BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 2015;125:3572-84. [PMID: 26280576 DOI: 10.1172/JCI79942] [Cited by in Crossref: 128] [Cited by in F6Publishing: 135] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Santana DA, Smith MDAC, Chen ES. Histone Modifications in Alzheimer’s Disease. Genes 2023;14:347. [DOI: 10.3390/genes14020347] [Reference Citation Analysis]
2 Vanrobeys Y, Mukherjee U, Langmack L, Bahl E, Lin LC, Michaelson JJ, Abel T, Chatterjee S. Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. bioRxiv 2023:2023. [PMID: 36711475 DOI: 10.1101/2023.01.18.524576] [Reference Citation Analysis]
3 Surguchov A. α-Synuclein and Mechanisms of Epigenetic Regulation. Brain Sci 2023;13. [PMID: 36672131 DOI: 10.3390/brainsci13010150] [Reference Citation Analysis]
4 Pulya S, Ghosh B. Epigenetics of Memory Processes. Handbook of Epigenetics 2023. [DOI: 10.1016/b978-0-323-91909-8.00018-9] [Reference Citation Analysis]
5 Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022;6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Reference Citation Analysis]
6 Unemura K, Kawano M, Takakura M, Iwata I, Hyakkoku K, Horiguchi N, Okuda T, Hirano Y. A neuronal cell-based reporter system for monitoring the activity of HDAC2. SLAS Discov 2022;27:440-7. [PMID: 36240996 DOI: 10.1016/j.slasd.2022.10.001] [Reference Citation Analysis]
7 Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022;7:374. [PMID: 36336680 DOI: 10.1038/s41392-022-01211-8] [Reference Citation Analysis]
8 Li Y, Lin S, Gu Z, Chen L, He B. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters 2022;76:129015. [DOI: 10.1016/j.bmcl.2022.129015] [Reference Citation Analysis]
9 Zhang ZZ, Chen J, Luo BL, Ni MZ, Liu X, Zeng LP, Yang QG, Wang F, Chen GH. Maternal inflammation induces spatial learning and memory impairment in the F1 and F2 generations of mice via sex-specific epigenetic mechanisms. Brain Res Bull 2022;188:143-54. [PMID: 35931406 DOI: 10.1016/j.brainresbull.2022.08.001] [Reference Citation Analysis]
10 Manfredi-Lozano M, Leysen V, Adamo M, Paiva I, Rovera R, Pignat JM, Timzoura FE, Candlish M, Eddarkaoui S, Malone SA, Silva MSB, Trova S, Imbernon M, Decoster L, Cotellessa L, Tena-Sempere M, Claret M, Paoloni-Giacobino A, Plassard D, Paccou E, Vionnet N, Acierno J, Maceski AM, Lutti A, Pfrieger F, Rasika S, Santoni F, Boehm U, Ciofi P, Buée L, Haddjeri N, Boutillier AL, Kuhle J, Messina A, Draganski B, Giacobini P, Pitteloud N, Prevot V. GnRH replacement rescues cognition in Down syndrome. Science 2022;377:eabq4515. [PMID: 36048943 DOI: 10.1126/science.abq4515] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Zhao Y, Wang Y, Yang D, Suh K, Zhang M. A Computational Framework to Characterize the Cancer Drug Induced Effect on Aging Using Transcriptomic Data. Front Pharmacol 2022;13:906429. [DOI: 10.3389/fphar.2022.906429] [Reference Citation Analysis]
12 Pei G, Fernandes BS, Wang Y, Manuel AM, Jia P, Zhao Z. A single-cell atlas of the human brain in Alzheimer’s disease and its implications for personalized drug repositioning.. [DOI: 10.1101/2022.06.14.496100] [Reference Citation Analysis]
13 Burns AM, Farinelli-Scharly M, Hugues-Ascery S, Sanchez-Mut JV, Santoni G, Gräff J. The HDAC inhibitor CI-994 acts as a molecular memory aid by facilitating synaptic and intracellular communication after learning. Proc Natl Acad Sci U S A 2022;119:e2116797119. [PMID: 35613054 DOI: 10.1073/pnas.2116797119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Alexander DC, Corman T, Mendoza M, Glass A, Belity T, Campbell RR, Han J, Keiser AA, Winkler J, Wood MA, Kim T, Garcia BA, Cohen H, Mews P, Egervari G, Berger SL. Targeting acetyl-CoA metabolism attenuates the formation of fear memories through reduced activity-dependent histone acetylation.. [DOI: 10.1101/2022.05.22.492937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Pao PC, Tsai LH. Histone Deacetylases 1 and 2 in Memory Function. ACS Chem Neurosci 2022;13:848-58. [PMID: 35263084 DOI: 10.1021/acschemneuro.1c00775] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
16 Chatterjee S, Bahl E, Mukherjee U, Walsh EN, Shetty MS, Yan AL, Vanrobaeys Y, Lederman JD, Giese KP, Michaelson J, Abel T. Endoplasmic reticulum chaperone genes encode effectors of long-term memory. Sci Adv 2022;8:eabm6063. [PMID: 35319980 DOI: 10.1126/sciadv.abm6063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
17 Wang T, Xu J, Xu Y, Xiao J, Bi N, Gu X, Wang HL. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex. Cell Rep 2022;38:110478. [PMID: 35263606 DOI: 10.1016/j.celrep.2022.110478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Takasu K, Niidome K, Hasegawa M, Ogawa K. Histone Deacetylase Inhibitor Improves the Dysfunction of Hippocampal Gamma Oscillations and Fast Spiking Interneurons in Alzheimer's Disease Model Mice. Front Mol Neurosci 2021;14:782206. [PMID: 35027883 DOI: 10.3389/fnmol.2021.782206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022;227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Zhang J, Liu D, Fu P, Liu ZQ, Lai C, Yang CQ, Chen K, Bao WD, Hu F, Du HY, Yang W, Wang J, Man HY, Lu Y, Zhu LQ. Social isolation reinforces aging-related behavioral inflexibility by promoting neuronal necroptosis in basolateral amygdala. Mol Psychiatry 2022;27:4050-63. [PMID: 35840795 DOI: 10.1038/s41380-022-01694-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Ding Q, Wu X, Li X, Wang H. Vorinostat corrects cognitive and non-cognitive symptoms in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol 2021:pyab081. [PMID: 34791268 DOI: 10.1093/ijnp/pyab081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Sato S, Sassone-Corsi P. Linking Depression to Epigenetics: Role of the Circadian Clock. Adv Exp Med Biol 2021;1344:43-53. [PMID: 34773225 DOI: 10.1007/978-3-030-81147-1_3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Giles KA, Phipps AJ, Cashion JM, Huskins SN, Mercer TR, Robinson MD, Woodhouse A, Taberlay PC. H3K4me3 enrichment defines neuronal age, while a youthful H3K27ac signature is recapitulated in aged neurons.. [DOI: 10.1101/2021.11.11.467877] [Reference Citation Analysis]
24 Neganova M, Aleksandrova Y, Suslov E, Mozhaitsev E, Munkuev A, Tsypyshev D, Chicheva M, Rogachev A, Sukocheva O, Volcho K, Klochkov S. Novel Multitarget Hydroxamic Acids with a Natural Origin CAP Group against Alzheimer's Disease: Synthesis, Docking and Biological Evaluation. Pharmaceutics 2021;13:1893. [PMID: 34834312 DOI: 10.3390/pharmaceutics13111893] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 McClarty B, Rodriguez G, Dong H. Dose Effects of Histone Deacetylase Inhibitor Tacedinaline (CI-994) on Antipsychotic Haloperidol-Induced Motor and Memory Side Effects in Aged Mice. Front Neurosci 2021;15:674745. [PMID: 34690667 DOI: 10.3389/fnins.2021.674745] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Chatterjee S, Bahl E, Mukherjee U, Walsh EN, Shetty MS, Yan AL, Vanrobaeys Y, Lederman JD, Giese KP, Michaelson J, Abel T. Endoplasmic Reticulum Chaperone Genes Encode Effectors of Long-Term Memory.. [DOI: 10.1101/2021.10.20.465191] [Reference Citation Analysis]
27 Burns AM, Farinelli-scharly M, Hugues-ascery S, Sanchez-mut JV, Santoni G, Gräff J. The HDAC inhibitor CI-994 acts as a molecular memory aid by facilitating synaptic and intra-cellular communication after learning.. [DOI: 10.1101/2021.09.21.460970] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Traxler L, Lagerwall J, Eichhorner S, Stefanoni D, D'Alessandro A, Mertens J. Metabolism navigates neural cell fate in development, aging and neurodegeneration. Dis Model Mech 2021;14:dmm048993. [PMID: 34345916 DOI: 10.1242/dmm.048993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Pedro Ferreira J, Pitt B, Zannad F. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. The Lancet Healthy Longevity 2021;2:e371-e379. [DOI: 10.1016/s2666-7568(21)00061-1] [Reference Citation Analysis]
30 Athira KV, Sadanandan P, Chakravarty S. Repurposing Vorinostat for the Treatment of Disorders Affecting Brain. Neuromolecular Med 2021. [PMID: 33948878 DOI: 10.1007/s12017-021-08660-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Epple R, Krüger D, Berulava T, Brehm G, Ninov M, Islam R, Köster S, Fischer A. The Coding and Small Non-coding Hippocampal Synaptic RNAome. Mol Neurobiol 2021;58:2940-53. [PMID: 33569760 DOI: 10.1007/s12035-021-02296-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2020;12:607685. [PMID: 33551788 DOI: 10.3389/fnagi.2020.607685] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
33 Islam MR, Lbik D, Sakib MS, Maximilian Hofmann R, Berulava T, Jiménez Mausbach M, Cha J, Goldberg M, Vakhtang E, Schiffmann C, Zieseniss A, Katschinski DM, Sananbenesi F, Toischer K, Fischer A. Epigenetic gene expression links heart failure to memory impairment. EMBO Mol Med 2021;13:e11900. [PMID: 33471428 DOI: 10.15252/emmm.201911900] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
34 Alcalá-Vida R, Seguin J, Lotz C, Molitor AM, Irastorza-Azcarate I, Awada A, Karasu N, Bombardier A, Cosquer B, Skarmeta JLG, Cassel JC, Boutillier AL, Sexton T, Merienne K. Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington's disease mice. Nat Commun 2021;12:364. [PMID: 33441541 DOI: 10.1038/s41467-020-20605-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
35 Alcalá-Vida R, Garcia-Forn M, Castany-Pladevall C, Creus-Muncunill J, Ito Y, Blanco E, Golbano A, Crespí-Vázquez K, Parry A, Slater G, Samarajiwa S, Peiró S, Di Croce L, Narita M, Pérez-Navarro E. Neuron type-specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Mol Med 2021;13:e12105. [PMID: 33369245 DOI: 10.15252/emmm.202012105] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
36 Qin L, Xu Q, Li Z, Chen L, Li Y, Yang N, Liu Z, Guo J, Shen L, Allen EG, Chen C, Ma C, Wu H, Zhu X, Jin P, Tang B. Ethnicity-specific and overlapping alterations of brain hydroxymethylome in Alzheimer's disease. Hum Mol Genet 2020;29:149-58. [PMID: 31814020 DOI: 10.1093/hmg/ddz273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
37 Li Z, Gan L, Yan S, Yan Y, Huang W. Effect of C-phycocyanin on HDAC3 and miRNA-335 in Alzheimer's disease. Transl Neurosci 2020;11:161-72. [PMID: 33312721 DOI: 10.1515/tnsci-2020-0101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
38 Kawamura K, Maruyama IN. Mutation in histone deacetylase HDA-3 leads to shortened locomotor healthspan in Caenorhabditis elegans. Aging (Albany NY) 2020;12:23525-47. [PMID: 33276344 DOI: 10.18632/aging.202296] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Lyons LC, Chatterjee S, Vanrobaeys Y, Gaine ME, Abel T. Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain 2020;13:165. [PMID: 33272296 DOI: 10.1186/s13041-020-00702-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
40 Epple R, Krüger D, Berulava T, Brehm G, Islam R, Köster S, Fischer A. The Coding And Small-Non-Coding Hippocampal Synaptic RNAome.. [DOI: 10.1101/2020.11.27.401901] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
41 Fan C, Chen K, Zhou J, Wong PP, He D, Huang Y, Wang X, Ling T, Yang Y, Zhao H. Systematic analysis to identify transcriptome-wide dysregulation of Alzheimer's disease in genes and isoforms. Hum Genet 2021;140:609-23. [PMID: 33140241 DOI: 10.1007/s00439-020-02230-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
42 Chang C, Chang Y, Chuang P, Nguyen TNA, Chou F, Cheng S, Chen H, Jin L, Carvalho K, Huin V, Buée L, Blum D, Liao Y, Lin C, Chern Y. A novel equilibrative nucleoside transporter 1 inhibitor alleviates Tau-mediated neurodegeneration.. [DOI: 10.1101/2020.10.25.334201] [Reference Citation Analysis]
43 Singh MB, Sartor GC. BET bromodomains as novel epigenetic targets for brain health and disease. Neuropharmacology 2020;181:108306. [PMID: 32946883 DOI: 10.1016/j.neuropharm.2020.108306] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
44 Ding Q, Wu X, Li X, Wang H. Vorinostat corrects cognitive and non-cognitive symptoms in a mouse model of fragile X syndrome.. [DOI: 10.1101/2020.08.05.238568] [Reference Citation Analysis]
45 Keverne J, Binder EB. A Review of epigenetics in psychiatry: focus on environmental risk factors. Medizinische Genetik 2020;32:57-64. [DOI: 10.1515/medgen-2020-2004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
46 Al-Awadhi FH, Salvador-Reyes LA, Elsadek LA, Ratnayake R, Chen QY, Luesch H. Largazole is a Brain-Penetrant Class I HDAC Inhibitor with Extended Applicability to Glioblastoma and CNS Diseases. ACS Chem Neurosci 2020;11:1937-43. [PMID: 32559056 DOI: 10.1021/acschemneuro.0c00093] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
47 Neganova ME, Aleksandrova YR, Nebogatikov VO, Klochkov SG, Ustyugov AA. Promising Molecular Targets for Pharmacological Therapy of Neurodegenerative Pathologies. Acta Naturae 2020;12:60-80. [PMID: 33173597 DOI: 10.32607/actanaturae.10925] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Bridi M, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Porcari GS, Lejards C, Hahn CG, Giese KP, Havekes R, Spruston N, Abel T. Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight 2020;5:92385. [PMID: 32069266 DOI: 10.1172/jci.insight.92385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
49 Alcalá-vida R, Garcia-forn M, Creus-muncunill J, Ito Y, Blanco E, Castany-pladevall C, Crespí-vázquez K, Parry A, Slater G, Samarajiwa S, Peiró S, Di Croce L, Narita M, Pérez-navarro E. Neuron-specific increase in lamin B1 disrupts nuclear function in Huntington’s disease.. [DOI: 10.1101/2020.03.06.979674] [Reference Citation Analysis]
50 Islam R, Lbik D, Sakib S, Hofmann RM, Berulava T, Mausbach MJ, Cha J, Vakhtang E, Schiffmann C, Zieseniss A, Katschinski DM, Sananbenesi F, Toischer K, Fischer A. Epigenetic gene-expression links heart failure to memory impairment.. [DOI: 10.1101/2020.01.22.915637] [Reference Citation Analysis]
51 Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020;176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
52 Martínez-iglesias O, Cacabelos R. Epigenetic treatment of neurodegenerative disorders. Histone Modifications in Therapy 2020. [DOI: 10.1016/b978-0-12-816422-8.00013-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 Garcia-osta A, Cuadrado-tejedor M. Linking histone deacetylases and phosphodiesterase 5 in novel treatments for Alzheimer's disease. Genetics, Neurology, Behavior, and Diet in Dementia 2020. [DOI: 10.1016/b978-0-12-815868-5.00014-1] [Reference Citation Analysis]
54 Peedicayil J. Targeting histone modifications in psychotic disorders. Histone Modifications in Therapy 2020. [DOI: 10.1016/b978-0-12-816422-8.00012-x] [Reference Citation Analysis]
55 Xu M, Liu Y, Huang Y, Wang J, Yan J, Zhang L, Zhang C. Re-exploring the core genes and modules in the human frontal cortex during chronological aging: insights from network-based analysis of transcriptomic studies. Aging (Albany NY) 2018;10:2816-31. [PMID: 30341976 DOI: 10.18632/aging.101589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
56 Urban I, Kerimoglu C, Sakib MS, Wang H, Benito E, Thaller C, Zhou X, Yan J, Fischer A, Eichele G. TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Sci Rep 2019;9:16173. [PMID: 31700011 DOI: 10.1038/s41598-019-50927-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
57 McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019;11:e9854. [PMID: 31368626 DOI: 10.15252/emmm.201809854] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
58 Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, De Bock K, Moisse M, Van Den Bosch L. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun 2019;7:107. [PMID: 31277703 DOI: 10.1186/s40478-019-0750-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
59 Gilbert TM, Zürcher NR, Catanese MC, Tseng CJ, Di Biase MA, Lyall AE, Hightower BG, Parmar AJ, Bhanot A, Wu CJ, Hibert ML, Kim M, Mahmood U, Stufflebeam SM, Schroeder FA, Wang C, Roffman JL, Holt DJ, Greve DN, Pasternak O, Kubicki M, Wey HY, Hooker JM. Neuroepigenetic signatures of age and sex in the living human brain. Nat Commun 2019;10:2945. [PMID: 31270332 DOI: 10.1038/s41467-019-11031-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
60 Chatterjee S, Cassel R, Schneider-Anthony A, Merienne K, Cosquer B, Tzeplaeff L, Halder Sinha S, Kumar M, Chaturbedy P, Eswaramoorthy M, Le Gras S, Keime C, Bousiges O, Dutar P, Petsophonsakul P, Rampon C, Cassel JC, Buée L, Blum D, Kundu TK, Boutillier AL. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Mol Med 2018;10:e8587. [PMID: 30275019 DOI: 10.15252/emmm.201708587] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
61 Pedrini S, Morici M, Martins RN. Current and Prospective Treatments for Alzheimer's Disease (and Other Neurodegenerative Diseases). Neurodegeneration and Alzheimer's Disease 2019. [DOI: 10.1002/9781119356752.ch14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Kwapis JL, Alaghband Y, López AJ, Long JM, Li X, Shu G, Bodinayake KK, Matheos DP, Rapp PR, Wood MA. HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory. J Neurosci 2019;39:4999-5009. [PMID: 31000586 DOI: 10.1523/JNEUROSCI.2799-18.2019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
63 Dyer M, Phipps AJ, Mitew S, Taberlay PC, Woodhouse A. Age, but Not Amyloidosis, Induced Changes in Global Levels of Histone Modifications in Susceptible and Disease-Resistant Neurons in Alzheimer's Disease Model Mice. Front Aging Neurosci 2019;11:68. [PMID: 31001106 DOI: 10.3389/fnagi.2019.00068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
64 Li W, Sun Z. Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches. Int J Mol Sci 2019;20:E1616. [PMID: 30939743 DOI: 10.3390/ijms20071616] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
65 Bodas M, Vij N. Adapting Proteostasis and Autophagy for Controlling the Pathogenesis of Cystic Fibrosis Lung Disease. Front Pharmacol 2019;10:20. [PMID: 30774592 DOI: 10.3389/fphar.2019.00020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
66 Martinez Hernandez A, Urbanke H, Gillman AL, Lee J, Ryazanov S, Agbemenyah HY, Benito E, Jain G, Kaurani L, Grigorian G, Leonov A, Rezaei-Ghaleh N, Wilken P, Arce FT, Wagner J, Fuhrmann M, Caruana M, Camilleri A, Vassallo N, Zweckstetter M, Benz R, Giese A, Schneider A, Korte M, Lal R, Griesinger C, Eichele G, Fischer A. The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology. EMBO Mol Med 2018;10:32-47. [PMID: 29208638 DOI: 10.15252/emmm.201707825] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
67 Binder EB. [Environment and epigenetics]. Nervenarzt 2019;90:107-13. [PMID: 30643952 DOI: 10.1007/s00115-018-0657-3] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
68 Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, Cheng T, Wang Y, Zhou X, Yang B, Yang GL, Zhang J, Zang X, Ma S, Guan F. HDAC1 Silence Promotes Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Mouse Model of Traumatic Brain Injury via PI3K/AKT Pathway. Front Cell Neurosci 2018;12:498. [PMID: 30662396 DOI: 10.3389/fncel.2018.00498] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
69 Fischer A. The Role of Dynamic Histone Modifications in Learning Behavior. Behavioral Neurogenomics 2019. [DOI: 10.1007/7854_2019_108] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
70 Rafehi H, Kaspi A, Ziemann M, Okabe J, Karagiannis TC, El-Osta A. Systems approach to the pharmacological actions of HDAC inhibitors reveals EP300 activities and convergent mechanisms of regulation in diabetes. Epigenetics 2017;12:991-1003. [PMID: 28886276 DOI: 10.1080/15592294.2017.1371892] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
71 Gilbert TM, Zürcher NR, Wu CJ, Bhanot A, Hightower BG, Kim M, Albrecht DS, Wey HY, Schroeder FA, Rodriguez-Thompson A, Morin TM, Hart KL, Pellegrini AM, Riley MM, Wang C, Stufflebeam SM, Haggarty SJ, Holt DJ, Loggia ML, Perlis RH, Brown HE, Roffman JL, Hooker JM. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J Clin Invest 2019;129:364-72. [PMID: 30530989 DOI: 10.1172/JCI123743] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
72 Ideraabdullah FY, Zeisel SH. Dietary Modulation of the Epigenome. Physiol Rev 2018;98:667-95. [PMID: 29442595 DOI: 10.1152/physrev.00010.2017] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
73 Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer's disease: Comparison and associations from molecular to system level. Aging Cell 2018;17:e12802. [PMID: 29963744 DOI: 10.1111/acel.12802] [Cited by in Crossref: 99] [Cited by in F6Publishing: 110] [Article Influence: 19.8] [Reference Citation Analysis]
74 Lee JH, Kim JH, Kim S, Cho KS, Lee SB. Chromatin Changes Associated with Neuronal Maintenance and Their Pharmacological Application. Curr Neuropharmacol 2018;16:118-25. [PMID: 28571546 DOI: 10.2174/1570159X15666170601124220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
75 Cheng H, Xuan H, Green CD, Han Y, Sun N, Shen H, McDermott J, Bennett DA, Lan F, Han JJ. Repression of human and mouse brain inflammaging transcriptome by broad gene-body histone hyperacetylation. Proc Natl Acad Sci U S A 2018;115:7611-6. [PMID: 29967166 DOI: 10.1073/pnas.1800656115] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
76 Lu TT, Heyne S, Dror E, Casas E, Leonhardt L, Boenke T, Yang CH, Sagar, Arrigoni L, Dalgaard K, Teperino R, Enders L, Selvaraj M, Ruf M, Raja SJ, Xie H, Boenisch U, Orkin SH, Lynn FC, Hoffman BG, Grün D, Vavouri T, Lempradl AM, Pospisilik JA. The Polycomb-Dependent Epigenome Controls β Cell Dysfunction, Dedifferentiation, and Diabetes. Cell Metab 2018;27:1294-1308.e7. [PMID: 29754954 DOI: 10.1016/j.cmet.2018.04.013] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 15.8] [Reference Citation Analysis]
77 Zhang S, Fujita Y, Matsuzaki R, Yamashita T. Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis 2018;9:460. [PMID: 29700327 DOI: 10.1038/s41419-018-0543-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
78 Chung J, Zhang X, Allen M, Wang X, Ma Y, Beecham G, Montine TJ, Younkin SG, Dickson DW, Golde TE, Price ND, Ertekin-Taner N, Lunetta KL, Mez J, Mayeux R, Haines JL, Pericak-Vance MA, Schellenberg G, Jun GR, Farrer LA; Alzheimer’s Disease Genetics Consortium. Genome-wide pleiotropy analysis of neuropathological traits related to Alzheimer's disease. Alzheimers Res Ther 2018;10:22. [PMID: 29458411 DOI: 10.1186/s13195-018-0349-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
79 Meruvu S, Bowman JD, Choudhury M. Healthy Aging and Epigenetic Drugs for Diabetes and Obesity. Epigenetics of Aging and Longevity 2018. [DOI: 10.1016/b978-0-12-811060-7.00020-6] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
80 Lu TT, Heyne S, Dror E, Casas E, Leonhardt L, Boenke T, Yang C, Sagar, Arrigoni L, Dalgaard K, Teperino R, Enders L, Selvaraj M, Ruf M, Raja SJ, Xie H, Boenisch U, Orkin SH, Lynn FC, Hoffman BG, Grün D, Vavouri T, Lempradl A, Pospisilik JA. The Polycomb-dependent epigenome controls β-cell dysfunction, dedifferentiation and diabetes.. [DOI: 10.1101/205641] [Reference Citation Analysis]
81 Volmar CH, Salah-Uddin H, Janczura KJ, Halley P, Lambert G, Wodrich A, Manoah S, Patel NH, Sartor GC, Mehta N, Miles NTH, Desse S, Dorcius D, Cameron MD, Brothers SP, Wahlestedt C. M344 promotes nonamyloidogenic amyloid precursor protein processing while normalizing Alzheimer's disease genes and improving memory. Proc Natl Acad Sci U S A 2017;114:E9135-44. [PMID: 29073110 DOI: 10.1073/pnas.1707544114] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 6.8] [Reference Citation Analysis]
82 Zhu X, Wang S, Yu L, Jin J, Ye X, Liu Y, Xu Y. HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's disease. Aging Cell 2017;16:1073-82. [PMID: 28771976 DOI: 10.1111/acel.12642] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
83 Benito E, Ramachandran B, Schroeder H, Schmidt G, Urbanke H, Burkhardt S, Capece V, Dean C, Fischer A. The BET/BRD inhibitor JQ1 improves brain plasticity in WT and APP mice. Transl Psychiatry 2017;7:e1239. [PMID: 28949335 DOI: 10.1038/tp.2017.202] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 6.8] [Reference Citation Analysis]
84 Agís-Balboa RC, Pinheiro PS, Rebola N, Kerimoglu C, Benito E, Gertig M, Bahari-Javan S, Jain G, Burkhardt S, Delalle I, Jatzko A, Dettenhofer M, Zunszain PA, Schmitt A, Falkai P, Pape JC, Binder EB, Mulle C, Fischer A, Sananbenesi F. Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO J 2017;36:2815-28. [PMID: 28768717 DOI: 10.15252/embj.201796821] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.8] [Reference Citation Analysis]
85 Javidfar B, Park R, Kassim BS, Bicks LK, Akbarian S. The epigenomics of schizophrenia, in the mouse. Am J Med Genet B Neuropsychiatr Genet 2017;174:631-40. [PMID: 28699694 DOI: 10.1002/ajmg.b.32566] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
86 Yang SS, Zhang R, Wang G, Zhang YF. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer's disease. Transl Neurodegener 2017;6:19. [PMID: 28702178 DOI: 10.1186/s40035-017-0089-1] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 13.0] [Reference Citation Analysis]
87 Bahari-Javan S, Varbanov H, Halder R, Benito E, Kaurani L, Burkhardt S, Anderson-Schmidt H, Anghelescu I, Budde M, Stilling RM, Costa J, Medina J, Dietrich DE, Figge C, Folkerts H, Gade K, Heilbronner U, Koller M, Konrad C, Nussbeck SY, Scherk H, Spitzer C, Stierl S, Stöckel J, Thiel A, von Hagen M, Zimmermann J, Zitzelsberger A, Schulz S, Schmitt A, Delalle I, Falkai P, Schulze TG, Dityatev A, Sananbenesi F, Fischer A. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc Natl Acad Sci U S A 2017;114:E4686-94. [PMID: 28533418 DOI: 10.1073/pnas.1613842114] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 10.0] [Reference Citation Analysis]
88 Sánchez-Arias JA, Rabal O, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, Ugarte A, Sáez E, Espelosin M, Ursua S, Haizhong T, Wei W, Musheng X, Garcia-Osta A, Oyarzabal J. Impact of Scaffold Exploration on Novel Dual-Acting Histone Deacetylases and Phosphodiesterase 5 Inhibitors for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2017;8:638-61. [PMID: 27936591 DOI: 10.1021/acschemneuro.6b00370] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
89 Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K. Contribution of Neuroepigenetics to Huntington's Disease. Front Hum Neurosci 2017;11:17. [PMID: 28194101 DOI: 10.3389/fnhum.2017.00017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
90 Pavlou MAS, Outeiro TF. Epigenetics in Parkinson’s Disease. Advances in Experimental Medicine and Biology 2017. [DOI: 10.1007/978-3-319-53889-1_19] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
91 Woldemichael BT, Mansuy IM. Epigenetic Basis of Memory. Learning and Memory: A Comprehensive Reference 2017. [DOI: 10.1016/b978-0-12-809324-5.21116-4] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
92 Zeleznikow-johnston AM, Burrows EL, Renoir T, Hannan AJ. Translatable Models of Brain and Cognitive Reserve. Contemporary Clinical Neuroscience 2017. [DOI: 10.1007/978-3-319-52067-4_4] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
93 Narayan P, Dragunow M. Alzheimer's Disease and Histone Code Alterations. Adv Exp Med Biol 2017;978:321-36. [PMID: 28523554 DOI: 10.1007/978-3-319-53889-1_17] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
94 Jaitner C, Reddy C, Abentung A, Whittle N, Rieder D, Delekate A, Korte M, Jain G, Fischer A, Sananbenesi F, Cera I, Singewald N, Dechant G, Apostolova G. Satb2 determines miRNA expression and long-term memory in the adult central nervous system. Elife 2016;5:e17361. [PMID: 27897969 DOI: 10.7554/eLife.17361] [Cited by in Crossref: 47] [Cited by in F6Publishing: 54] [Article Influence: 6.7] [Reference Citation Analysis]
95 McClure JJ, Zhang C, Inks ES, Peterson YK, Li J, Chou CJ. Development of Allosteric Hydrazide-Containing Class I Histone Deacetylase Inhibitors for Use in Acute Myeloid Leukemia. J Med Chem 2016;59:9942-59. [PMID: 27754681 DOI: 10.1021/acs.jmedchem.6b01385] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 6.1] [Reference Citation Analysis]
96 Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schaefer N, Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang XD, Seidenbecher C. Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem 2016;138:785-805. [PMID: 27333343 DOI: 10.1111/jnc.13713] [Cited by in Crossref: 162] [Cited by in F6Publishing: 148] [Article Influence: 23.1] [Reference Citation Analysis]
97 Neidl R, Schneider A, Bousiges O, Majchrzak M, Barbelivien A, de Vasconcelos AP, Dorgans K, Doussau F, Loeffler JP, Cassel JC, Boutillier AL. Late-Life Environmental Enrichment Induces Acetylation Events and Nuclear Factor κB-Dependent Regulations in the Hippocampus of Aged Rats Showing Improved Plasticity and Learning. J Neurosci 2016;36:4351-61. [PMID: 27076430 DOI: 10.1523/JNEUROSCI.3239-15.2016] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 7.4] [Reference Citation Analysis]
98 Cuadrado-Tejedor M, Garcia-Barroso C, Sánchez-Arias JA, Rabal O, Pérez-González M, Mederos S, Ugarte A, Franco R, Segura V, Perea G, Oyarzabal J, Garcia-Osta A. A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer's Disease Mice. Neuropsychopharmacology 2017;42:524-39. [PMID: 27550730 DOI: 10.1038/npp.2016.163] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 9.3] [Reference Citation Analysis]
99 Hull EE, Montgomery MR, Leyva KJ. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. Biomed Res Int 2016;2016:8797206. [PMID: 27556043 DOI: 10.1155/2016/8797206] [Cited by in Crossref: 159] [Cited by in F6Publishing: 177] [Article Influence: 22.7] [Reference Citation Analysis]
100 Zhang B, Wu S, Zhang Y, Xu T, Guo F, Tang H, Li X, Wang P, Qian W, Xue Y. A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.). PLoS Genet 2016;12:e1006152. [PMID: 27367609 DOI: 10.1371/journal.pgen.1006152] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
101 Villain H, Florian C, Roullet P. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci Rep 2016;6:27015. [PMID: 27270584 DOI: 10.1038/srep27015] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
102 Sananbenesi F, Fischer A. Histone Deacetylases as Therapeutic Targets in Neurodegenerative Diseases. Medical Epigenetics 2016. [DOI: 10.1016/b978-0-12-803239-8.00003-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]