BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-Torres K, Gluck C, Sinha S, Gabrilovich D, Chakrabarti R. ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest 2018;128:5095-109. [PMID: 30295647 DOI: 10.1172/JCI99673] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers (Basel) 2021;13:3357. [PMID: 34283088 DOI: 10.3390/cancers13133357] [Reference Citation Analysis]
2 Liu Y, Nekulova M, Nenutil R, Horakova I, Appleyard MV, Murray K, Holcakova J, Galoczova M, Quinlan P, Jordan LB, Purdie CA, Vojtesek B, Thompson AM, Coates PJ. ∆Np63/p40 correlates with the location and phenotype of basal/mesenchymal cancer stem-like cells in human ER+ and HER2+ breast cancers. J Pathol Clin Res 2020;6:83-93. [PMID: 31591823 DOI: 10.1002/cjp2.149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
3 Guo F, Long L, Wang J, Wang Y, Liu Y, Wang L, Luo F. Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy. Oncol Lett 2019;18:5699-708. [PMID: 31788042 DOI: 10.3892/ol.2019.10957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol 2022;15:101286. [PMID: 34839106 DOI: 10.1016/j.tranon.2021.101286] [Reference Citation Analysis]
5 Yu B, Luo F, Sun B, Liu W, Shi Q, Cheng SY, Chen C, Chen G, Li Y, Feng H. KAT6A Acetylation of SMAD3 Regulates Myeloid-Derived Suppressor Cell Recruitment, Metastasis, and Immunotherapy in Triple-Negative Breast Cancer. Adv Sci (Weinh) 2021;8:e2100014. [PMID: 34392614 DOI: 10.1002/advs.202100014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Dawod B, Liu J, Gebremeskel S, Yan C, Sappong A, Johnston B, Hoskin DW, Marshall JS, Wang J. Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Sci Rep 2020;10:13343. [PMID: 32770025 DOI: 10.1038/s41598-020-70231-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Lorenzo-Sanz L, Muñoz P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenviron 2019;12:119-32. [PMID: 31583529 DOI: 10.1007/s12307-019-00232-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
8 Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019;11:E628. [PMID: 31060337 DOI: 10.3390/cancers11050628] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
9 Li X, Zhong J, Deng X, Guo X, Lu Y, Lin J, Huang X, Wang C. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Front Immunol 2021;12:754196. [PMID: 35003065 DOI: 10.3389/fimmu.2021.754196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat 2021;185:261-79. [PMID: 33011829 DOI: 10.1007/s10549-020-05954-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020;8:E529. [PMID: 32937885 DOI: 10.3390/vaccines8030529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chung DC, Jacquelot N, Ghaedi M, Warner K, Ohashi PS. Innate Lymphoid Cells: Role in Immune Regulation and Cancer. Cancers 2022;14:2071. [DOI: 10.3390/cancers14092071] [Reference Citation Analysis]
13 Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021;22:8113. [PMID: 34360879 DOI: 10.3390/ijms22158113] [Reference Citation Analysis]
14 Zeng D, Wang M, Wu J, Lin S, Ye Z, Zhou R, Wang G, Wu J, Sun H, Bin J, Liao Y, Li N, Shi M, Liao W. Immunosuppressive Microenvironment Revealed by Immune Cell Landscape in Pre-metastatic Liver of Colorectal Cancer. Front Oncol 2021;11:620688. [PMID: 33833986 DOI: 10.3389/fonc.2021.620688] [Reference Citation Analysis]
15 Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021;21:e21. [PMID: 34277111 DOI: 10.4110/in.2021.21.e21] [Reference Citation Analysis]
16 Cilibrasi C, Papanastasopoulos P, Samuels M, Giamas G. Reconstituting Immune Surveillance in Breast Cancer: Molecular Pathophysiology and Current Immunotherapy Strategies. Int J Mol Sci 2021;22:12015. [PMID: 34769447 DOI: 10.3390/ijms222112015] [Reference Citation Analysis]
17 Fan T, Zhu M, Wang L, Liu Y, Tian H, Zheng Y, Tan F, Sun N, Li C, He J. Immune profile of the tumor microenvironment and the identification of a four-gene signature for lung adenocarcinoma. Aging (Albany NY) 2020;13:2397-417. [PMID: 33318300 DOI: 10.18632/aging.202269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Singh S, Kumar S, Srivastava RK, Nandi A, Thacker G, Murali H, Kim S, Baldeon M, Tobias J, Blanco MA, Saffie R, Zaidi MR, Sinha S, Busino L, Fuchs SY, Chakrabarti R. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nat Cell Biol 2020;22:591-602. [PMID: 32284542 DOI: 10.1038/s41556-020-0495-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
19 Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022;14:285. [PMID: 35053449 DOI: 10.3390/cancers14020285] [Reference Citation Analysis]
20 Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021;9:77. [PMID: 34689842 DOI: 10.1186/s40364-021-00333-5] [Reference Citation Analysis]
21 Gao J, Yuan X, Yuan J, Li L. Complete rejection of large established breast cancer by local immunochemotherapy with T cell activation against neoantigens. Cancer Immunol Immunother 2021. [PMID: 33852044 DOI: 10.1007/s00262-021-02919-2] [Reference Citation Analysis]
22 Blaye C, Boyer T, Peyraud F, Domblides C, Larmonier N. Beyond Immunosuppression: The Multifaceted Functions of Tumor-Promoting Myeloid Cells in Breast Cancers. Front Immunol 2022;13:838040. [PMID: 35309358 DOI: 10.3389/fimmu.2022.838040] [Reference Citation Analysis]
23 Singh S, Chakrabarti R. Consequences of EMT-Driven Changes in the Immune Microenvironment of Breast Cancer and Therapeutic Response of Cancer Cells. J Clin Med 2019;8:E642. [PMID: 31075939 DOI: 10.3390/jcm8050642] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
24 Lei MML, Lee TKW. Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Front Cell Dev Biol 2021;9:692940. [PMID: 34235155 DOI: 10.3389/fcell.2021.692940] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wang Y, Lu H, Wang Z, Li Y, Chen X. TGF-β1 Promotes Autophagy and Inhibits Apoptosis in Breast Cancer by Targeting TP63. Front Oncol 2022;12:865067. [DOI: 10.3389/fonc.2022.865067] [Reference Citation Analysis]
26 Gatti V, Bongiorno-Borbone L, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. p63 at the Crossroads between Stemness and Metastasis in Breast Cancer. Int J Mol Sci 2019;20:E2683. [PMID: 31159154 DOI: 10.3390/ijms20112683] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
27 Yu S, Li D, Zhang N, Ni S, Sun M, Wang L, Xiao H, Liu D, Liu J, Yu Y, Zhang Z, Yeung STY, Zhang S, Lu A, Zhang Z, Zhang B, Zhang G. Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 2022;12:2150-70. [PMID: 35646527 DOI: 10.1016/j.apsb.2022.01.012] [Reference Citation Analysis]
28 Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist NP, Koelwyn GJ, Jones LW, Demaria S. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget 2020;11:452-61. [PMID: 32064049 DOI: 10.18632/oncotarget.27464] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
29 Abrams SI. Developmental pathways of myeloid-derived suppressor cells in neoplasia. Cell Immunol 2021;360:104261. [PMID: 33373817 DOI: 10.1016/j.cellimm.2020.104261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
30 Moses MA, George AL, Sakakibara N, Mahmood K, Ponnamperuma RM, King KE, Weinberg WC. Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019;20:E3590. [PMID: 31340447 DOI: 10.3390/ijms20143590] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
31 Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019;12:84. [PMID: 31438991 DOI: 10.1186/s13045-019-0772-z] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
32 Retecki K, Seweryn M, Graczyk-Jarzynka A, Bajor M. The Immune Landscape of Breast Cancer: Strategies for Overcoming Immunotherapy Resistance. Cancers (Basel) 2021;13:6012. [PMID: 34885122 DOI: 10.3390/cancers13236012] [Reference Citation Analysis]
33 Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020;10:165. [PMID: 32133298 DOI: 10.3389/fonc.2020.00165] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
34 Lin Y, Cai Q, Chen Y, Shi T, Liu W, Mao L, Deng B, Ying Z, Gao Y, Luo H, Yang X, Huang X, Shi Y, He R. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Hepatology 2022;75:28-42. [PMID: 34387870 DOI: 10.1002/hep.32099] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
35 Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020;43:539-75. [PMID: 32488850 DOI: 10.1007/s13402-020-00519-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. Clin Med Insights Oncol 2021;15:11795549211035540. [PMID: 34408525 DOI: 10.1177/11795549211035540] [Reference Citation Analysis]
37 Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020;9:E1785. [PMID: 32726950 DOI: 10.3390/cells9081785] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
38 Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2020;34:1422-38. [PMID: 33872192 DOI: 10.1101/gad.342287.120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021;13:1743. [PMID: 33917501 DOI: 10.3390/cancers13071743] [Reference Citation Analysis]
40 Zhang CX, Huang DJ, Baloche V, Zhang L, Xu JX, Li BW, Zhao XR, He J, Mai HQ, Chen QY, Zhang XS, Busson P, Cui J, Li J. Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis 2020;9:65. [PMID: 32632113 DOI: 10.1038/s41389-020-00248-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
41 Glathar AR, Oyelakin A, Gluck C, Bard J, Sinha S. p63 Directs Subtype-Specific Gene Expression in HPV+ Head and Neck Squamous Cell Carcinoma. Front Oncol 2022;12:879054. [DOI: 10.3389/fonc.2022.879054] [Reference Citation Analysis]
42 Kumar S, Nandi A, Singh S, Regulapati R, Li N, Tobias JW, Siebel CW, Blanco MA, Klein-Szanto AJ, Lengner C, Welm AL, Kang Y, Chakrabarti R. Dll1+ quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nat Commun 2021;12:432. [PMID: 33462238 DOI: 10.1038/s41467-020-20664-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
43 Sipe LM, Chaib M, Pingili AK, Pierre JF, Makowski L. Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity. Immunol Rev 2020;295:220-39. [PMID: 32320071 DOI: 10.1111/imr.12856] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
44 Vilgelm AE, Richmond A. Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy. Front Immunol 2019;10:333. [PMID: 30873179 DOI: 10.3389/fimmu.2019.00333] [Cited by in Crossref: 77] [Cited by in F6Publishing: 85] [Article Influence: 25.7] [Reference Citation Analysis]
45 Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The Crosstalk Between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Front Oncol 2021;11:610303. [PMID: 33777750 DOI: 10.3389/fonc.2021.610303] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
46 Chu H, Li W, Li H. C-X-C motif chemokine receptor type 2 correlates with higher disease stages and predicts worse prognosis, and its downregulation enhances chemotherapy sensitivity in triple-negative breast cancer. Transl Cancer Res 2020;9:840-8. [PMID: 35117429 DOI: 10.21037/tcr.2019.12.38] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol 2019;13:981-1001. [PMID: 30845357 DOI: 10.1002/1878-0261.12473] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
48 Xie X, Lee J, Iwase T, Kai M, Ueno NT. Emerging drug targets for triple-negative breast cancer: A guided tour of the preclinical landscape. Expert Opin Ther Targets 2022. [PMID: 35574694 DOI: 10.1080/14728222.2022.2077188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]