BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chan RJ, Feng GS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood. 2007;109:862-867. [PMID: 17053061 DOI: 10.1182/blood-2006-07-028829] [Cited by in Crossref: 210] [Cited by in F6Publishing: 206] [Article Influence: 13.1] [Reference Citation Analysis]
Number Citing Articles
1 Li G, Wang G, Guo Y, Li S, Zhang Y, Li J, Peng B. Development of a novel prognostic score combining clinicopathologic variables, gene expression, and mutation profiles for lung adenocarcinoma. World J Surg Oncol 2020;18:249. [PMID: 32950055 DOI: 10.1186/s12957-020-02025-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Hu T, Sprague ER, Fodor M, Stams T, Clark KL, Cowan-Jacob SW. The impact of structural biology in medicine illustrated with four case studies. J Mol Med (Berl) 2018;96:9-19. [PMID: 28669027 DOI: 10.1007/s00109-017-1565-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
3 Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol. 2016;2:11-21. [PMID: 28174704 DOI: 10.1016/j.jcmgh.2015.11.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
4 Li SM. The biological function of SHP2 in human disease. Mol Biol 2016;50:22-7. [DOI: 10.1134/s0026893316010118] [Cited by in Crossref: 7] [Article Influence: 1.2] [Reference Citation Analysis]
5 Wang Q, Zhao WC, Fu XQ, Zheng QC. Exploring the Distinct Binding and Activation Mechanisms for Different CagA Oncoproteins and SHP2 by Molecular Dynamics Simulations. Molecules 2021;26:837. [PMID: 33562680 DOI: 10.3390/molecules26040837] [Reference Citation Analysis]
6 Sigaud R, Dussault N, Berenguer-Daizé C, Vellutini C, Benyahia Z, Cayol M, Parat F, Mabrouk K, Vázquez R, Riveiro ME, Metellus P, Ouafik L. Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors. Front Oncol 2021;11:753244. [PMID: 34692535 DOI: 10.3389/fonc.2021.753244] [Reference Citation Analysis]
7 Song Y, Zhao M, Wu Y, Yu B, Liu HM. A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Acta Pharm Sin B 2021;11:750-62. [PMID: 33777680 DOI: 10.1016/j.apsb.2020.10.021] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Nabinger SC, Li XJ, Ramdas B, He Y, Zhang X, Zeng L, Richine B, Bowling JD, Fukuda S, Goenka S, Liu Z, Feng GS, Yu M, Sandusky GE, Boswell HS, Zhang ZY, Kapur R, Chan RJ. The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia 2013;27:398-408. [PMID: 23103841 DOI: 10.1038/leu.2012.308] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
9 Chen C, Liang F, Chen B, Sun Z, Xue T, Yang R, Luo D. Identification of demethylincisterol A 3 as a selective inhibitor of protein tyrosine phosphatase Shp2. European Journal of Pharmacology 2017;795:124-33. [DOI: 10.1016/j.ejphar.2016.12.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
10 Tzouvelekis A, Yu G, Lino Cardenas CL, Herazo-Maya JD, Wang R, Woolard T, Zhang Y, Sakamoto K, Lee H, Yi JS, DeIuliis G, Xylourgidis N, Ahangari F, Lee PJ, Aidinis V, Herzog EL, Homer R, Bennett AM, Kaminski N. SH2 Domain-Containing Phosphatase-2 Is a Novel Antifibrotic Regulator in Pulmonary Fibrosis. Am J Respir Crit Care Med 2017;195:500-14. [PMID: 27736153 DOI: 10.1164/rccm.201602-0329OC] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
11 Xie J, Si X, Gu S, Wang M, Shen J, Li H, Shen J, Li D, Fang Y, Liu C, Zhu J. Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment. J Med Chem 2017;60:10205-19. [DOI: 10.1021/acs.jmedchem.7b01520] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
12 Zeng LF, Zhang RY, Yu ZH, Li S, Wu L, Gunawan AM, Lane BS, Mali RS, Li X, Chan RJ, Kapur R, Wells CD, Zhang ZY. Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J Med Chem 2014;57:6594-609. [PMID: 25003231 DOI: 10.1021/jm5006176] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 8.1] [Reference Citation Analysis]
13 [DOI: 10.1101/859108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Gu W, Prasadam I, Yu M, Zhang F, Ling P, Xiao Y, Yu C. Gamma tocotrienol targets tyrosine phosphatase SHP2 in mammospheres resulting in cell death through RAS/ERK pathway. BMC Cancer 2015;15:609. [PMID: 26315028 DOI: 10.1186/s12885-015-1614-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
15 Yu M, Xu C, Zhang H, Lun J, Wang L, Zhang G, Fang J. The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK. Biochem Biophys Res Commun 2021;563:1-7. [PMID: 34052504 DOI: 10.1016/j.bbrc.2021.05.068] [Reference Citation Analysis]
16 Tseng PC, Chen CL, Shan YS, Lin CF. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells. Oncotarget 2016;7:15150-60. [PMID: 26934444 DOI: 10.18632/oncotarget.7750] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
17 Putlyaeva LV, Demin DE, Uvarova AN, Zinevich LS, Prokofjeva MM, Gazizova GR, Shagimardanova EI, Schwartz AM. PTPN11 Knockdown Prevents Changes in the Expression of Genes Controlling Cell Cycle, Chemotherapy Resistance, and Oncogene-Induced Senescence in Human Thyroid Cells Overexpressing BRAF V600E Oncogenic Protein. Biochemistry (Mosc) 2020;85:108-18. [PMID: 32079522 DOI: 10.1134/S0006297920010101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2018;96:135-47. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
19 Xu M, Hu J, Zhou B, Zhong Y, Lin N, Xu R. TRIM29 prevents hepatocellular carcinoma progression by inhibiting Wnt/β-catenin signaling pathway. Acta Biochimica et Biophysica Sinica 2019;51:68-77. [DOI: 10.1093/abbs/gmy151] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
20 Mali RS, Ma P, Zeng LF, Martin H, Ramdas B, He Y, Sims E, Nabinger S, Ghosh J, Sharma N, Munugalavadla V, Chatterjee A, Li S, Sandusky G, Craig AW, Bunting KD, Feng GS, Chan RJ, Zhang ZY, Kapur R. Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT. Blood 2012;120:2669-78. [PMID: 22806893 DOI: 10.1182/blood-2011-08-375873] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 3.8] [Reference Citation Analysis]
21 Sharma N, Kumar V, Everingham S, Mali RS, Kapur R, Zeng LF, Zhang ZY, Feng GS, Hartmann K, Roers A, Craig AW. SH2 domain-containing phosphatase 2 is a critical regulator of connective tissue mast cell survival and homeostasis in mice. Mol Cell Biol 2012;32:2653-63. [PMID: 22566685 DOI: 10.1128/MCB.00308-12] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
22 Jin Y, Ma Y, Gao Q, Wang R, Wang S, Xu W. Design of specific inhibitors of the protein tyrosine phosphatase SHP-2 by virtual screening and core hopping method. Molecular Simulation 2013;40:904-11. [DOI: 10.1080/08927022.2013.824573] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Gandji LY, Proust R, Larue L, Gesbert F. The tyrosine phosphatase SHP2 associates with CUB domain-containing protein-1 (CDCP1), regulating its expression at the cell surface in a phosphorylation-dependent manner. PLoS One 2015;10:e0123472. [PMID: 25876044 DOI: 10.1371/journal.pone.0123472] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
24 Berman-golan D, Granot-attas S, Elson A. Protein tyrosine phosphatase epsilon and Neu-induced mammary tumorigenesis. Cancer Metastasis Rev 2008;27:193-203. [DOI: 10.1007/s10555-008-9124-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
25 Zhang K, Zhao H, Ji Z, Zhang C, Zhou P, Wang L, Chen Q, Wang J, Zhang P, Chen Z, Zhu HH, Gao W. Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene 2016;35:1271-82. [DOI: 10.1038/onc.2015.184] [Cited by in Crossref: 32] [Cited by in F6Publishing: 38] [Article Influence: 4.6] [Reference Citation Analysis]
26 Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, Rozenblatt-Rosen O, Meyerson M, Neel BG, Hatakeyama M. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell 2011;43:45-56. [PMID: 21726809 DOI: 10.1016/j.molcel.2011.05.014] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
27 Zheng J, Huang S, Huang Y, Song L, Yin Y, Kong W, Chen X, Ouyang X. Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma. Tumour Biol 2016;37:7853-9. [PMID: 26695153 DOI: 10.1007/s13277-015-4675-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
28 LaMarche MJ, Acker M, Argintaru A, Bauer D, Boisclair J, Chan H, Chen CH, Chen YN, Chen Z, Deng Z, Dore M, Dunstan D, Fan J, Fekkes P, Firestone B, Fodor M, Garcia-Fortanet J, Fortin PD, Fridrich C, Giraldes J, Glick M, Grunenfelder D, Hao HX, Hentemann M, Ho S, Jouk A, Kang ZB, Karki R, Kato M, Keen N, Koenig R, LaBonte LR, Larrow J, Liu G, Liu S, Majumdar D, Mathieu S, Meyer MJ, Mohseni M, Ntaganda R, Palermo M, Perez L, Pu M, Ramsey T, Reilly J, Sarver P, Sellers WR, Sendzik M, Shultz MD, Slisz J, Slocum K, Smith T, Spence S, Stams T, Straub C, Tamez V Jr, Toure BB, Towler C, Wang P, Wang H, Williams SL, Yang F, Yu B, Zhang JH, Zhu S. Identification of TNO155, an Allosteric SHP2 Inhibitor for the Treatment of Cancer. J Med Chem 2020;63:13578-94. [PMID: 32910655 DOI: 10.1021/acs.jmedchem.0c01170] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
29 Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, Görgülü K, Dantes Z, Wörmann SM, Diakopoulos KN, Karpathaki AF, Kowalska M, Kaya-aksoy E, Song L, van der Laan EAZ, López-alberca MP, Nazaré M, Reichert M, Saur D, Erkan MM, Hopt UT, Sainz B, Birchmeier W, Schmid RM, Lesina M, Algül H. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 2018;24:954-60. [DOI: 10.1038/s41591-018-0024-8] [Cited by in Crossref: 140] [Cited by in F6Publishing: 127] [Article Influence: 35.0] [Reference Citation Analysis]
30 Shi ZQ, Sunico CR, McKercher SR, Cui J, Feng GS, Nakamura T, Lipton SA. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke. Proc Natl Acad Sci U S A 2013;110:3137-42. [PMID: 23382182 DOI: 10.1073/pnas.1215501110] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 4.8] [Reference Citation Analysis]
31 Hu J, Wu J, Li C, Zhu L, Zhang WY, Kong G, Lu Z, Yang CJ. A G-quadruplex aptamer inhibits the phosphatase activity of oncogenic protein Shp2 in vitro. Chembiochem 2011;12:424-30. [PMID: 21290544 DOI: 10.1002/cbic.201000470] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
32 Buday L, Vas V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev 2020;39:1067-73. [PMID: 32936431 DOI: 10.1007/s10555-020-09918-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, Huynh H, Kang X, Silvany R, Wan X, Ye J, Cantó AP, Chen SH, Wang HY, Ward ES, Zhang CC. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 2012;485:656-60. [PMID: 22660330 DOI: 10.1038/nature11095] [Cited by in Crossref: 144] [Cited by in F6Publishing: 143] [Article Influence: 14.4] [Reference Citation Analysis]
34 Luo X, Liao R, Hanley KL, Zhu HH, Malo KN, Hernandez C, Wei X, Varki NM, Alderson N, Chu C, Li S, Fan J, Loomba R, Qiu SJ, Feng GS. Dual Shp2 and Pten Deficiencies Promote Non-alcoholic Steatohepatitis and Genesis of Liver Tumor-Initiating Cells. Cell Rep 2016;17:2979-93. [PMID: 27974211 DOI: 10.1016/j.celrep.2016.11.048] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
35 Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol 2015;31:159-65. [PMID: 25584736 DOI: 10.1097/MOG.0000000000000156] [Cited by in Crossref: 154] [Cited by in F6Publishing: 75] [Article Influence: 22.0] [Reference Citation Analysis]
36 Bagdanoff JT, Chen Z, Acker M, Chen Y, Chan H, Dore M, Firestone B, Fodor M, Fortanet J, Hentemann M, Kato M, Koenig R, Labonte LR, Liu S, Mohseni M, Ntaganda R, Sarver P, Smith T, Sendzik M, Stams T, Spence S, Towler C, Wang H, Wang P, Williams SL, Lamarche MJ. Optimization of Fused Bicyclic Allosteric SHP2 Inhibitors. J Med Chem 2019;62:1781-92. [DOI: 10.1021/acs.jmedchem.8b01725] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
37 Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2021;163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Stanford SM, Maestre MF, Campbell AM, Bartok B, Kiosses WB, Boyle DL, Arnett HA, Mustelin T, Firestein GS, Bottini N. Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. Arthritis Rheum 2013;65:1171-80. [PMID: 23335101 DOI: 10.1002/art.37872] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
39 Mainardi S, Mulero-sánchez A, Prahallad A, Germano G, Bosma A, Krimpenfort P, Lieftink C, Steinberg JD, de Wit N, Gonçalves-ribeiro S, Nadal E, Bardelli A, Villanueva A, Bernards R. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med 2018;24:961-7. [DOI: 10.1038/s41591-018-0023-9] [Cited by in Crossref: 125] [Cited by in F6Publishing: 111] [Article Influence: 31.3] [Reference Citation Analysis]
40 Kelley KA, Ruhl RA, Rana SR, Dewey E, Espinosa C, Thomas CR Jr, Martindale RG, Anand S, Tsikitis VL. Understanding and Resetting Radiation Sensitivity in Rectal Cancer. Ann Surg 2017;266:610-6. [PMID: 28742699 DOI: 10.1097/SLA.0000000000002409] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
41 Liu WS, Jin WY, Zhou L, Lu XH, Li WY, Ma Y, Wang RL. Structure based design of selective SHP2 inhibitors by De novo design, synthesis and biological evaluation. J Comput Aided Mol Des 2019;33:759-74. [PMID: 31300938 DOI: 10.1007/s10822-019-00213-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Lee HH, Chang ZF. Regulation of RhoA-dependent ROCKII activation by Shp2. J Cell Biol 2008;181:999-1012. [PMID: 18559669 DOI: 10.1083/jcb.200710187] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 3.0] [Reference Citation Analysis]
43 Yang Y, Jiang B, Huo Y, Primo L, Dahl JS, Benjamin TL, Luo J. Shp2 suppresses PyMT-induced transformation in mouse fibroblasts by inhibiting Stat3 activity. Virology 2011;409:204-10. [PMID: 21056449 DOI: 10.1016/j.virol.2010.09.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
44 Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020;12:E2438. [PMID: 32867200 DOI: 10.3390/cancers12092438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
45 Chen WS, Liang Y, Zong M, Liu JJ, Kaneko K, Hanley KL, Zhang K, Feng GS. Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment. Cell Rep 2021;37:109974. [PMID: 34758313 DOI: 10.1016/j.celrep.2021.109974] [Reference Citation Analysis]
46 Zilberg C, Lee MW, Kraitsek S, Ashford B, Ranson M, Shannon K, Iyer NG, Ch'ng S, Low TH, Palme C, Clark J, Gupta R, Yu B. Is high-risk cutaneous squamous cell carcinoma of the head and neck a suitable candidate for current targeted therapies? J Clin Pathol 2020;73:17-22. [PMID: 31300530 DOI: 10.1136/jclinpath-2019-206038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295-308. [PMID: 17384584 DOI: 10.1038/nrc2109] [Cited by in Crossref: 1086] [Cited by in F6Publishing: 968] [Article Influence: 72.4] [Reference Citation Analysis]
48 Wang Q, Pan W, Wang S, Pan C, Ning H, Huang S, Chiu SH, Chen JL. Protein Tyrosine Phosphatase SHP2 Suppresses Host Innate Immunity against Influenza A Virus by Regulating EGFR-Mediated Signaling. J Virol 2021;95:e02001-20. [PMID: 33361428 DOI: 10.1128/JVI.02001-20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hsu MF, Bettaieb A, Ito Y, Graham J, Havel PJ, Haj FG. Protein tyrosine phosphatase Shp2 deficiency in podocytes attenuates lipopolysaccharide-induced proteinuria. Sci Rep 2017;7:461. [PMID: 28352079 DOI: 10.1038/s41598-017-00564-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
50 Clark O, Park I, Di Florio A, Cichon AC, Rustin S, Jugov R, Maeshima R, Stoker AW. Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine. Cancer Lett 2015;357:316-27. [PMID: 25444896 DOI: 10.1016/j.canlet.2014.11.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
51 Puri P, Phillips BT, Suzuki H, Orwig KE, Rajkovic A, Lapinski PE, King PD, Feng G, Walker WH. The Transition from Stem Cell to Progenitor Spermatogonia and Male Fertility Requires the SHP2 Protein Tyrosine Phosphatase: Stem Cell to Spermatogonia Transit Requires SHP2. Stem Cells 2014;32:741-53. [DOI: 10.1002/stem.1572] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
52 Wu J, Li W, Zheng Z, Lu X, Zhang H, Ma Y, Wang R. Design, synthesis, biological evaluation, common feature pharmacophore model and molecular dynamics simulation studies of ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate as Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. J Biomol Struct Dyn 2021;39:1174-88. [PMID: 32036779 DOI: 10.1080/07391102.2020.1726817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Okada Y, Zhang Y, Zhang L, Yeh LK, Wang YC, Saika S, Liu CY. Shp2-mediated MAPK pathway regulates ΔNp63 in epithelium to promote corneal innervation and homeostasis. Lab Invest 2020;100:630-42. [PMID: 31653968 DOI: 10.1038/s41374-019-0338-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
54 Li Y, Yuan Y, Zhang F, Guo A, Cao F, Song M, Fu Y, Xu X, Shen H, Zheng S, Pan Y, Chang W. Therapeutic Suppression of FAK-AKT Signaling Overcomes Resistance to SHP2 Inhibition in Colorectal Carcinoma. Front Pharmacol 2021;12:739501. [PMID: 34790119 DOI: 10.3389/fphar.2021.739501] [Reference Citation Analysis]
55 Zhao X, Hu S, Wang L, Zhang Q, Zhu X, Zhao H, Wang C, Tao R, Guo S, Wang J, Xu J, He Y, Gao Y. Functional short tandem repeat polymorphism of PTPN11 and susceptibility to hepatocellular carcinoma in Chinese populations. PLoS One 2014;9:e106841. [PMID: 25198338 DOI: 10.1371/journal.pone.0106841] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
56 Liu Y, Yang X, Wang Y, Yang Y, Sun D, Li H, Chen L. Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021;214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 He L, Li Y, Huang X, Cheng H, Ke Y, Wang L. The prognostic significance of SHP2 and its binding protein Hook1 in non-small cell lung cancer. Onco Targets Ther 2019;12:5897-906. [PMID: 31413587 DOI: 10.2147/OTT.S210223] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
58 Czako B, Sun Y, McAfoos T, Cross JB, Leonard PG, Burke JP, Carroll CL, Feng N, Harris AL, Jiang Y, Kang Z, Kovacs JJ, Mandal P, Meyers BA, Mseeh F, Parker CA, Yu SS, Williams CC, Wu Q, Di Francesco ME, Draetta G, Heffernan T, Marszalek JR, Kohl NE, Jones P. Discovery of 6-[(3S,4S)-4-Amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a Potent and Orally Bioavailable SHP2 Inhibitor. J Med Chem 2021;64:15141-69. [PMID: 34643390 DOI: 10.1021/acs.jmedchem.1c01132] [Reference Citation Analysis]
59 Xu D, Qu CK. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci. 2008;13:4925-4932. [PMID: 18508557 DOI: 10.2741/3051] [Cited by in Crossref: 163] [Cited by in F6Publishing: 172] [Article Influence: 11.6] [Reference Citation Analysis]
60 Lo F, Kuo T, Wang C, Kuo M, Kuo M. Hodgkin’s lymphoma in a patient with Noonan syndrome with germ-line PTPN11 mutations. Int J Hematol 2008;88:287-90. [DOI: 10.1007/s12185-008-0157-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
61 Wu X, Guo W, Wu L, Gu Y, Gu L, Xu S, Wu X, Shen Y, Ke Y, Tan R, Sun Y, Xu Q. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J Immunol. 2012;189:3497-3507. [PMID: 22942432 DOI: 10.4049/jimmunol.1201006] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
62 Tseng PC, Huang WC, Chen CL, Sheu BS, Shan YS, Tsai CC, Wang CY, Chen SO, Hsieh CY, Lin CF. Regulation of SHP2 by PTEN/AKT/GSK-3β signaling facilitates IFN-γ resistance in hyperproliferating gastric cancer. Immunobiology. 2012;217:926-934. [PMID: 22325465 DOI: 10.1016/j.imbio.2012.01.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
63 Sun X, Zhang J, Wang Z, Ji W, Tian R, Zhang F, Niu R. Shp2 Plays a Critical Role in IL-6-Induced EMT in Breast Cancer Cells. Int J Mol Sci 2017;18:E395. [PMID: 28208810 DOI: 10.3390/ijms18020395] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
64 Fodor M, Price E, Wang P, Lu H, Argintaru A, Chen Z, Glick M, Hao HX, Kato M, Koenig R, LaRochelle JR, Liu G, McNeill E, Majumdar D, Nishiguchi GA, Perez LB, Paris G, Quinn CM, Ramsey T, Sendzik M, Shultz MD, Williams SL, Stams T, Blacklow SC, Acker MG, LaMarche MJ. Dual Allosteric Inhibition of SHP2 Phosphatase. ACS Chem Biol 2018;13:647-56. [PMID: 29304282 DOI: 10.1021/acschembio.7b00980] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
65 Hill KS, Roberts ER, Wang X, Marin E, Park TD, Son S, Ren Y, Fang B, Yoder S, Kim S, Wan L, Sarnaik AA, Koomen JM, Messina JL, Teer JK, Kim Y, Wu J, Chalfant CE, Kim M. PTPN11 Plays Oncogenic Roles and Is a Therapeutic Target for BRAF Wild-Type Melanomas. Mol Cancer Res 2019;17:583-93. [PMID: 30355677 DOI: 10.1158/1541-7786.MCR-18-0777] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
66 Fulcher LJ, Hutchinson LD, Macartney TJ, Turnbull C, Sapkota GP. Targeting endogenous proteins for degradation through the affinity-directed protein missile system. Open Biol 2017;7:170066. [PMID: 28490657 DOI: 10.1098/rsob.170066] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
67 Huda S, Cao M, De Rosa A, Woodhall M, Rodriguez Cruz PM, Cossins J, Maestri M, Ricciardi R, Evoli A, Beeson D, Vincent A. SHP2 inhibitor protects AChRs from effects of myasthenia gravis MuSK antibody. Neurol Neuroimmunol Neuroinflamm 2020;7:e645. [PMID: 31831571 DOI: 10.1212/NXI.0000000000000645] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
68 Zhu HH, Ji K, Alderson N, He Z, Li S, Liu W, Zhang DE, Li L, Feng GS. Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood 2011;117:5350-61. [PMID: 21450902 DOI: 10.1182/blood-2011-01-333476] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 6.2] [Reference Citation Analysis]
69 Koike K, Matsuda K. Recent advances in the pathogenesis and management of juvenile myelomonocytic leukaemia. Br J Haematol 2008;141:567-75. [DOI: 10.1111/j.1365-2141.2008.07104.x] [Cited by in F6Publishing: 33] [Reference Citation Analysis]
70 Chio CM, Cheng KW, Bishop AC. Direct Chemical Activation of a Rationally Engineered Signaling Enzyme. Chembiochem 2015;16:1735-9. [PMID: 26063205 DOI: 10.1002/cbic.201500245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
71 Wu PC, Tsai CY, Lin PH, Chou PH, Huang FL, Chen PL, Shiao JY, Liu TC, Hsu CJ, Huang CW, Wu CC. Cochlear implantation in LEOPARD syndrome: Our experience with three patients. Clin Otolaryngol 2021. [PMID: 34797606 DOI: 10.1111/coa.13895] [Reference Citation Analysis]
72 Lin CC, Wieteska L, Suen KM, Kalverda AP, Ahmed Z, Ladbury JE. Grb2 binding induces phosphorylation-independent activation of Shp2. Commun Biol 2021;4:437. [PMID: 33795832 DOI: 10.1038/s42003-021-01969-7] [Reference Citation Analysis]
73 Xiang D, Cheng Z, Liu H, Wang X, Han T, Sun W, Li X, Yang W, Chen C, Xia M, Liu N, Yin S, Jin G, Lee T, Dong L, Hu H, Wang H, Ding J. Shp2 promotes liver cancer stem cell expansion by augmenting β-catenin signaling and predicts chemotherapeutic response of patients: Xiang, Cheng, et al. Hepatology 2017;65:1566-80. [DOI: 10.1002/hep.28919] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 14.6] [Reference Citation Analysis]
74 Song Y, Zhao M, Zhang H, Yu B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021;:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Rehman AU, Rafiq H, Rahman MU, Li J, Liu H, Luo S, Arshad T, Wadood A, Chen H. Gain-of-Function SHP2 E76Q Mutant Rescuing Autoinhibition Mechanism Associated with Juvenile Myelomonocytic Leukemia. J Chem Inf Model 2019;59:3229-39. [DOI: 10.1021/acs.jcim.9b00353] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
76 Pedersen AK, Pfeiffer A, Karemore G, Akimov V, Bekker-Jensen DB, Blagoev B, Francavilla C, Olsen JV. Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. iScience 2021;24:102321. [PMID: 33889818 DOI: 10.1016/j.isci.2021.102321] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
77 Moga MA, Nakamura T, Robbins J. Genetic approaches for changing the heart and dissecting complex syndromes. J Mol Cell Cardiol 2008;45:148-55. [PMID: 18601931 DOI: 10.1016/j.yjmcc.2008.06.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
78 Scott LM, Chen L, Daniel KG, Brooks WH, Guida WC, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorg Med Chem Lett 2011;21:730-3. [PMID: 21193311 DOI: 10.1016/j.bmcl.2010.11.117] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
79 Yang JJ, Cho LY, Ko KP, Shin A, Ma SH, Choi BY, Han DS, Song KS, Kim YS, Lee JY. Genetic susceptibility on CagA-interacting molecules and gene-environment interaction with phytoestrogens: a putative risk factor for gastric cancer. PLoS One. 2012;7:e31020. [PMID: 22383989 DOI: 10.1371/journal.pone.0031020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
80 Spalinger MR, Schwarzfischer M, Scharl M. The Role of Protein Tyrosine Phosphatases in Inflammasome Activation. Int J Mol Sci 2020;21:E5481. [PMID: 32751912 DOI: 10.3390/ijms21155481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Romero C, Lambert LJ, Sheffler DJ, De Backer LJS, Raveendra-Panickar D, Celeridad M, Grotegut S, Rodiles S, Holleran J, Sergienko E, Pasquale EB, Cosford NDP, Tautz L. A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors. J Biol Chem 2020;295:2601-13. [PMID: 31953320 DOI: 10.1074/jbc.RA119.010838] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
82 Tautz L, Critton DA, Grotegut S. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 2013;1053:179-221. [PMID: 23860656 DOI: 10.1007/978-1-62703-562-0_13] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
83 Alfayez M, Issa GC, Patel KP, Wang F, Wang X, Short NJ, Cortes JE, Kadia T, Ravandi F, Pierce S, Assi R, Garcia-Manero G, DiNardo CD, Daver N, Pemmaraju N, Kantarjian H, Borthakur G. The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia 2021;35:691-700. [PMID: 32561839 DOI: 10.1038/s41375-020-0920-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Liu Q, Qu J, Zhao M, Xu Q, Sun Y. Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res. 2020;152:104595. [PMID: 31838080 DOI: 10.1016/j.phrs.2019.104595] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
85 Ruzzi LR, Schilman PE, San Martin A, Lew SE, Gelb BD, Pagani MR. The Phosphatase CSW Controls Life Span by Insulin Signaling and Metabolism Throughout Adult Life in Drosophila. Front Genet 2020;11:364. [PMID: 32457793 DOI: 10.3389/fgene.2020.00364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
86 Zhu HH, Feng GS. The dynamic interplay between a PTK (Kit) and a PTP (Shp2) in hematopoietic stem and progenitor cells. Cell Cycle 2011;10:2241-2. [PMID: 21701261 DOI: 10.4161/cc.10.14.15861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
87 Roccograndi L, Binder ZA, Zhang L, Aceto N, Zhang Z, Bentires-Alj M, Nakano I, Dahmane N, O'Rourke DM. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J Neurooncol 2017;135:487-96. [PMID: 28852935 DOI: 10.1007/s11060-017-2610-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
88 Rocha SFLS, Sant'anna CMR. A procedure combining molecular docking and semiempirical method PM7 for identification of selective Shp2 inhibitors. Biopolymers 2019;110. [DOI: 10.1002/bip.23320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Lambert LJ, Romero C, Sheffler DJ, Celeridad M, Cosford NDP, Tautz L. Assessing Cellular Target Engagement by SHP2 (PTPN11) Phosphatase Inhibitors. J Vis Exp 2020. [PMID: 32744526 DOI: 10.3791/61457] [Reference Citation Analysis]
90 Sharma N, Everingham S, Zeng LF, Zhang ZY, Kapur R, Craig AW. Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice. Oncotarget 2014;5:6130-41. [PMID: 25026279 DOI: 10.18632/oncotarget.2177] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
91 Ha CH, Bennett AM, Jin ZG. A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem 2008;283:7261-70. [PMID: 18180305 DOI: 10.1074/jbc.M702881200] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
92 Zhang X, He Y, Liu S, Yu Z, Jiang ZX, Yang Z, Dong Y, Nabinger SC, Wu L, Gunawan AM, Wang L, Chan RJ, Zhang ZY. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem 2010;53:2482-93. [PMID: 20170098 DOI: 10.1021/jm901645u] [Cited by in Crossref: 127] [Cited by in F6Publishing: 120] [Article Influence: 10.6] [Reference Citation Analysis]
93 Guo W, Xu Q. Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 2020;144:139-46. [PMID: 32921395 DOI: 10.1016/j.jphs.2020.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Chan G, Kalaitzidis D, Neel BG. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 2008;27:179-192. [PMID: 18286234 DOI: 10.1007/s10555-008-9126-y] [Cited by in Crossref: 248] [Cited by in F6Publishing: 241] [Article Influence: 17.7] [Reference Citation Analysis]
95 Nabinger SC, Chan RJ. Shp2 function in hematopoietic stem cell biology and leukemogenesis. Curr Opin Hematol 2012;19:273-9. [PMID: 22504523 DOI: 10.1097/MOH.0b013e328353c6bf] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
96 Zhang SS, Hao E, Yu J, Liu W, Wang J, Levine F, Feng GS. Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci U S A 2009;106:7531-6. [PMID: 19380737 DOI: 10.1073/pnas.0811715106] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
97 Dance M, Montagner A, Salles JP, Yart A, Raynal P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 2008;20:453-9. [PMID: 17993263 DOI: 10.1016/j.cellsig.2007.10.002] [Cited by in Crossref: 178] [Cited by in F6Publishing: 179] [Article Influence: 11.9] [Reference Citation Analysis]
98 Yang Z, Chen M, Sitarski SA, Saadatzadeh T, Yin F, Yu M, Yang FC, Chan RJ. Genetic disruption of the scaffolding protein, Kinase Suppressor of Ras 1 (KSR1), differentially regulates GM-CSF-stimulated hyperproliferation in hematopoietic progenitors expressing activating PTPN11 mutants D61Y and E76K. Leuk Res 2011;35:961-4. [PMID: 21555152 DOI: 10.1016/j.leukres.2011.04.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
99 Louria-Hayon I, Frelin C, Ruston J, Gish G, Jin J, Kofler MM, Lambert JP, Adissu HA, Milyavsky M, Herrington R, Minden MD, Dick JE, Gingras AC, Iscove NN, Pawson T. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling. Proc Natl Acad Sci U S A 2013;110:20599-604. [PMID: 24297922 DOI: 10.1073/pnas.1319665110] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
100 Li J, Kang Y, Wei L, Liu W, Tian Y, Chen B, Lin X, Li Y, Feng GS, Lu Z. Tyrosine phosphatase Shp2 mediates the estrogen biological action in breast cancer via interaction with the estrogen extranuclear receptor. PLoS One 2014;9:e102847. [PMID: 25048202 DOI: 10.1371/journal.pone.0102847] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
101 Chan G, Kalaitzidis D, Usenko T, Kutok JL, Yang W, Mohi MG, Neel BG. Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood 2009;113:4414-24. [PMID: 19179468 DOI: 10.1182/blood-2008-10-182626] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 5.9] [Reference Citation Analysis]
102 Kang X, Cui C, Wang C, Wu G, Chen H, Lu Z, Chen X, Wang L, Huang J, Geng H, Zhao M, Chen Z, Müschen M, Wang HY, Zhang CC. CAMKs support development of acute myeloid leukemia. J Hematol Oncol 2018;11:30. [PMID: 29482582 DOI: 10.1186/s13045-018-0574-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
103 Lu L, Zhang S, Li C, Zhou C, Li D, Liu P, Huang M, Shen X. Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation. Cell Death Dis 2017;8:e2767. [PMID: 28492557 DOI: 10.1038/cddis.2017.174] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
104 Puri P, Walker WH. The regulation of male fertility by the PTPN11 tyrosine phosphatase. Seminars in Cell & Developmental Biology 2016;59:27-34. [DOI: 10.1016/j.semcdb.2016.01.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
105 Kim M, Morales LD, Jang IS, Cho YY, Kim DJ. Protein Tyrosine Phosphatases as Potential Regulators of STAT3 Signaling. Int J Mol Sci 2018;19:E2708. [PMID: 30208623 DOI: 10.3390/ijms19092708] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 11.8] [Reference Citation Analysis]
106 Zhang Q, Li Y, Zhao R, Wang X, Fan C, Xu Y, Liu Y, Li J, Wang S. The gain-of-function mutation E76K in SHP2 promotes CAC tumorigenesis and induces EMT via the Wnt/β-catenin signaling pathway. Mol Carcinog 2018;57:619-28. [PMID: 29323748 DOI: 10.1002/mc.22785] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
107 Yeang C, Mccormick F, Levine A. Combinatorial patterns of somatic gene mutations in cancer. FASEB j 2008;22:2605-22. [DOI: 10.1096/fj.08-108985] [Cited by in Crossref: 185] [Cited by in F6Publishing: 139] [Article Influence: 13.2] [Reference Citation Analysis]
108 Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2021;97:721-73. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018;10:E82. [PMID: 29558404 DOI: 10.3390/cancers10030082] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
110 Schneeberger VE, Luetteke N, Ren Y, Berns H, Chen L, Foroutan P, Martinez GV, Haura EB, Chen J, Coppola D, Wu J. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice. Carcinogenesis 2014;35:1717-25. [PMID: 24480804 DOI: 10.1093/carcin/bgu025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
111 Cao Y, Jin Y, Yu J, Wang J, Yan J, Zhao Q. Research progress of neuroblastoma related gene variations. Oncotarget. 2017;8:18444-18455. [PMID: 28055978 DOI: 10.18632/oncotarget.14408] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
112 Furcht CM, Buonato JM, Skuli N, Mathew LK, Muñoz Rojas AR, Simon MC, Lazzara MJ. Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells. J Cell Sci 2014;127:3555-67. [PMID: 24951116 DOI: 10.1242/jcs.150862] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
113 Bewersdorf JP, Ardasheva A, Podoltsev NA, Singh A, Biancon G, Halene S, Zeidan AM. From clonal hematopoiesis to myeloid leukemia and what happens in between: Will improved understanding lead to new therapeutic and preventive opportunities? Blood Reviews 2019;37:100587. [DOI: 10.1016/j.blre.2019.100587] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
114 Senda Y, Murata-Kamiya N, Hatakeyama M. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility. Cancer Sci 2016;107:972-80. [PMID: 27116701 DOI: 10.1111/cas.12962] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
115 Sivaganesh V, Sivaganesh V, Scanlon C, Iskander A, Maher S, Lê T, Peethambaran B. Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021;22:12865. [PMID: 34884670 DOI: 10.3390/ijms222312865] [Reference Citation Analysis]
116 Li XJ, Goodwin CB, Nabinger SC, Richine BM, Yang Z, Hanenberg H, Ohnishi H, Matozaki T, Feng GS, Chan RJ. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst. J Biol Chem 2015;290:3894-909. [PMID: 25538234 DOI: 10.1074/jbc.M114.614057] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
117 Yang D, Tang S, Yang Y, Yang F, Jiang W, Liu Y, Zhang F, Fang H, Wang S, Zhang Y. Generation and Validation of miR-100 Hepatocyte-Specific Knock-Out Mice. Front Oncol 2019;9:535. [PMID: 31293973 DOI: 10.3389/fonc.2019.00535] [Reference Citation Analysis]
118 Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. Toward a More Precise Future for Oncology. Cancer Cell 2020;37:431-42. [PMID: 32289268 DOI: 10.1016/j.ccell.2020.03.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
119 Win-Piazza H, Schneeberger VE, Chen L, Pernazza D, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2. Cancer Lett 2012;320:81-5. [PMID: 22306001 DOI: 10.1016/j.canlet.2012.01.034] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
120 Puri P, Walker WH. The tyrosine phosphatase SHP2 regulates Sertoli cell junction complexes. Biol Reprod 2013;88:59. [PMID: 23325809 DOI: 10.1095/biolreprod.112.104414] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
121 Feng G. Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res 2007;17:37-41. [DOI: 10.1038/sj.cr.7310140] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 3.3] [Reference Citation Analysis]
122 Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med 2015;19:2075-83. [PMID: 26088100 DOI: 10.1111/jcmm.12618] [Cited by in Crossref: 88] [Cited by in F6Publishing: 84] [Article Influence: 12.6] [Reference Citation Analysis]
123 Li S, Hsu DD, Li B, Luo X, Alderson N, Qiao L, Ma L, Zhu HH, He Z, Suino-Powell K, Ji K, Li J, Shao J, Xu HE, Li T, Feng GS. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab 2014;20:320-32. [PMID: 24981838 DOI: 10.1016/j.cmet.2014.05.020] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 6.5] [Reference Citation Analysis]
124 Yu J, Deng R, Zhu HH, Zhang SS, Zhu C, Montminy M, Davis R, Feng GS. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem 2013;288:3823-30. [PMID: 23269672 DOI: 10.1074/jbc.M112.397885] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
125 Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2020;11:575255. [PMID: 33613459 DOI: 10.3389/fmicb.2020.575255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
126 Mason-Suares H, Toledo D, Gekas J, Lafferty KA, Meeks N, Pacheco MC, Sharpe D, Mullen TE, Lebo MS. Juvenile myelomonocytic leukemia-associated variants are associated with neo-natal lethal Noonan syndrome. Eur J Hum Genet 2017;25:509-11. [PMID: 28098151 DOI: 10.1038/ejhg.2016.202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
127 Liu D, Cao Z, Yan H, Li W, Yang F, Zhao W, Diao Q, Tan Y. A new abietane diterpenoid from Ajuga ovalifolia var. calantha induces human lung epithelial A549 cell apoptosis by inhibiting SHP2. Fitoterapia 2020;141:104484. [DOI: 10.1016/j.fitote.2020.104484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
128 Han T, Xiang D, Sun W, Liu N, Sun H, Wen W, Shen W, Wang R, Chen C, Wang X, Cheng Z, Li H, Wu M, Cong W, Feng G, Ding J, Wang H. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. Journal of Hepatology 2015;63:651-60. [DOI: 10.1016/j.jhep.2015.03.036] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 10.7] [Reference Citation Analysis]
129 Zhu HH, Luo X, Zhang K, Cui J, Zhao H, Ji Z, Zhou Z, Yao J, Zeng L, Ji K, Gao WQ, Zhang ZY, Feng GS. Shp2 and Pten have antagonistic roles in myeloproliferation but cooperate to promote erythropoiesis in mammals. Proc Natl Acad Sci U S A 2015;112:13342-7. [PMID: 26460004 DOI: 10.1073/pnas.1507599112] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
130 Tautz L, Senis YA, Oury C, Rahmouni S. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorg Med Chem 2015;23:2786-97. [PMID: 25921264 DOI: 10.1016/j.bmc.2015.03.075] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
131 Chen WS, Zhu HH, Feng GS. Treating leukemia at the risk of inducing severe anemia. Exp Hematol 2016;44:329-31. [PMID: 26826310 DOI: 10.1016/j.exphem.2016.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
132 Butterworth S, Overduin M, Barr AJ. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry 2014;6:1423-37. [DOI: 10.4155/fmc.14.88] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
133 Yang Z, Li Y, Yin F, Chan RJ. Activating PTPN11 mutants promote hematopoietic progenitor cell-cycle progression and survival. Exp Hematol 2008;36:1285-96. [PMID: 18640765 DOI: 10.1016/j.exphem.2008.04.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
134 Schönfeld M, Selig M, Russo A, Lindner C, Kampmann C, Mildenberger E, Whybra C. Rapid detection by hydrops panel of Noonan syndrome with PTPN11 mutation (p.Thr73Ile) and persistent thrombocytopenia. Mol Genet Genomic Med 2020;8:e1174. [PMID: 32144894 DOI: 10.1002/mgg3.1174] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
135 Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull 2013;29:199-215. [PMID: 23558589 DOI: 10.1007/s12264-013-1322-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
136 Chen C, Cao M, Zhu S, Wang C, Liang F, Yan L, Luo D. Discovery of a Novel Inhibitor of the Protein Tyrosine Phosphatase Shp2. Sci Rep 2015;5:17626. [PMID: 26626996 DOI: 10.1038/srep17626] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
137 Xie H, Huang S, Li W, Zhao H, Zhang T, Zhang D. Upregulation of Src homology phosphotyrosyl phosphatase 2 (Shp2) expression in oral cancer and knockdown of Shp2 expression inhibit tumor cell viability and invasion in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:234-42. [PMID: 24439919 DOI: 10.1016/j.oooo.2013.10.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
138 Li T, Xie J, Yao X, Zhang J, Li C, Ren D, Li L, Xie Q, Shao H, Qin A, Ye J. The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication. Virulence 2021;12:1721-31. [PMID: 34167452 DOI: 10.1080/21505594.2021.1939952] [Reference Citation Analysis]
139 Xu R. Shp2, a novel oncogenic tyrosine phosphatase and potential therapeutic target for human leukemia. Cell Res 2007;17:295-7. [PMID: 17404595 DOI: 10.1038/cr.2007.18] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.7] [Reference Citation Analysis]
140 Mohanty S, Heuser M. Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021;13:6192. [PMID: 34944812 DOI: 10.3390/cancers13246192] [Reference Citation Analysis]
141 Senda Y, Hatakeyama M. CagA. In: Suzuki H, Warren R, Marshall B, editors. Helicobacter pylori. Tokyo: Springer Japan; 2016. pp. 33-47. [DOI: 10.1007/978-4-431-55705-0_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
142 Wang R, Ma Y, Du S, Li W, Sun Y, Zhou H, Wang R. Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Computational Biology and Chemistry 2019;78:133-43. [DOI: 10.1016/j.compbiolchem.2018.10.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
143 Müller PJ, Rigbolt KT, Paterok D, Piehler J, Vanselow J, Lasonder E, Andersen JS, Schaper F, Sobota RM. Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia. J Proteomics 2013;84:132-47. [PMID: 23584145 DOI: 10.1016/j.jprot.2013.04.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
144 Neel BG, Speck NA. Tyrosyl phosphorylation toggles a Runx1 switch. Genes Dev 2012;26:1520-6. [PMID: 22802526 DOI: 10.1101/gad.198051.112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
145 Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y, Wei L. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2012;138:637-646. [PMID: 22228034 DOI: 10.1007/s00432-011-1143-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
146 Yoshimi A, Kojima S, Hirano N. Juvenile myelomonocytic leukemia: epidemiology, etiopathogenesis, diagnosis, and management considerations. Paediatr Drugs 2010;12:11-21. [PMID: 20034338 DOI: 10.2165/11316200-000000000-00000] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
147 Yang H, Liang SQ, Schmid RA, Peng RW. New Horizons in KRAS-Mutant Lung Cancer: Dawn After Darkness. Front Oncol 2019;9:953. [PMID: 31612108 DOI: 10.3389/fonc.2019.00953] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
148 Wu D, Pang Y, Ke Y, Yu J, He Z, Tautz L, Mustelin T, Ding S, Huang Z, Feng GS. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. PLoS One 2009;4:e4914. [PMID: 19290061 DOI: 10.1371/journal.pone.0004914] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.2] [Reference Citation Analysis]
149 Lin CF, Lin CM, Lee KY, Wu SY, Feng PH, Chen KY, Chuang HC, Chen CL, Wang YC, Tseng PC, Tsai TT. Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J Biomed Sci 2017;24:10. [PMID: 28143527 DOI: 10.1186/s12929-017-0317-0] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 9.2] [Reference Citation Analysis]
150 Stasik S, Eckardt JN, Kramer M, Röllig C, Krämer A, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause S, Herbst R, Hänel M, Frickhofen N, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Rácil Z, Platzbecker U, Berdel WE, Mayer J, Serve H, Müller-Tidow C, Ehninger G, Bornhäuser M, Schetelig J, Middeke JM, Thiede C; Study Alliance Leukemia (SAL). Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia. Blood Adv 2021;5:3279-89. [PMID: 34459887 DOI: 10.1182/bloodadvances.2021004631] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
151 Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15:306-316. [PMID: 24629337 DOI: 10.1016/j.chom.2014.02.008] [Cited by in Crossref: 251] [Cited by in F6Publishing: 219] [Article Influence: 31.4] [Reference Citation Analysis]
152 Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell. 2011;19:629-639. [PMID: 21575863 DOI: 10.1016/j.ccr.2011.03.023] [Cited by in Crossref: 203] [Cited by in F6Publishing: 208] [Article Influence: 18.5] [Reference Citation Analysis]
153 Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014;9:75-89. [PMID: 25263564 DOI: 10.1016/j.celrep.2014.08.044] [Cited by in Crossref: 191] [Cited by in F6Publishing: 192] [Article Influence: 23.9] [Reference Citation Analysis]
154 Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019;11:4957-69. [PMID: 31213912 DOI: 10.2147/CMAR.S206175] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
155 He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014;35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Cited by in Crossref: 174] [Cited by in F6Publishing: 161] [Article Influence: 21.8] [Reference Citation Analysis]
156 Houwing ME, Koopman-Coenen EA, Kersseboom R, Gooskens S, Appel IM, Arentsen-Peters ST, de Vries AC, Reinhardt D, Stary J, Baruchel A, de Haas V, Blink M, Lopes Cardozo RH, Pieters R, Michel Zwaan C, van den Heuvel-Eibrink MM. Somatic thrombopoietin (THPO) gene mutations in childhood myeloid leukemias. Int J Hematol 2015;102:140-3. [PMID: 25728710 DOI: 10.1007/s12185-015-1759-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
157 Dai M, Yan G, Wang N, Daliah G, Edick AM, Poulet S, Boudreault J, Ali S, Burgos SA, Lebrun JJ. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun 2021;12:3055. [PMID: 34031411 DOI: 10.1038/s41467-021-23316-4] [Reference Citation Analysis]
158 McPherson VA, Sharma N, Everingham S, Smith J, Zhu HH, Feng GS, Craig AW. SH2 domain-containing phosphatase-2 protein-tyrosine phosphatase promotes Fc epsilon RI-induced activation of Fyn and Erk pathways leading to TNF alpha release from bone marrow-derived mast cells. J Immunol 2009;183:4940-7. [PMID: 19786542 DOI: 10.4049/jimmunol.0900702] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
159 Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021. [PMID: 34590785 DOI: 10.1002/iub.2559] [Reference Citation Analysis]
160 Larochelle JR, Fodor M, Ellegast JM, Liu X, Vemulapalli V, Mohseni M, Stams T, Buhrlage SJ, Stegmaier K, Lamarche MJ, Acker MG, Blacklow SC. Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorganic & Medicinal Chemistry 2017;25:6479-85. [DOI: 10.1016/j.bmc.2017.10.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
161 Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta 2013;1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 25] [Article Influence: 0.9] [Reference Citation Analysis]
162 Dadmal TL, Appalanaidu K, Kumbhare RM, Mondal T, Ramaiah MJ, Bhadra MP. Synthesis and biological evaluation of triazole and isoxazole-tagged benzothiazole/benzoxazole derivatives as potent cytotoxic agents. New J Chem 2018;42:15546-51. [DOI: 10.1039/c8nj01249k] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
163 Ruddraraju KV, Zhang ZY. Covalent inhibition of protein tyrosine phosphatases. Mol Biosyst 2017;13:1257-79. [PMID: 28534914 DOI: 10.1039/c7mb00151g] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
164 Chen C, Chiang T, Tseng P, Wang Y, Lin C. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ. Biochemical and Biophysical Research Communications 2015;466:578-84. [DOI: 10.1016/j.bbrc.2015.09.085] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
165 Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN. The molecular regulation of Janus kinase (JAK) activation. Biochem J 2014;462:1-13. [PMID: 25057888 DOI: 10.1042/BJ20140712] [Cited by in Crossref: 149] [Cited by in F6Publishing: 73] [Article Influence: 18.6] [Reference Citation Analysis]
166 Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res 2017;77:5701-5. [PMID: 28855209 DOI: 10.1158/0008-5472.CAN-17-1510] [Cited by in Crossref: 69] [Cited by in F6Publishing: 43] [Article Influence: 13.8] [Reference Citation Analysis]
167 Yang X, Wang Z, Pei Y, Song N, Xu L, Feng B, Wang H, Luo X, Hu X, Qiu X, Feng H, Yang Y, Zhou Y, Li J, Zhou B. Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur J Med Chem 2021;218:113341. [PMID: 33780898 DOI: 10.1016/j.ejmech.2021.113341] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
168 Liu W, Yang B, Wang R, Li W, Ma Y, Zhou L, Du S, Ma Y, Wang R. Design, synthesis and biological evaluation of pyridine derivatives as selective SHP2 inhibitors. Bioorganic Chemistry 2020;100:103875. [DOI: 10.1016/j.bioorg.2020.103875] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
169 He Z, Zhu HH, Bauler TJ, Wang J, Ciaraldi T, Alderson N, Li S, Raquil MA, Ji K, Wang S, Shao J, Henry RR, King PD, Feng GS. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc Natl Acad Sci U S A 2013;110:E79-88. [PMID: 23236157 DOI: 10.1073/pnas.1213000110] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
170 Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, Cheng SY, Zhang W, Li Y, Feng H. Targeting PDGFRα-activated glioblastoma through specific inhibition of SHP-2-mediated signaling. Neuro Oncol 2019;21:1423-35. [PMID: 31232447 DOI: 10.1093/neuonc/noz107] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
171 Li K, Leung AW, Guo Q, Yang W, Li JY. Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci 2014;34:922-31. [PMID: 24431450 DOI: 10.1523/JNEUROSCI.3476-13.2014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
172 Chio CM, Lim CS, Bishop AC. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry 2015;54:497-504. [PMID: 25519989 DOI: 10.1021/bi5013595] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
173 Ma ES, Barrios AM. Rational design of a SHP-2 targeted, fluorogenic peptide substrate. Bioorg Med Chem Lett 2019;29:2452-4. [PMID: 31351693 DOI: 10.1016/j.bmcl.2019.07.034] [Reference Citation Analysis]
174 Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018;118:1069-91. [PMID: 28541680 DOI: 10.1021/acs.chemrev.7b00105] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 9.2] [Reference Citation Analysis]
175 Zhang W, Chan RJ, Chen H, Yang Z, He Y, Zhang X, Luo Y, Yin F, Moh A, Miller LC. Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia. J Biol Chem. 2009;284:22353-22363. [PMID: 19509418 DOI: 10.1074/jbc.m109.020495] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
176 Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 2021;6:386. [PMID: 34776511 DOI: 10.1038/s41392-021-00780-4] [Reference Citation Analysis]
177 Yu SJ, Yu JK, Ge WT, Hu HG, Yuan Y, Zheng S. SPARCL1, Shp2, MSH2, E-cadherin, p53, ADCY-2 and MAPK are prognosis-related in colorectal cancer. World J Gastroenterol 2011; 17(15): 2028-2036 [PMID: 21528083 DOI: 10.3748/wjg.v17.i15.2028] [Cited by in CrossRef: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
178 Cao J, Huang YQ, Jiao-Sun, Lan XB, Ge MH. Clinicopathological and prognostic significance of SHP2 and Hook1 expression in patients with thyroid carcinoma. Hum Pathol 2018;81:105-12. [PMID: 29953894 DOI: 10.1016/j.humpath.2018.06.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
179 Sarver P, Acker M, Bagdanoff JT, Chen Z, Chen Y, Chan H, Firestone B, Fodor M, Fortanet J, Hao H, Hentemann M, Kato M, Koenig R, Labonte LR, Liu G, Liu S, Liu C, Mcneill E, Mohseni M, Sendzik M, Stams T, Spence S, Tamez V, Tichkule R, Towler C, Wang H, Wang P, Williams SL, Yu B, Lamarche MJ. 6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors. J Med Chem 2019;62:1793-802. [DOI: 10.1021/acs.jmedchem.8b01726] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 10.7] [Reference Citation Analysis]
180 Dennemärker J, Lohmüller T, Mayerle J, Tacke M, Lerch MM, Coussens LM, Peters C, Reinheckel T. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 2010;29:1611-21. [PMID: 20023699 DOI: 10.1038/onc.2009.466] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 5.7] [Reference Citation Analysis]
181 Leibowitz MS, Srivastava RM, Andrade Filho PA, Egloff AM, Wang L, Seethala RR, Ferrone S, Ferris RL. SHP2 is overexpressed and inhibits pSTAT1-mediated APM component expression, T-cell attracting chemokine secretion, and CTL recognition in head and neck cancer cells. Clin Cancer Res 2013;19:798-808. [PMID: 23363816 DOI: 10.1158/1078-0432.CCR-12-1517] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
182 Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018;8:14684. [PMID: 30279491 DOI: 10.1038/s41598-018-33014-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
183 Chen ZM, Hu J, Xu YM, He W, Meng L, Huang T, Ying SC, Jiang Z, Xu AM. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions. World J Gastrointest Oncol 2021; 13(7): 693-705 [PMID: 34322198 DOI: 10.4251/wjgo.v13.i7.693] [Reference Citation Analysis]
184 Zhang YL, Lu FY, Wang WB, Zhang YC, Liu YP, Wu Y. Influences of Helicobacter pylori on SHP-2 expression and cytoskeleton in human gastric cancer cells SGC-7901. Shijie Huaren Xiaohua Zazhi 2008; 16(26): 2916-2921 [DOI: 10.11569/wcjd.v16.i26.2916] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
185 Gao ZH, Shi YM, Qiang Z, Wang X, Shang SZ, Yang Y, Du BW, Peng HP, Ji X, Li H, Wang F, Xiao WL. Plasiatine, an Unprecedented Indole-Phenylpropanoid Hybrid from Plantago asiatica as a Potent Activator of the Nonreceptor Protein Tyrosine Phosphatase Shp2. Sci Rep 2016;6:24945. [PMID: 27101899 DOI: 10.1038/srep24945] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
186 Sreedurgalakshmi K, Srikar R, Rajkumari R. CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. Cancer Gene Ther 2021;28:566-80. [PMID: 33191402 DOI: 10.1038/s41417-020-00256-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
187 Broxmeyer HE, Etienne-Julan M, Gotoh A, Braun SE, Lu L, Cooper S, Feng GS, Li XJ, Chan RJ. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev 2013;22:998-1006. [PMID: 23082805 DOI: 10.1089/scd.2012.0478] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
188 Farrokhzadeh A, Akher FB, Soliman MES. Probing the Dynamic Mechanism of Uncommon Allosteric Inhibitors Optimized to Enhance Drug Selectivity of SHP2 with Therapeutic Potential for Cancer Treatment. Appl Biochem Biotechnol 2019;188:260-81. [DOI: 10.1007/s12010-018-2914-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
189 Li N, Zhu Y. Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Therap Adv Gastroenterol 2019;12:1756284818821560. [PMID: 30719075 DOI: 10.1177/1756284818821560] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
190 Calligari P, Santucci V, Stella L, Bocchinfuso G. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state. Comput Struct Biotechnol J 2021;19:6125-39. [PMID: 34900129 DOI: 10.1016/j.csbj.2021.10.041] [Reference Citation Analysis]
191 Feng GS. Tumor immunology and immunotherapy: a journey I started from Hangzhou. J Zhejiang Univ Sci B 2019;20:373-80. [PMID: 31090263 DOI: 10.1631/jzus.B1900204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
192 Ghias K, Rehmani SS, Razzak SA, Madhani S, Azim MK, Ahmed R, Khan MJ. Mutational landscape of head and neck squamous cell carcinomas in a South Asian population. Genet Mol Biol 2019;4242:526-42. [PMID: 31188922 DOI: 10.1590/1678-4685-GMB-2018-0005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
193 Luo Q, Sun Y, Gong FY, Liu W, Zheng W, Shen Y, Hua ZC, Xu Q. Blocking initial infiltration of pioneer CD8(+) T-cells into the CNS via inhibition of SHP-2 ameliorates experimental autoimmune encephalomyelitis in mice. Br J Pharmacol 2014;171:1706-21. [PMID: 24372081 DOI: 10.1111/bph.12565] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
194 Li S, Hsu DD, Wang H, Feng GS. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front Med. 2012;6:275-279. [PMID: 22869052 DOI: 10.1007/s11684-012-0216-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
195 Sun XJ, Liu F. Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. Vitam Horm 2009;80:351-87. [PMID: 19251044 DOI: 10.1016/S0083-6729(08)00613-4] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
196 Garcia Fortanet J, Chen CH, Chen YP, Chen Z, Deng Z, Firestone B, Fekkes P, Fodor M, Fortin PD, Fridrich C, Grunenfelder D, Ho S, Kang ZB, Karki R, Kato M, Keen N, Labonte LR, Larrow J, Lenoir F, Liu G, Liu S, Lombardo F, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Ramsey T, Sellers WR, Shultz MD, Stams T, Towler C, Wang P, Williams SL, Zhang J, Lamarche MJ. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor. J Med Chem 2016;59:7773-82. [DOI: 10.1021/acs.jmedchem.6b00680] [Cited by in Crossref: 115] [Cited by in F6Publishing: 99] [Article Influence: 19.2] [Reference Citation Analysis]
197 Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 2015;6:8859. [PMID: 26617336 DOI: 10.1038/ncomms9859] [Cited by in Crossref: 89] [Cited by in F6Publishing: 84] [Article Influence: 12.7] [Reference Citation Analysis]
198 Py C, Christinat Y, Kreutzfeldt M, Mckee TA, Dietrich P, Tsantoulis P. Response of NF1- Mutated Melanoma to an MEK Inhibitor. JCO Precision Oncology 2018. [DOI: 10.1200/po.18.00028] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
199 Tani H, Kurita S, Miyamoto R, Ochiai K, Tamura K, Bonkobara M. Canine histiocytic sarcoma cell lines with SHP2 p.Glu76Gln or p.Glu76Ala mutations are sensitive to allosteric SHP2 inhibitor SHP099. Vet Comp Oncol 2020;18:161-8. [PMID: 31339650 DOI: 10.1111/vco.12524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
200 Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development 2014;141:1961-70. [PMID: 24718990 DOI: 10.1242/dev.106310] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
201 Raveendra-Panickar D, Finlay D, Layng FI, Lambert LJ, Celeridad M, Zhao M, Barbosa K, De Backer LJS, Kwong E, Gosalia P, Rodiles S, Holleran J, Ardecky R, Grotegut S, Olson S, Hutchinson JH, Pasquale EB, Vuori K, Deshpande AJ, Cosford NDP, Tautz L. Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells. J Biol Chem 2021;:101477. [PMID: 34896393 DOI: 10.1016/j.jbc.2021.101477] [Reference Citation Analysis]
202 Cai P, Guo W, Yuan H, Li Q, Wang W, Sun Y, Li X, Gu Y. Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer. Biomed Pharmacother. 2014;68:285-290. [PMID: 24439672 DOI: 10.1016/j.biopha.2013.10.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
203 Jiang J, Jin MS, Kong F, Wang YP, Jia ZF, Cao DH, Ma HX, Suo J, Cao XY. Increased expression of tyrosine phosphatase SHP-2 in Helicobacter pylori-infected gastric cancer. World J Gastroenterol 2013; 19(4): 575-580 [PMID: 23382639 DOI: 10.3748/wjg.v19.i4.575] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
204 Wang HP, Zhu YL, Shao W. Role of Helicobacter pylori virulence factor cytotoxin-associated gene A in gastric mucosa-associated lymphoid tissue lymphoma. World J Gastroenterol 2013; 19(45): 8219-8226 [PMID: 24363512 DOI: 10.3748/wjg.v19.i45.8219] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
205 Liu JJ, Li Y, Chen WS, Liang Y, Wang G, Zong M, Kaneko K, Xu R, Karin M, Feng GS. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 2018;69:79-88. [PMID: 29505847 DOI: 10.1016/j.jhep.2018.02.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
206 Molteni C, Cazzaniga G, Condorelli D, Fortuna C, Biondi A, Musumarra G. Successful Application of OPLS-DA for the Discrimination of Wild-Type and Mutated Cells in Acute Lymphoblastic Leukemia. QSAR Comb Sci 2009;28:822-8. [DOI: 10.1002/qsar.200860195] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
207 Tang K, Jia YN, Yu B, Liu HM. Medicinal chemistry strategies for the development of protein tyrosine phosphatase SHP2 inhibitors and PROTAC degraders. Eur J Med Chem 2020;204:112657. [PMID: 32738411 DOI: 10.1016/j.ejmech.2020.112657] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
208 Martinelli S, Torreri P, Tinti M, Stella L, Bocchinfuso G, Flex E, Grottesi A, Ceccarini M, Palleschi A, Cesareni G, Castagnoli L, Petrucci TC, Gelb BD, Tartaglia M. Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2 amino acid substitutions causing Noonan and LEOPARD syndromes. Hum Mol Genet 2008;17:2018-29. [PMID: 18372317 DOI: 10.1093/hmg/ddn099] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 4.2] [Reference Citation Analysis]
209 Chen YP, Lamarche MJ, Chan HM, Fekkes P, Garcia-fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao H, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang J, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016;535:148-52. [DOI: 10.1038/nature18621] [Cited by in Crossref: 367] [Cited by in F6Publishing: 324] [Article Influence: 61.2] [Reference Citation Analysis]
210 Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL, Lei QY. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 2014;124:5453-5465. [PMID: 25384215 DOI: 10.1172/jci76611] [Cited by in Crossref: 89] [Cited by in F6Publishing: 63] [Article Influence: 11.1] [Reference Citation Analysis]
211 Huang Y, Wang J, Cao F, Jiang H, Li A, Li J, Qiu L, Shen H, Chang W, Zhou C, Pan Y, Lu Y. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep 2017;7:17597. [PMID: 29242509 DOI: 10.1038/s41598-017-17604-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
212 Jopling C, van Geemen D, den Hertog J. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects. PLoS Genet 2007;3:e225. [PMID: 18159945 DOI: 10.1371/journal.pgen.0030225] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 5.0] [Reference Citation Analysis]
213 Yu ZH, Zhang RY, Walls CD, Chen L, Zhang S, Wu L, Liu S, Zhang ZY. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry 2014;53:4136-51. [PMID: 24935154 DOI: 10.1021/bi5002695] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
214 Matsuo Y, Kido Y, Akada J, Shiota S, Binh TT, Trang TTH, Dung HDQ, Tung PH, Tri TD, Thuan NPM, Tam LQ, Nam BC, Khien VV, Yamaoka Y. Novel CagA ELISA exhibits enhanced sensitivity of Helicobacter pylori CagA antibody. World J Gastroenterol 2017; 23(1): 48-59 [PMID: 28104980 DOI: 10.3748/wjg.v23.i1.48] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
215 Ren Y, Chen Z, Chen L, Fang B, Win-Piazza H, Haura E, Koomen JM, Wu J. Critical role of Shp2 in tumor growth involving regulation of c-Myc. Genes Cancer 2010;1:994-1007. [PMID: 21442024 DOI: 10.1177/1947601910395582] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
216 Plaman BA, Chan WC, Bishop AC. Chemical activation of divergent protein tyrosine phosphatase domains with cyanine-based biarsenicals. Sci Rep 2019;9:16148. [PMID: 31695052 DOI: 10.1038/s41598-019-52002-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
217 Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2017;23:4226-46. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]