BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cohen IJ, Blasberg R. Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer. Breast Cancer (Auckl) 2017;11:1178223417731565. [PMID: 28979132 DOI: 10.1177/1178223417731565] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Jardim-Perassi BV, Alexandre PA, Sonehara NM, de Paula-Junior R, Reis Júnior O, Fukumasu H, Chammas R, Coutinho LL, Zuccari DAPC. RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model. Sci Rep 2019;9:966. [PMID: 30700756 DOI: 10.1038/s41598-018-37413-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
2 Sun B. The mechanics of fibrillar collagen extracellular matrix. Cell Rep Phys Sci 2021;2:100515. [PMID: 34485951 DOI: 10.1016/j.xcrp.2021.100515] [Reference Citation Analysis]
3 Li Y, Zhou J, Zhuo Q, Zhang J, Xie J, Han S, Zhao S. Malignant ascite-derived extracellular vesicles inhibit T cell activity by upregulating Siglec-10 expression. Cancer Manag Res 2019;11:7123-34. [PMID: 31534365 DOI: 10.2147/CMAR.S210568] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
4 Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep Prog Phys 2019;82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 15.0] [Reference Citation Analysis]
5 Chen Y, Klingen TA, Aas H, Wik E, Akslen LA. Tumor-associated lymphocytes and macrophages are related to stromal elastosis and vascular invasion in breast cancer. J Pathol Clin Res 2021;7:517-27. [PMID: 34076969 DOI: 10.1002/cjp2.226] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Murthy P, Ekeke CN, Russell KL, Butler SC, Wang Y, Luketich JD, Soloff AC, Dhupar R, Lotze MT. Making cold malignant pleural effusions hot: driving novel immunotherapies. Oncoimmunology 2019;8:e1554969. [PMID: 30906651 DOI: 10.1080/2162402X.2018.1554969] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
7 Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021;13:4610. [PMID: 34572836 DOI: 10.3390/cancers13184610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Temples MN, Adjei IM, Nimocks PM, Djeu J, Sharma B. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS Biomater Sci Eng 2020;6:4179-99. [PMID: 33463353 DOI: 10.1021/acsbiomaterials.0c00259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Torroja C, Sanchez-Cabo F. Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data. Front Genet 2019;10:978. [PMID: 31708961 DOI: 10.3389/fgene.2019.00978] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Maulana TI, Kromidas E, Wallstabe L, Cipriano M, Alb M, Zaupa C, Hudecek M, Fogal B, Loskill P. Immunocompetent cancer-on-chip models to assess immuno-oncology therapy. Adv Drug Deliv Rev 2021;173:281-305. [PMID: 33798643 DOI: 10.1016/j.addr.2021.03.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 McNamara G, Lucas J, Beeler JF, Basavanhally A, Lee G, Hedvat CV, Baxi VA, Locke D, Borowsky A, Levenson R. New Technologies to Image Tumors. Cancer Treat Res 2020;180:51-94. [PMID: 32215866 DOI: 10.1007/978-3-030-38862-1_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Townsend MH, Shrestha G, Robison RA, O'Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018;37:163. [PMID: 30031396 DOI: 10.1186/s13046-018-0817-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
13 Yazdani M, Gholizadeh Z, Nikpoor AR, Hatamipour M, Alani B, Nikzad H, Mohamadian Roshan N, Verdi J, Jaafari MR, Noureddini M, Badiee A. Vaccination with dendritic cells pulsed ex vivo with gp100 peptide-decorated liposomes enhances the efficacy of anti PD-1 therapy in a mouse model of melanoma. Vaccine 2020;38:5665-77. [PMID: 32653275 DOI: 10.1016/j.vaccine.2020.06.055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
14 Ando Y, Siegler EL, Ta HP, Cinay GE, Zhou H, Gorrell KA, Au H, Jarvis BM, Wang P, Shen K. Evaluating CAR-T Cell Therapy in a Hypoxic 3D Tumor Model. Adv Healthc Mater 2019;8:e1900001. [PMID: 30734529 DOI: 10.1002/adhm.201900001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
15 Hajjarian Z, Brachtel EF, Tshikudi DM, Nadkarni SK. Mapping Mechanical Properties of the Tumor Microenvironment by Laser Speckle Rheological Microscopy. Cancer Res 2021;81:4874-85. [PMID: 34526347 DOI: 10.1158/0008-5472.CAN-20-3898] [Reference Citation Analysis]
16 Ta HDK, Wang WJ, Phan NN, An Ton NT, Anuraga G, Ku SC, Wu YF, Wang CY, Lee KH. Potential Therapeutic and Prognostic Values of LSM Family Genes in Breast Cancer. Cancers (Basel) 2021;13:4902. [PMID: 34638387 DOI: 10.3390/cancers13194902] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Lee H, Nguyen A, Ki SY, Lee JE, Do L, Park MH, Lee JS, Kim HJ, Park I, Lim HS. Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning. Front Oncol 2021;11:744460. [DOI: 10.3389/fonc.2021.744460] [Reference Citation Analysis]
18 Yang WH, Cha JH, Xia W, Lee HH, Chan LC, Wang YN, Hsu JL, Ren G, Hung MC. Juxtacrine Signaling Inhibits Antitumor Immunity by Upregulating PD-L1 Expression. Cancer Res 2018;78:3761-8. [PMID: 29789418 DOI: 10.1158/0008-5472.CAN-18-0040] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
19 Wang H, Milberg O, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Santa-Maria CA, Popel AS. In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model. R Soc Open Sci 2019;6:190366. [PMID: 31218069 DOI: 10.1098/rsos.190366] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 8.7] [Reference Citation Analysis]
20 Azadi S, Aboulkheyr Es H, Razavi Bazaz S, Thiery JP, Asadnia M, Ebrahimi Warkiani M. Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions. Biochim Biophys Acta Mol Cell Res 2019;1866:118526. [PMID: 31398408 DOI: 10.1016/j.bbamcr.2019.118526] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]