715] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
|
46 |
Ratiu IA, Ligor T, Bocos-Bintintan V, Mayhew CA, Buszewski B. Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD. J Clin Med 2020;10:E32. [PMID: 33374433 DOI: 10.3390/jcm10010032] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
|
47 |
Brasier N, Osthoff M, De Ieso F, Eckstein J. Next-Generation Digital Biomarkers for Tuberculosis and Antibiotic Stewardship: Perspective on Novel Molecular Digital Biomarkers in Sweat, Saliva, and Exhaled Breath (Preprint).. [DOI: 10.2196/preprints.25907] [Reference Citation Analysis]
|
48 |
Brasier N, Geissmann L, Käch M, Mutke M, Hoelz B, De Ieso F, Eckstein J. Device- and Analytics-Agnostic Infrastructure for Continuous Inpatient Monitoring: A Technical Note. Digit Biomark 2020;4:62-8. [PMID: 33083686 DOI: 10.1159/000509279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
49 |
Freire RLH, Orlandi MO, Da Silva JLF. Ab initio investigation of the role of charge transfer in the adsorption properties of , and on the van der Waals layered semiconductor. Phys Rev Materials 2020;4. [DOI: 10.1103/physrevmaterials.4.104002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
50 |
Lin H, Lin J, Man Z, Jin H, Kutsanedzie FYH, Chen Q. Development of Colorimetric Detection of 2,4,5-Trimethyloxazole in Volatile Organic Compounds Based on Porphyrin Complexes for Vinegar Storage Time Discrimination. Food Anal Methods 2020;13:2192-203. [DOI: 10.1007/s12161-020-01819-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
|
51 |
Guzman NA, Guzman DE. A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy. Biomedicines 2020;8:E255. [PMID: 32751506 DOI: 10.3390/biomedicines8080255] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|