BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramírez-torres A, Penta R, Rodríguez-ramos R, Grillo A. Effective properties of hierarchical fiber-reinforced composites via a three-scale asymptotic homogenization approach. Mathematics and Mechanics of Solids 2019;24:3554-74. [DOI: 10.1177/1081286519847687] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Dong H, Yang Z, Guan X, Cui J. Stochastic higher-order three-scale strength prediction model for composite structures with micromechanical analysis. Journal of Computational Physics 2022;465:111352. [DOI: 10.1016/j.jcp.2022.111352] [Reference Citation Analysis]
2 Dong H. Computationally efficient higher-order three-scale method for nonlocal gradient elasticity problems of heterogeneous structures with multiple spatial scales. Applied Mathematical Modelling 2022;109:426-54. [DOI: 10.1016/j.apm.2022.05.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Cruz-gonzález O, Ramírez-torres A, Rodríguez-ramos R, Penta R, Lebon F. Hierarchical heterogeneous one-dimensional problem in linear viscoelastic media. European Journal of Mechanics - A/Solids 2022. [DOI: 10.1016/j.euromechsol.2022.104617] [Reference Citation Analysis]
4 Hatefi Ardakani S, Fatemi Dehaghani P, Moslemzadeh H, Mohammadi S. 3D large strain hierarchical multiscale analysis of soft fiber-reinforced tissues: application to a degraded arterial wall. EC 2022. [DOI: 10.1108/ec-05-2021-0289] [Reference Citation Analysis]
5 Lukeš V, Rohan E. Homogenization of large deforming fluid-saturated porous structures. Computers & Mathematics with Applications 2022;110:40-63. [DOI: 10.1016/j.camwa.2022.01.036] [Reference Citation Analysis]
6 Gajewski T, Garbowski T, Staszak N, Kuca M. Crushing of Double-Walled Corrugated Board and Its Influence on the Load Capacity of Various Boxes. Energies 2021;14:4321. [DOI: 10.3390/en14144321] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
7 Miller L, Penta R. Double poroelasticity derived from the microstructure. Acta Mech 2021;232:3801-23. [DOI: 10.1007/s00707-021-03030-4] [Reference Citation Analysis]
8 Rohan E, Turjanicová J, Lukeš V. Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model. Computers & Structures 2021;251:106404. [DOI: 10.1016/j.compstruc.2020.106404] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Cruz-gonzález O, Ramírez-torres A, Rodríguez-ramos R, Otero J, Penta R, Lebon F. Effective behavior of long and short fiber-reinforced viscoelastic composites. Applications in Engineering Science 2021;6:100037. [DOI: 10.1016/j.apples.2021.100037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Penta R, Ramírez-torres A, Merodio J, Rodríguez-ramos R; 1 School of Mathematics and Statistics, University of Glasgow, University Place, G128QQ, Glasgow, UK, 2 Dipartimento di scienze matematiche “G. L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy, 3 Departamento de Mecanicá de los Medios Continuos y T. Estructuras, E. T. S. de caminos, canales y puertos, Universidad Politécnica de Madrid, Calle Profesor Aranguren S/N, 28040, Madrid, Spain, 4 Departamento de Matemáticas, Facultad de Matemática y Computación, Universidad de La Habana, CP 10400, Havana, Cuba, This contribution is part of the Special Issue: Models and Methods for Multiscale Systems Guest, Editor: Giulio Giusteri, Link: www.aimspress.com/mine/article/5814/special-articles. . Mathematics in Engineering 2021;3:1-17. [DOI: 10.3934/mine.2021033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 He Z, Pindera M. Finite volume based asymptotic homogenization theory for periodic materials under anti-plane shear. European Journal of Mechanics - A/Solids 2021;85:104122. [DOI: 10.1016/j.euromechsol.2020.104122] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
12 Dong H, Cui J, Nie Y, Jin K, Guan X, Yang Z. High-order three-scale computational method for elastic behavior analysis and strength prediction of axisymmetric composite structures with multiple spatial scales. Mathematics and Mechanics of Solids 2021;26:905-36. [DOI: 10.1177/1081286520975202] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Di Stefano S, Miller L, Grillo A, Penta R. Effective balance equations for electrostrictive composites. Z Angew Math Phys 2020;71. [DOI: 10.1007/s00033-020-01365-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
14 Yang Z, Long C, Sun Y. A high-order three-scale reduced asymptotic approach for thermo-mechanical problems of nonlinear heterogeneous materials with multiple spatial scales. European Journal of Mechanics - A/Solids 2020;80:103905. [DOI: 10.1016/j.euromechsol.2019.103905] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
15 Cruz-gonzález OL, Ramírez-torres A, Rodríguez-ramos R, Penta R, Bravo-castillero J, Guinovart-díaz R, Merodio J, Sabina FJ, Lebon F. A hierarchical asymptotic homogenization approach for viscoelastic composites. Mechanics of Advanced Materials and Structures 2021;28:2190-201. [DOI: 10.1080/15376494.2020.1722872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Miller L, Penta R. Effective balance equations for poroelastic composites. Continuum Mech Thermodyn 2020;32:1533-57. [DOI: 10.1007/s00161-020-00864-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]