BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A, Chandrasekaran N. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 2016;35:170-83. [DOI: 10.1177/0960327115579208] [Cited by in Crossref: 60] [Cited by in F6Publishing: 48] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett 2020;18:1659-83. [DOI: 10.1007/s10311-020-01033-6] [Cited by in Crossref: 47] [Cited by in F6Publishing: 18] [Article Influence: 23.5] [Reference Citation Analysis]
2 Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017;91:2967-3010. [PMID: 28573455 DOI: 10.1007/s00204-017-1993-y] [Cited by in Crossref: 191] [Cited by in F6Publishing: 165] [Article Influence: 38.2] [Reference Citation Analysis]
3 Noor R, Yasmin H, Ilyas N, Nosheen A, Hassan MN, Mumtaz S, Khan N, Ahmad A, Ahmad P. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere 2021;292:133201. [PMID: 34921860 DOI: 10.1016/j.chemosphere.2021.133201] [Reference Citation Analysis]
4 Fernández‐bertólez N, Costa C, Brandão F, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Evaluation of cytotoxicity and genotoxicity induced by oleic acid‐coated iron oxide nanoparticles in human astrocytes. Environ Mol Mutagen 2019;60:816-29. [DOI: 10.1002/em.22323] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
5 Campos A, Pereira R, Vaz A, Caetano T, Malta M, Oliveira J, Carvalho FP, Mendo S, Lourenço J. Metals and low dose IR: Molecular effects of combined exposures using HepG2 cells as a biological model. J Hazard Mater 2020;396:122634. [PMID: 32304850 DOI: 10.1016/j.jhazmat.2020.122634] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO, Khan J, Onyeike EN, Uche CZ, Akram M, Ibrahim MS, El Mahdy NM, Awuchi CG, Saravanan K, Tijjani H, Odoh UE, Messaoudi M, Ifemeje JC, Olisah MC, Ezeofor NJ, Chikwendu CJ, Ibeabuchi CG. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J Toxicol 2021;2021:9954443. [PMID: 34422042 DOI: 10.1155/2021/9954443] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Alaraby M, Annangi B, Marcos R, Hernández A. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. Journal of Toxicology and Environmental Health, Part B 2016;19:65-104. [DOI: 10.1080/10937404.2016.1166466] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
8 Pease C, Rücker T, Birk T. Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates. Chem Res Toxicol 2016;29:237-54. [DOI: 10.1021/acs.chemrestox.5b00448] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
9 Martínez-Rodríguez NL, Tavárez S, González-Sánchez ZI. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol In Vitro 2019;57:54-61. [PMID: 30771471 DOI: 10.1016/j.tiv.2019.02.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016;38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Cited by in Crossref: 97] [Cited by in F6Publishing: 82] [Article Influence: 16.2] [Reference Citation Analysis]
11 Gao Y, Wen P, Chen H, Wei Y, Cui H, Ma J, Li J, Qin G. Teratogenicity of 30 nm Aluminum Oxide Nanoparticles (Al2O3NPs) in Rats by Gavage. Biol Trace Elem Res 2021. [PMID: 34761357 DOI: 10.1007/s12011-021-03004-6] [Reference Citation Analysis]
12 Yu J, Zhang H, Li Y, Sun S, Gao J, Zhong Y, Sun D, Zhang G. Metabolomics revealed the toxicity of cationic liposomes in HepG2 cells using UHPLC-Q-TOF/MS and multivariate data analysis. Biomed Chromatogr 2017;31. [PMID: 28664536 DOI: 10.1002/bmc.4036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
13 Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine 2018;14:977-90. [PMID: 29409836 DOI: 10.1016/j.nano.2018.01.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
14 Akbaba GB, Türkez H. Investigation of the Genotoxicity of Aluminum Oxide, β-Tricalcium Phosphate, and Zinc Oxide Nanoparticles In Vitro. Int J Toxicol 2018;37:216-22. [PMID: 29727252 DOI: 10.1177/1091581818775709] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
15 Alex SA, Rajiv S, Chakravarty S, Chandrasekaran N, Mukherjee A. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity. Materials Science and Engineering: C 2017;71:744-54. [DOI: 10.1016/j.msec.2016.10.061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
16 Manshian BB, Poelmans J, Saini S, Pokhrel S, Grez JJ, Himmelreich U, Mädler L, Soenen SJ. Nanoparticle-induced inflammation can increase tumor malignancy. Acta Biomater 2018;68:99-112. [PMID: 29274476 DOI: 10.1016/j.actbio.2017.12.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
17 León-Mejía G, Silva LF, Civeira MS, Oliveira ML, Machado M, Villela IV, Hartmann A, Premoli S, Corrêa DS, Da Silva J, Henriques JA. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ Sci Pollut Res Int 2016;23:24019-31. [PMID: 27638803 DOI: 10.1007/s11356-016-7623-z] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 5.7] [Reference Citation Analysis]
18 Alvino L, Pacheco-Herrero M, López-Lorente ÁI, Quiñones Z, Cárdenas S, González-Sánchez ZI. Toxicity evaluation of barium ferrite nanoparticles in bacteria, yeast and nematode. Chemosphere 2020;254:126786. [PMID: 32335439 DOI: 10.1016/j.chemosphere.2020.126786] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018;118:13-23. [PMID: 29709612 DOI: 10.1016/j.fct.2018.04.058] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
20 Easo SL, Mohanan PV. Toxicological evaluation of dextran stabilized iron oxide nanoparticles in human peripheral blood lymphocytes. Biointerphases 2016;11:04B302. [PMID: 27629807 DOI: 10.1116/1.4962268] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
21 Sousa CA, Soares HMVM, Soares EV. Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aquat Toxicol 2019;214:105265. [PMID: 31416018 DOI: 10.1016/j.aquatox.2019.105265] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Basu P, De K, Das S, Mandal AK, Kumar A, Jana TK, Chatterjee K. Silica-Coated Metal Oxide Nanoparticles: Magnetic and Cytotoxicity Studies. ChemistrySelect 2018;3:7346-53. [DOI: 10.1002/slct.201801254] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Feng X, Shao L. The toxicity of silica nanoparticles to the immune system. Nanomedicine 2018;13:1939-62. [DOI: 10.2217/nnm-2018-0076] [Cited by in Crossref: 78] [Cited by in F6Publishing: 60] [Article Influence: 19.5] [Reference Citation Analysis]
24 Abudayyak M, Gurkaynak TA, Özhan G. In vitro evaluation of cobalt oxide nanoparticle-induced toxicity. Toxicol Ind Health 2017;33:646-54. [PMID: 28595480 DOI: 10.1177/0748233717706633] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
25 Sousa CA, Soares HMVM, Soares EV. Metal(loid) oxide (Al2O3, Mn3O4, SiO2 and SnO2) nanoparticles cause cytotoxicity in yeast via intracellular generation of reactive oxygen species. Appl Microbiol Biotechnol 2019;103:6257-69. [PMID: 31152204 DOI: 10.1007/s00253-019-09903-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
26 Buliaková B, Mesárošová M, Bábelová A, Šelc M, Némethová V, Šebová L, Rázga F, Ursínyová M, Chalupa I, Gábelová A. Surface-modified magnetite nanoparticles act as aneugen-like spindle poison. Nanomedicine 2017;13:69-80. [PMID: 27593490 DOI: 10.1016/j.nano.2016.08.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
27 Ismail T, Salama MA, El-Ebiary M. Entomotoxic effects of synthesized aluminum oxide nanoparticles against Sitophilus oryzae and their toxicological effects on albino rats. Toxicol Ind Health 2021;37:594-602. [PMID: 34486900 DOI: 10.1177/07482337211035000] [Reference Citation Analysis]
28 Fernández-bertólez N, Costa C, Brandão F, Kiliç G, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 2018;406-407:81-91. [DOI: 10.1016/j.tox.2018.06.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
29 Morgan J, Bell R, Jones AL. Endogenous doesn’t always mean innocuous: a scoping review of iron toxicity by inhalation. Journal of Toxicology and Environmental Health, Part B 2020;23:107-36. [DOI: 10.1080/10937404.2020.1731896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
30 Yilmaz B, Irmak ET, Turhan Y, Doğan S, Doğan M, Turhan O. Synthesis, Characterization and Biological Properties of Intercalated Kaolinite Nanoclays: Intercalation and Biocompatibility. Advances in Materials Science 2019;19:83-99. [DOI: 10.2478/adms-2019-0007] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Jalili P, Huet S, Lanceleur R, Jarry G, Le Hegarat L, Nesslany F, Hogeveen K, Fessard V. Genotoxicity of Aluminum and Aluminum Oxide Nanomaterials in Rats Following Oral Exposure. Nanomaterials (Basel) 2020;10:E305. [PMID: 32053952 DOI: 10.3390/nano10020305] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
32 Bourgois A, Crouzier D, Legrand FX, Raffin F, Boyard A, Girleanu M, Favier AL, François S, Dekali S. Alumina nanoparticles size and crystalline phase impact on cytotoxic effect on alveolar epithelial cells after simple or HCl combined exposures. Toxicol In Vitro 2019;59:135-49. [PMID: 31004741 DOI: 10.1016/j.tiv.2019.04.016] [Reference Citation Analysis]
33 Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018;7:E46. [PMID: 29890753 DOI: 10.3390/antibiotics7020046] [Cited by in Crossref: 153] [Cited by in F6Publishing: 101] [Article Influence: 38.3] [Reference Citation Analysis]
34 Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol 2019;16:8. [PMID: 30760282 DOI: 10.1186/s12989-019-0291-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
35 Raguraman V, Suthindhiran K. Comparative ecotoxicity assessment of magnetosomes and magnetite nanoparticles. Int J Environ Health Res 2020;30:13-25. [PMID: 30714827 DOI: 10.1080/09603123.2019.1570489] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
36 Laffon B, Fernández-bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V. Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. In: Saquib Q, Faisal M, Al-khedhairy AA, Alatar AA, editors. Cellular and Molecular Toxicology of Nanoparticles. Cham: Springer International Publishing; 2018. pp. 199-213. [DOI: 10.1007/978-3-319-72041-8_12] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
37 Patsula V, Tulinska J, Trachtová Š, Kuricova M, Liskova A, Španová A, Ciampor F, Vavra I, Rittich B, Ursinyova M, Dusinska M, Ilavska S, Horvathova M, Masanova V, Uhnakova I, Horák D. Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology 2019;13:510-26. [DOI: 10.1080/17435390.2018.1555624] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
38 Jalili P, Huet S, Burel A, Krause BC, Fontana C, Chevance S, Gauffre F, Guichard Y, Lampen A, Laux P, Luch A, Hogeveen K, Fessard V. Genotoxic impact of aluminum-containing nanomaterials in human intestinal and hepatic cells. Toxicol In Vitro 2021;78:105257. [PMID: 34688838 DOI: 10.1016/j.tiv.2021.105257] [Reference Citation Analysis]
39 Azimipour S, Ghaedi S, Mehrabi Z, Ghasemzadeh SA, Heshmati M, Barikrow N, Attar F, Falahati M. Heme degradation and iron release of hemoglobin and oxidative stress of lymphocyte cells in the presence of silica nanoparticles. International Journal of Biological Macromolecules 2018;118:800-7. [DOI: 10.1016/j.ijbiomac.2018.06.128] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
40 Wang H, Ren T, Zhu N, Yu Q, Li M. Co3O4 nanoparticles at sublethal concentrations inhibit cell growth by impairing mitochondrial function. Biochem Biophys Res Commun 2018;505:775-80. [PMID: 30293680 DOI: 10.1016/j.bbrc.2018.10.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Krishnadath DC, Ruan W, Yang H, Liu J, Zhou X. Influence of low modulus Co-Zr alloys surface modification on protein adsorption and MC3T3-E1, NIH3T3 and RAW264.7 cell behaviour. J Biomater Appl 2021;35:1061-70. [PMID: 33135572 DOI: 10.1177/0885328220969558] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Mirzaei S, Hadadi Z, Attar F, Mousavi SE, Zargar SS, Tajik A, Saboury AA, Rezayat SM, Falahati M. ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics 2018;36:4235-45. [DOI: 10.1080/07391102.2017.1411832] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
43 Wang W, Yang Y, Yang L, Luan T, Lin L. Effects of undissociated SiO2 and TiO2 nano-particles on molting of Daphnia pulex: Comparing with dissociated ZnO nano particles. Ecotoxicol Environ Saf 2021;222:112491. [PMID: 34237643 DOI: 10.1016/j.ecoenv.2021.112491] [Reference Citation Analysis]
44 Cerig S, Geyikoglu F. Oxidative stress and cyto-genotoxicity induced by poly-d-glucosamine in human blood cells in vitro. Z Naturforsch C J Biosci 2021. [PMID: 34036758 DOI: 10.1515/znc-2021-0080] [Reference Citation Analysis]
45 Vilchez-Aruani J, Cuello-Carrión FD, Valdez SR, Nadin SB. Genomic effects of a nanostructured alumina insecticide in human peripheral blood lymphocytes in vitro. Heliyon 2020;6:e04216. [PMID: 32577576 DOI: 10.1016/j.heliyon.2020.e04216] [Reference Citation Analysis]
46 Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2018;107:1278-93. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
47 Gamasaee NA, Muhammad HA, Tadayon E, Ale-Ebrahim M, Mirpour M, Sharifi M, Salihi A, Shekha MS, Alasady AAB, Aziz FM, Akhtari K, Hasan A, Falahati M. The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. J Biomol Struct Dyn 2020;38:3676-86. [PMID: 31476976 DOI: 10.1080/07391102.2019.1662850] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
48 Joseph SJ, Arunachalam KD, Murthy PB, Ramalingam R, Musthafa MS. Uranium induces genomic instability and slows cell cycle progression in human lymphocytes in acute toxicity study. Toxicology in Vitro 2021;73:105149. [DOI: 10.1016/j.tiv.2021.105149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Ertürk Gürkan S, Gürkan M. Toxicity of gamma aluminium oxide nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis): histopathological alterations and antioxidant responses in the gill and digestive gland. Biomarkers 2021;26:248-59. [PMID: 33478248 DOI: 10.1080/1354750X.2021.1878558] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Soares EV, Soares HMVM. Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 2021;105:1379-94. [PMID: 33521847 DOI: 10.1007/s00253-021-11124-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
51 Basaki M, Keykavusi K, Sahraiy N, Ali Shahbazfar A. Maternal exposure to iron oxide nanoparticles is associated with ferroptosis in the brain: A chicken embryo model analysis. J Anim Physiol Anim Nutr (Berl) 2021. [PMID: 33719111 DOI: 10.1111/jpn.13533] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Arsalan N, Hassan Kashi E, Hasan A, Edalat Doost M, Rasti B, Ahamad Paray B, Zahed Nakhjiri M, Sari S, Sharifi M, Shahpasand K, Akhtari K, Haghighat S, Falahati M. Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin, Leukemia Cancer Cells and Pathogenic Bacteria by Multispectroscopic, Docking, Cellular and Antibacterial Approaches. Int J Nanomedicine 2020;15:4607-23. [PMID: 32636621 DOI: 10.2147/IJN.S257711] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Aliakbari F, Shabani AA, Bardania H, Mohammad-beigi H, Tayaranian Marvian A, Dehghani Esmatabad F, Vafaei AA, Shojaosadati SA, Saboury AA, Christiansen G, Otzen DE, Morshedi D. Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. Colloids and Surfaces B: Biointerfaces 2018;161:578-87. [DOI: 10.1016/j.colsurfb.2017.11.023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]