BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S, Kato H, Pullman J, Gessler M, Haase VH, Susztak K. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 2010;120:4040-54. [PMID: 20978353 DOI: 10.1172/JCI43025] [Cited by in Crossref: 230] [Cited by in F6Publishing: 153] [Article Influence: 20.9] [Reference Citation Analysis]
Number Citing Articles
1 Huang S, Susztak K. Epithelial Plasticity versus EMT in Kidney Fibrosis. Trends Mol Med 2016;22:4-6. [PMID: 26700490 DOI: 10.1016/j.molmed.2015.11.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
2 Li SY, Susztak K. The Role of Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (PGC-1α) in Kidney Disease. Semin Nephrol 2018;38:121-6. [PMID: 29602395 DOI: 10.1016/j.semnephrol.2018.01.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 15.0] [Reference Citation Analysis]
3 He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017;92:1071-83. [PMID: 28890325 DOI: 10.1016/j.kint.2017.06.030] [Cited by in Crossref: 118] [Cited by in F6Publishing: 115] [Article Influence: 29.5] [Reference Citation Analysis]
4 Zhu F, Liu W, Li T, Wan J, Tian J, Zhou Z, Li H, Liu Y, Hou FF, Nie J. Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M. Oncotarget 2016;7:25604-19. [PMID: 27016419 DOI: 10.18632/oncotarget.8238] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
5 Ledo N, Ko YA, Park AS, Kang HM, Han SY, Choi P, Susztak K. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J Am Soc Nephrol 2015;26:692-714. [PMID: 25231882 DOI: 10.1681/ASN.2014010028] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
6 Li L, Greene I, Readhead B, Menon MC, Kidd BA, Uzilov AV, Wei C, Philippe N, Schroppel B, He JC. Novel Therapeutics Identification for Fibrosis in Renal Allograft Using Integrative Informatics Approach. Sci Rep. 2017;7:39487. [PMID: 28051114 DOI: 10.1038/srep39487] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
7 Tung CW, Hsu YC, Cai CJ, Shih YH, Wang CJ, Chang PJ, Lin CL. Trichostatin A ameliorates renal tubulointerstitial fibrosis through modulation of the JNK-dependent Notch-2 signaling pathway. Sci Rep 2017;7:14495. [PMID: 29101337 DOI: 10.1038/s41598-017-15162-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
8 Guo SW. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018;17:369-97. [PMID: 30377392 DOI: 10.1002/rmb2.12221] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
9 Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol. 2015;26:1765-1776. [PMID: 25810494 DOI: 10.1681/asn.2015010006] [Cited by in Crossref: 309] [Cited by in F6Publishing: 183] [Article Influence: 51.5] [Reference Citation Analysis]
10 Yamaguchi S, Morizane R, Homma K, Monkawa T, Suzuki S, Fujii S, Koda M, Hiratsuka K, Yamashita M, Yoshida T, Wakino S, Hayashi K, Sasaki J, Hori S, Itoh H. Generation of kidney tubular organoids from human pluripotent stem cells. Sci Rep 2016;6:38353. [PMID: 27982115 DOI: 10.1038/srep38353] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
11 Anders HJ. Immune system modulation of kidney regeneration--mechanisms and implications. Nat Rev Nephrol 2014;10:347-58. [PMID: 24776845 DOI: 10.1038/nrneph.2014.68] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
12 Ueno T, Kobayashi N, Nakayama M, Takashima Y, Ohse T, Pastan I, Pippin JW, Shankland SJ, Uesugi N, Matsusaka T, Nagata M. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss. Kidney Int 2013;83:1065-75. [PMID: 23447065 DOI: 10.1038/ki.2013.48] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
13 Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Mol Cell 2015;59:685-97. [PMID: 26257285 DOI: 10.1016/j.molcel.2015.07.008] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
14 Cummins TD, Mendenhall MD, Lowry MN, Korte EA, Barati MT, Khundmiri SJ, Salyer SA, Klein JB, Powell DW. Elongin C is a mediator of Notch4 activity in human renal tubule cells. Biochim Biophys Acta 2011;1814:1748-57. [PMID: 22001063 DOI: 10.1016/j.bbapap.2011.09.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
15 Hong W, Zhang G, Lu H, Guo Y, Zheng S, Zhu H, Xiao Y, Papa APD, Wu C, Sun L, Chen B, Bai Y. Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun Signal 2019;17:145. [PMID: 31718671 DOI: 10.1186/s12964-019-0455-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
16 Murta D, Batista M, Trindade A, Silva E, Henrique D, Duarte A, Lopes-da-Costa L. In vivo notch signaling blockade induces abnormal spermatogenesis in the mouse. PLoS One 2014;9:e113365. [PMID: 25412258 DOI: 10.1371/journal.pone.0113365] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
17 Yang G, Zhao Z, Zhang X, Wu A, Huang Y, Miao Y, Yang M. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. Drug Des Devel Ther 2017;11:1065-79. [PMID: 28408805 DOI: 10.2147/DDDT.S124971] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
18 Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Suszták K. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 2018;360:758-63. [PMID: 29622724 DOI: 10.1126/science.aar2131] [Cited by in Crossref: 406] [Cited by in F6Publishing: 349] [Article Influence: 135.3] [Reference Citation Analysis]
19 Little MH, Kairath P. Does Renal Repair Recapitulate Kidney Development? J Am Soc Nephrol 2017;28:34-46. [PMID: 27798243 DOI: 10.1681/ASN.2016070748] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
20 Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 2011;121:468-474. [PMID: 21370523 DOI: 10.1172/jci44595] [Cited by in Crossref: 298] [Cited by in F6Publishing: 162] [Article Influence: 29.8] [Reference Citation Analysis]
21 Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani AK, Kriz W, Venkatachalam MA. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 2012;302:F1210-23. [PMID: 22301622 DOI: 10.1152/ajprenal.00660.2011] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 8.7] [Reference Citation Analysis]
22 Chen YX, Zhang W, Wang WM, Yu XL, Wang YM, Zhang MJ, Chen N. Role of moesin in renal fibrosis. PLoS One 2014;9:e112936. [PMID: 25406076 DOI: 10.1371/journal.pone.0112936] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
23 Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 2012;32:463-70. [PMID: 23062987 DOI: 10.1016/j.semnephrol.2012.07.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
24 Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol 2012;226:394-403. [PMID: 21952830 DOI: 10.1002/path.2967] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 7.8] [Reference Citation Analysis]
25 Teng JF, Wang K, Li Y, Qu FJ, Yuan Q, Cui XG, Wang QX, Xu DF. Conditional Knockout of Src Homology 2 Domain-containing Protein Tyrosine Phosphatase-2 in Myeloid Cells Attenuates Renal Fibrosis after Unilateral Ureter Obstruction. Chin Med J (Engl) 2015;128:1196-201. [PMID: 25947403 DOI: 10.4103/0366-6999.156121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
26 Feng F, Shan L, Deng JX, Luo LL, Huang QS. Role of the Notch Signaling Pathway in Fibrosis of Denervated Skeletal Muscle. Curr Med Sci 2019;39:419-25. [PMID: 31209813 DOI: 10.1007/s11596-019-2053-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, Warburton D, Lemley KV, De Filippo RE, Perin L. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 2012;23:661-73. [PMID: 22302195 DOI: 10.1681/ASN.2011030243] [Cited by in Crossref: 90] [Cited by in F6Publishing: 48] [Article Influence: 10.0] [Reference Citation Analysis]
28 Jadhav S, Ajay AK, Trivedi P, Seematti J, Pellegrini K, Craciun F, Vaidya VS. RNA-binding Protein Musashi Homologue 1 Regulates Kidney Fibrosis by Translational Inhibition of p21 and Numb mRNA. J Biol Chem 2016;291:14085-94. [PMID: 27129280 DOI: 10.1074/jbc.M115.713289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
29 Morizane R, Fujii S, Monkawa T, Hiratsuka K, Yamaguchi S, Homma K, Itoh H. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep 2014;4:4578. [PMID: 24694752 DOI: 10.1038/srep04578] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 5.9] [Reference Citation Analysis]
30 Zmorzyński S, Styk W, Filip AA, Krasowska D. The Significance of NOTCH Pathway in the Development of Fibrosis in Systemic Sclerosis. Ann Dermatol 2019;31:365-71. [PMID: 33911613 DOI: 10.5021/ad.2019.31.4.365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Lindström NO, De Sena Brandine G, Ransick A, McMahon AP. Single-Cell RNA Sequencing of the Adult Mouse Kidney: From Molecular Cataloging of Cell Types to Disease-Associated Predictions. Am J Kidney Dis 2019;73:140-2. [PMID: 30241960 DOI: 10.1053/j.ajkd.2018.07.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
32 Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018;123:135-54. [PMID: 28757325 DOI: 10.1016/j.addr.2017.07.017] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
33 DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021;17:319-34. [PMID: 33547417 DOI: 10.1038/s41581-021-00393-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
34 Silver SA, Gerarduzzi C. Found in Translation: Reasons for Optimism in the Pursuit to Prevent Chronic Kidney Disease After Acute Kidney Injury. Can J Kidney Health Dis 2019;6:2054358119868740. [PMID: 31452903 DOI: 10.1177/2054358119868740] [Reference Citation Analysis]
35 Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipilä P, West KA, McMahon AP, Humphreys BD. Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 2012;180:1441-53. [PMID: 22342522 DOI: 10.1016/j.ajpath.2011.12.039] [Cited by in Crossref: 133] [Cited by in F6Publishing: 129] [Article Influence: 14.8] [Reference Citation Analysis]
36 Hou W, Ji Z. Generation of autochthonous mouse models of clear cell renal cell carcinoma: mouse models of renal cell carcinoma. Exp Mol Med 2018;50:1-10. [PMID: 29651023 DOI: 10.1038/s12276-018-0059-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
37 Gu X, Raman A, Susztak K. Going from acute to chronic kidney injury with FoxO3. J Clin Invest 2019;129:2192-4. [PMID: 31063992 DOI: 10.1172/JCI128985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
38 Zhao Y, Qiao X, Tan TK, Zhao H, Zhang Y, Liu L, Zhang J, Wang L, Cao Q, Wang Y, Wang Y, Wang YM, Lee VWS, Alexander SI, Harris DCH, Zheng G. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition. Nephrol Dial Transplant 2017;32:781-91. [PMID: 27566305 DOI: 10.1093/ndt/gfw308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
39 Abou Daher A, El Jalkh T, Eid AA, Fornoni A, Marples B, Zeidan YH. Translational Aspects of Sphingolipid Metabolism in Renal Disorders. Int J Mol Sci 2017;18:E2528. [PMID: 29186855 DOI: 10.3390/ijms18122528] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
40 Tran PV, Sharma M, Li X, Calvet JP. Developmental signaling: does it bridge the gap between cilia dysfunction and renal cystogenesis? Birth Defects Res C Embryo Today 2014;102:159-73. [PMID: 24861210 DOI: 10.1002/bdrc.21065] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
41 Zhou D, Tan RJ, Liu Y. Sonic hedgehog signaling in kidney fibrosis: a master communicator. Sci China Life Sci 2016;59:920-9. [PMID: 27333788 DOI: 10.1007/s11427-016-0020-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
42 Pellegrini KL, Gerlach CV, Craciun FL, Ramachandran K, Bijol V, Kissick HT, Vaidya VS. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicol Appl Pharmacol. 2016;312:42-52. [PMID: 26707937 DOI: 10.1016/j.taap.2015.12.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
43 Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21:37-46. [PMID: 25419705 DOI: 10.1038/nm.3762] [Cited by in Crossref: 518] [Cited by in F6Publishing: 490] [Article Influence: 74.0] [Reference Citation Analysis]
44 Lan A, Zhang J, Xiao Z, Peng X, Qi Y, Du J. Akt2 is involved in loss of epithelial cells and renal fibrosis following unilateral ureteral obstruction. PLoS One 2014;9:e105451. [PMID: 25148525 DOI: 10.1371/journal.pone.0105451] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
45 张凯, 艾文兵, 柳长柏, 吴江锋. Notch信号通路与HSC活化关系的研究进展. 世界华人消化杂志 2013; 21(33): 3611-3616 [DOI: 10.11569/wcjd.v21.i33.3611] [Reference Citation Analysis]
46 Bai S, Zeng R, Zhou Q, Liao W, Zhang Y, Xu C, Han M, Pei G, Liu L, Liu X, Yao Y, Xu G. Cdc42-interacting protein-4 promotes TGF-Β1-induced epithelial-mesenchymal transition and extracellular matrix deposition in renal proximal tubular epithelial cells. Int J Biol Sci 2012;8:859-69. [PMID: 22745576 DOI: 10.7150/ijbs.3490] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
47 Xia Y, Campbell SR, Broder A, Herlitz L, Abadi M, Wu P, Michaelson JS, Burkly LC, Putterman C. Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin Immunol 2012;145:108-21. [PMID: 22982296 DOI: 10.1016/j.clim.2012.08.008] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 7.8] [Reference Citation Analysis]
48 Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Annu Rev Pathol. 2013;8:241-276. [PMID: 23092186 DOI: 10.1146/annurev-pathol-020712-163930] [Cited by in Crossref: 365] [Cited by in F6Publishing: 343] [Article Influence: 40.6] [Reference Citation Analysis]
49 Puri RV, Yerrathota S, Home T, Idowu JY, Chakravarthi VP, Ward CJ, Singhal PC, Vanden Heuvel GB, Fields TA, Sharma M. Notch4 activation aggravates NF-κB-mediated inflammation in HIV-1-associated nephropathy. Dis Model Mech 2019;12:dmm040642. [PMID: 31727625 DOI: 10.1242/dmm.040642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
50 Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180:1340-1355. [PMID: 22387320 DOI: 10.1016/j.ajpath.2012.02.004] [Cited by in Crossref: 789] [Cited by in F6Publishing: 765] [Article Influence: 87.7] [Reference Citation Analysis]
51 El Machhour F, Keuylian Z, Kavvadas P, Dussaule JC, Chatziantoniou C. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease. J Am Soc Nephrol 2015;26:1561-75. [PMID: 25421557 DOI: 10.1681/ASN.2013090968] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 3.9] [Reference Citation Analysis]
52 Liu L, Gao C, Chen G, Li X, Li J, Wan Q, Xu Y. Notch Signaling Molecules Activate TGF- β in Rat Mesangial Cells under High Glucose Conditions. J Diabetes Res 2013;2013:979702. [PMID: 23691527 DOI: 10.1155/2013/979702] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
53 Rada M, Kapelanski-Lamoureux A, Petrillo S, Tabariès S, Siegel P, Reynolds AR, Lazaris A, Metrakos P. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol 2021;4:950. [PMID: 34376784 DOI: 10.1038/s42003-021-02481-8] [Reference Citation Analysis]
54 Oelusarz A, Nichols LA, Grunz-Borgmann EA, Chen G, Akintola AD, Catania JM, Burghardt RC, Trzeciakowski JP, Parrish AR. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney. Physiol Rep 2013;1:e00090. [PMID: 24273653 DOI: 10.1002/phy2.90] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
55 Li S, Mariappan N, Megyesi J, Shank B, Kannan K, Theus S, Price PM, Duffield JS, Portilla D. Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. Am J Physiol Renal Physiol 2013;305:F618-27. [PMID: 23804447 DOI: 10.1152/ajprenal.00309.2013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
56 Chiba T, Hukriede N, de Caestecker MP. Kidney Regeneration: Lessons from Development. Curr Pathobiol Rep 2015;3:67-79. [PMID: 26120499 DOI: 10.1007/s40139-015-0069-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
57 Nakagawa N, Duffield JS. Myofibroblasts in Fibrotic Kidneys. Curr Pathobiol Rep 2013;1. [PMID: 24187654 DOI: 10.1007/s40139-013-0025-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
58 Alves AF, Pereira RA, de Andrade HM, Mosser DM, Tafuri WL. Immunohistochemical study of renal fibropoiesis associated with dogs naturally and experimentally infected with two different strains of Leishmania (L.) infantum. Int J Exp Pathol 2019;100:222-33. [PMID: 31696580 DOI: 10.1111/iep.12321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q. Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 2017;21:1248-59. [PMID: 28097825 DOI: 10.1111/jcmm.13060] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 20.3] [Reference Citation Analysis]
60 Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 2014;124:2299-306. [PMID: 24892703 DOI: 10.1172/JCI72267] [Cited by in Crossref: 355] [Cited by in F6Publishing: 219] [Article Influence: 50.7] [Reference Citation Analysis]
61 Wang Z, Liu L, Wang M, Shen M, Li J, Liu J, Li C, Xin C, Zhu S, Mei Q, Wang Y. NOTCH1 regulates migration and invasion of skin cancer cells by E-cadherin repression. Mol Cell Biochem 2012;362:35-41. [PMID: 22038626 DOI: 10.1007/s11010-011-1125-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
62 Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, Wu TH, Linn GR, Ling H, Wu KD, Tsai TJ, Chen YM, Duffield JS, Lin SL. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 2013;182:118-31. [PMID: 23142380 DOI: 10.1016/j.ajpath.2012.09.009] [Cited by in Crossref: 144] [Cited by in F6Publishing: 139] [Article Influence: 16.0] [Reference Citation Analysis]
63 Ding H, Zhou D, Hao S, Zhou L, He W, Nie J, Hou FF, Liu Y. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 2012;23:801-13. [PMID: 22302193 DOI: 10.1681/ASN.2011060614] [Cited by in Crossref: 131] [Cited by in F6Publishing: 86] [Article Influence: 14.6] [Reference Citation Analysis]
64 Maeshima A, Takahashi S, Nakasatomi M, Nojima Y. Diverse Cell Populations Involved in Regeneration of Renal Tubular Epithelium following Acute Kidney Injury. Stem Cells Int 2015;2015:964849. [PMID: 26089922 DOI: 10.1155/2015/964849] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
65 Brandt S, Ballhause TM, Bernhardt A, Becker A, Salaru D, Le-Deffge HM, Fehr A, Fu Y, Philipsen L, Djudjaj S, Müller AJ, Kramann R, Ibrahim M, Geffers R, Siebel C, Isermann B, Heidel FH, Lindquist JA, Mertens PR. Fibrosis and Immune Cell Infiltration Are Separate Events Regulated by Cell-Specific Receptor Notch3 Expression. J Am Soc Nephrol 2020;31:2589-608. [PMID: 32859670 DOI: 10.1681/ASN.2019121289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
66 Zhou TB, Qin YH, Li ZY, Xu HL, Zhao YJ, Lei FY. All-trans retinoic acid treatment is associated with prohibitin expression in renal interstitial fibrosis rats. Int J Mol Sci 2012;13:2769-82. [PMID: 22489124 DOI: 10.3390/ijms13032769] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
67 Huang S, Park J, Qiu C, Chung KW, Li SY, Sirin Y, Han SH, Taylor V, Zimber-Strobl U, Susztak K. Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biol 2018;16:e2005233. [PMID: 30226866 DOI: 10.1371/journal.pbio.2005233] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
68 Pan SY, Chang YT, Lin SL. Microvascular pericytes in healthy and diseased kidneys. Int J Nephrol Renovasc Dis 2014;7:39-48. [PMID: 24465134 DOI: 10.2147/IJNRD.S37892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.1] [Reference Citation Analysis]
69 Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, Nameta M, Yamamoto T, Economides AN, Kohno K, Haga H, Sharma K, Yanagita M. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis. J Am Soc Nephrol 2016;27:2393-406. [PMID: 26701981 DOI: 10.1681/ASN.2015060647] [Cited by in Crossref: 112] [Cited by in F6Publishing: 65] [Article Influence: 18.7] [Reference Citation Analysis]
70 Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L. γ-Secretase inhibitors and modulators. Biochim Biophys Acta 2013;1828:2898-907. [PMID: 23791707 DOI: 10.1016/j.bbamem.2013.06.005] [Cited by in Crossref: 170] [Cited by in F6Publishing: 162] [Article Influence: 21.3] [Reference Citation Analysis]
71 Bhagat TD, Zou Y, Huang S, Park J, Palmer MB, Hu C, Li W, Shenoy N, Giricz O, Choudhary G, Yu Y, Ko YA, Izquierdo MC, Park AS, Vallumsetla N, Laurence R, Lopez R, Suzuki M, Pullman J, Kaner J, Gartrell B, Hakimi AA, Greally JM, Patel B, Benhadji K, Pradhan K, Verma A, Susztak K. Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer. J Biol Chem 2017;292:837-46. [PMID: 27909050 DOI: 10.1074/jbc.M116.745208] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.6] [Reference Citation Analysis]
72 Zhao Y, Qiao X, Wang L, Tan TK, Zhao H, Zhang Y, Zhang J, Rao P, Cao Q, Wang Y, Wang Y, Wang YM, Lee VW, Alexander SI, Harris DC, Zheng G. Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol 2016;17:21. [PMID: 27130612 DOI: 10.1186/s12860-016-0101-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
73 Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-696. [PMID: 22009250 DOI: 10.1038/nrneph.2011.149] [Cited by in Crossref: 687] [Cited by in F6Publishing: 679] [Article Influence: 68.7] [Reference Citation Analysis]
74 Taura K, Iwaisako K, Hatano E, Uemoto S. Controversies over the Epithelial-to-Mesenchymal Transition in Liver Fibrosis. J Clin Med 2016;5:E9. [PMID: 26784242 DOI: 10.3390/jcm5010009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
75 Ransick A, Lindström NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, Kim AD, Black HG, Kim J, McMahon AP. Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the Mouse Kidney. Dev Cell 2019;51:399-413.e7. [PMID: 31689386 DOI: 10.1016/j.devcel.2019.10.005] [Cited by in Crossref: 98] [Cited by in F6Publishing: 78] [Article Influence: 98.0] [Reference Citation Analysis]
76 Megyesi J, Tarcsafalvi A, Li S, Hodeify R, Seng NS, Portilla D, Price PM. Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis. Am J Physiol Renal Physiol 2015;308:F122-30. [PMID: 25428126 DOI: 10.1152/ajprenal.00489.2014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
77 De Chiara L, Conte C, Antonelli G, Lazzeri E. Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention. Int J Mol Sci 2021;22:11093. [PMID: 34681750 DOI: 10.3390/ijms222011093] [Reference Citation Analysis]
78 Tang R, Xiao X, Lu Y, Li H, Zhou Q, Kwadwo Nuro-Gyina P, Li X. Interleukin-22 attenuates renal tubular cells inflammation and fibrosis induced by TGF-β1 through Notch1 signaling pathway. Ren Fail 2020;42:381-90. [PMID: 32338120 DOI: 10.1080/0886022X.2020.1753538] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
79 Braun H, Schmidt BM, Raiss M, Baisantry A, Mircea-Constantin D, Wang S, Gross ML, Serrano M, Schmitt R, Melk A. Cellular senescence limits regenerative capacity and allograft survival. J Am Soc Nephrol 2012;23:1467-73. [PMID: 22797186 DOI: 10.1681/ASN.2011100967] [Cited by in Crossref: 97] [Cited by in F6Publishing: 59] [Article Influence: 10.8] [Reference Citation Analysis]
80 Slattery C, Jang Y, Kruger WA, Hryciw DH, Lee A, Poronnik P. γ-Secretase inhibition promotes fibrotic effects of albumin in proximal tubular epithelial cells. Br J Pharmacol 2013;169:1239-51. [PMID: 23594166 DOI: 10.1111/bph.12214] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
81 Gomez IG, Duffield JS. The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int Suppl (2011) 2014;4:26-33. [PMID: 26312147 DOI: 10.1038/kisup.2014.6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 5.7] [Reference Citation Analysis]
82 Anglicheau D, Muthukumar T, Hummel A, Ding R, Sharma VK, Dadhania D, Seshan SV, Schwartz JE, Suthanthiran M. Discovery and validation of a molecular signature for the noninvasive diagnosis of human renal allograft fibrosis. Transplantation 2012;93:1136-46. [PMID: 22592886 DOI: 10.1097/TP.0b013e31824ef181] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
83 LeBleu VS, Teng Y, O'Connell JT, Charytan D, Müller GA, Müller CA, Sugimoto H, Kalluri R. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat Med 2013;19:227-31. [PMID: 23353556 DOI: 10.1038/nm.2989] [Cited by in Crossref: 118] [Cited by in F6Publishing: 104] [Article Influence: 14.8] [Reference Citation Analysis]
84 He W, Dai C. Key Fibrogenic Signaling. Curr Pathobiol Rep 2015;3:183-92. [PMID: 25973345 DOI: 10.1007/s40139-015-0077-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
85 Ko YA, Mohtat D, Suzuki M, Park AS, Izquierdo MC, Han SY, Kang HM, Si H, Hostetter T, Pullman JM, Fazzari M, Verma A, Zheng D, Greally JM, Susztak K. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 2013;14:R108. [PMID: 24098934 DOI: 10.1186/gb-2013-14-10-r108] [Cited by in Crossref: 149] [Cited by in F6Publishing: 148] [Article Influence: 21.3] [Reference Citation Analysis]
86 Yu C, Xiong C, Tang J, Hou X, Liu N, Bayliss G, Zhuang S. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression. Theranostics 2021;11:2706-21. [PMID: 33456568 DOI: 10.7150/thno.48679] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
87 Han SH, Wu MY, Nam BY, Park JT, Yoo TH, Kang SW, Park J, Chinga F, Li SY, Susztak K. PGC-1α Protects from Notch-Induced Kidney Fibrosis Development. J Am Soc Nephrol 2017;28:3312-22. [PMID: 28751525 DOI: 10.1681/ASN.2017020130] [Cited by in Crossref: 67] [Cited by in F6Publishing: 37] [Article Influence: 16.8] [Reference Citation Analysis]
88 Xiao W, E J, Bao L, Fan Y, Jin Y, Wang A, Bauman D, Li Z, Zheng YL, Liu R, Lee K, He JC. Tubular HIPK2 is a key contributor to renal fibrosis. JCI Insight 2020;5:136004. [PMID: 32701510 DOI: 10.1172/jci.insight.136004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Xie G, Diehl AM. Evidence for and against epithelial-to-mesenchymal transition in the liver. Am J Physiol Gastrointest Liver Physiol 2013;305:G881-90. [PMID: 24157970 DOI: 10.1152/ajpgi.00289.2013] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 7.1] [Reference Citation Analysis]
90 Choi A, Nam SA, Kim WY, Park SH, Kim H, Yang CW, Kim J, Kim YK. Notch signaling in the collecting duct regulates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction in mice. Korean J Intern Med 2018;33:774-82. [PMID: 28602064 DOI: 10.3904/kjim.2016.230] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
91 Newbury LJ, Wang JH, Hung G, Hendry BM, Sharpe CC. Inhibition of Kirsten-Ras reduces fibrosis and protects against renal dysfunction in a mouse model of chronic folic acid nephropathy. Sci Rep 2019;9:14010. [PMID: 31570767 DOI: 10.1038/s41598-019-50422-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
92 Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 2016;108:57-64. [PMID: 27107790 DOI: 10.1016/j.phrs.2016.04.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 9.0] [Reference Citation Analysis]
93 Sharp CN, Doll MA, Dupre TV, Shah PP, Subathra M, Siow D, Arteel GE, Megyesi J, Beverly LJ, Siskind LJ. Repeated administration of low-dose cisplatin in mice induces fibrosis. Am J Physiol Renal Physiol 2016;310:F560-8. [PMID: 26739893 DOI: 10.1152/ajprenal.00512.2015] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 9.6] [Reference Citation Analysis]
94 Kavian N, Servettaz A, Weill B, Batteux F. New insights into the mechanism of notch signalling in fibrosis. Open Rheumatol J 2012;6:96-102. [PMID: 22802907 DOI: 10.2174/1874312901206010096] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
95 Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ, Susztak K. Notch1 and Notch2 in Podocytes Play Differential Roles During Diabetic Nephropathy Development. Diabetes 2015;64:4099-111. [PMID: 26293507 DOI: 10.2337/db15-0260] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
96 Kang HM, Huang S, Reidy K, Han SH, Chinga F, Susztak K. Sox9-Positive Progenitor Cells Play a Key Role in Renal Tubule Epithelial Regeneration in Mice. Cell Rep 2016;14:861-71. [PMID: 26776520 DOI: 10.1016/j.celrep.2015.12.071] [Cited by in Crossref: 100] [Cited by in F6Publishing: 94] [Article Influence: 20.0] [Reference Citation Analysis]
97 Guzy R, Redente EF. Kindlin for the Fire: Targeting Proline Synthesis to Extinguish Matrix Production in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021;65:4-5. [PMID: 33844940 DOI: 10.1165/rcmb.2021-0137ED] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Li B, Zhu C, Dong L, Qin J, Xiang W, Davidson AJ, Feng S, Wang Y, Shen X, Weng C, Wang C, Zhu T, Teng L, Wang J, Englert C, Chen J, Jiang H. ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. J Pathol 2020;252:274-89. [PMID: 32715474 DOI: 10.1002/path.5517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
99 Yuan C, Ni L, Zhang C, Wu X. The Role of Notch3 Signaling in Kidney Disease. Oxid Med Cell Longev 2020;2020:1809408. [PMID: 33149805 DOI: 10.1155/2020/1809408] [Reference Citation Analysis]
100 Lipphardt M, Dihazi H, Müller GA, Goligorsky MS. Fibrogenic Secretome of Sirtuin 1-Deficient Endothelial Cells: Wnt, Notch and Glycocalyx Rheostat. Front Physiol 2018;9:1325. [PMID: 30298020 DOI: 10.3389/fphys.2018.01325] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
101 Sweetwyne MT, Tao J, Susztak K. Kick it up a notch: Notch signaling and kidney fibrosis. Kidney Int Suppl (2011) 2014;4:91-6. [PMID: 26312157 DOI: 10.1038/kisup.2014.17] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
102 Begum S, Ahmed N, Mubarak M, Mateen SM, Khalid N, Rizvi SAH. Modulation of Renal Parenchyma in Response to Allogeneic Adipose-Derived Mesenchymal Stem Cells Transplantation in Acute Kidney Injury. Int J Stem Cells 2019;12:125-38. [PMID: 30836723 DOI: 10.15283/ijsc18091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
103 Fu H, Gui Y, Liu S, Wang Y, Bastacky SI, Qiao Y, Zhang R, Bonin C, Hargis G, Yu Y, Kreutzer DL, Biswas PS, Zhou Y, Wang Y, Tian XJ, Liu Y, Zhou D. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience 2021;24:103112. [PMID: 34622165 DOI: 10.1016/j.isci.2021.103112] [Reference Citation Analysis]
104 Campanholle G, Ligresti G, Gharib SA, Duffield JS. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol. 2013;304:C591-C603. [PMID: 23325411 DOI: 10.1152/ajpcell.00414.2012] [Cited by in Crossref: 115] [Cited by in F6Publishing: 115] [Article Influence: 14.4] [Reference Citation Analysis]
105 Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, Mazloom AR, Chen EY, D'Agati V, Xiong H, Ross MJ, Chen N, Ma'ayan A, He JC. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 2012;18:580-8. [PMID: 22406746 DOI: 10.1038/nm.2685] [Cited by in Crossref: 95] [Cited by in F6Publishing: 94] [Article Influence: 10.6] [Reference Citation Analysis]
106 Kulkarni YM, Dutta S, Iyer AK, Venkatadri R, Kaushik V, Ramesh V, Wright CA, Semmes OJ, Yakisich JS, Azad N. A proteomics approach to identifying key protein targets involved in VEGF inhibitor mediated attenuation of bleomycin-induced pulmonary fibrosis. Proteomics 2016;16:33-46. [PMID: 26425798 DOI: 10.1002/pmic.201500171] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
107 Sharma S, Sirin Y, Susztak K. The story of Notch and chronic kidney disease. Curr Opin Nephrol Hypertens 2011;20:56-61. [PMID: 21088575 DOI: 10.1097/MNH.0b013e3283414c88] [Cited by in Crossref: 60] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
108 Tao M, Shi Y, Tang L, Wang Y, Fang L, Jiang W, Lin T, Qiu A, Zhuang S, Liu N. Blockade of ERK1/2 by U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with hyperuricemic nephropathy. Am J Physiol Renal Physiol 2019;316:F660-73. [PMID: 30648910 DOI: 10.1152/ajprenal.00480.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
109 Goldstein SL, Chawla L, Ronco C, Kellum JA. Renal recovery. Crit Care 2014;18:301. [PMID: 24393370 DOI: 10.1186/cc13180] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
110 Mukherjee M, Fogarty E, Janga M, Surendran K. Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules 2019;9:E692. [PMID: 31690016 DOI: 10.3390/biom9110692] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
111 Bansal R, van Baarlen J, Storm G, Prakash J. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis. Sci Rep. 2015;5:18272. [PMID: 26658360 DOI: 10.1038/srep18272] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
112 Chen Y, Zheng S, Qi D, Zheng S, Guo J, Zhang S, Weng Z. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One. 2012;7:e46512. [PMID: 23056328 DOI: 10.1371/journal.pone.0046512] [Cited by in Crossref: 78] [Cited by in F6Publishing: 93] [Article Influence: 8.7] [Reference Citation Analysis]
113 Zhou XL, Liu JC. Role of Notch signaling in the mammalian heart. Braz J Med Biol Res 2014;47:1-10. [PMID: 24345875 DOI: 10.1590/1414-431X20133177] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
114 Nishad R, Mukhi D, Tahaseen SV, Mungamuri SK, Pasupulati AK. Growth hormone induces Notch1 signaling in podocytes and contributes to proteinuria in diabetic nephropathy. J Biol Chem 2019;294:16109-22. [PMID: 31511328 DOI: 10.1074/jbc.RA119.008966] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
115 Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2021. [PMID: 33990764 DOI: 10.1038/s41401-021-00660-1] [Reference Citation Analysis]
116 Chen YX, Weng ZH, Zhang SL. Notch3 regulates the activation of hepatic stellate cells. World J Gastroenterol 2012; 18(12): 1397-1403 [PMID: 22493555 DOI: 10.3748/wjg.v18.i12.1397] [Cited by in CrossRef: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
117 Grgic I, Duffield JS, Humphreys BD. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol 2012;27:183-93. [PMID: 21311912 DOI: 10.1007/s00467-011-1772-6] [Cited by in Crossref: 137] [Cited by in F6Publishing: 136] [Article Influence: 13.7] [Reference Citation Analysis]
118 Chuang PY, Menon MC, He JC. Molecular targets for treatment of kidney fibrosis. J Mol Med (Berl). 2013;91:549-559. [PMID: 23179685 DOI: 10.1007/s00109-012-0983-z] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
119 Souma T, Yamazaki S, Moriguchi T, Suzuki N, Hirano I, Pan X, Minegishi N, Abe M, Kiyomoto H, Ito S, Yamamoto M. Plasticity of renal erythropoietin-producing cells governs fibrosis. J Am Soc Nephrol 2013;24:1599-616. [PMID: 23833259 DOI: 10.1681/ASN.2013010030] [Cited by in Crossref: 107] [Cited by in F6Publishing: 55] [Article Influence: 13.4] [Reference Citation Analysis]
120 Bonegio R, Susztak K. Notch signaling in diabetic nephropathy. Exp Cell Res 2012;318:986-92. [PMID: 22414874 DOI: 10.1016/j.yexcr.2012.02.036] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
121 Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol 2011;38:467-73. [PMID: 21517936 DOI: 10.1111/j.1440-1681.2011.05531.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 6.1] [Reference Citation Analysis]
122 Ding W, Yousefi K, Shehadeh LA. Isolation, Characterization, And High Throughput Extracellular Flux Analysis of Mouse Primary Renal Tubular Epithelial Cells. J Vis Exp 2018. [PMID: 29985358 DOI: 10.3791/57718] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
123 Kida Y, Zullo JA, Goligorsky MS. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation. Biochem Biophys Res Commun 2016;478:1074-9. [PMID: 27524235 DOI: 10.1016/j.bbrc.2016.08.066] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
124 Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 2012;26:4131-41. [PMID: 22744866 DOI: 10.1096/fj.12-207324] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
125 Jia Y, Zheng Z, Guan M, Zhang Q, Li Y, Wang L, Xue Y. Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells. Exp Mol Med 2018;50:1-13. [PMID: 29717107 DOI: 10.1038/s12276-018-0084-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
126 Marquez-Exposito L, Lavoz C, Rodrigues-Diez RR, Rayego-Mateos S, Orejudo M, Cantero-Navarro E, Ortiz A, Egido J, Selgas R, Mezzano S, Ruiz-Ortega M. Gremlin Regulates Tubular Epithelial to Mesenchymal Transition via VEGFR2: Potential Role in Renal Fibrosis. Front Pharmacol 2018;9:1195. [PMID: 30386246 DOI: 10.3389/fphar.2018.01195] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
127 Wang Y, Shen RW, Han B, Li Z, Xiong L, Zhang FY, Cong BB, Zhang B. Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol 2017; 23(13): 2330-2336 [PMID: 28428712 DOI: 10.3748/wjg.v23.i13.2330] [Cited by in CrossRef: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
128 Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem. 2015;22:2858-2870. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Cited by in Crossref: 95] [Cited by in F6Publishing: 93] [Article Influence: 19.0] [Reference Citation Analysis]
129 Zhang Y, Jin, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021;9:696542. [PMID: 34327204 DOI: 10.3389/fcell.2021.696542] [Reference Citation Analysis]
130 Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C, Sun S. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One 2012;7:e30771. [PMID: 22363487 DOI: 10.1371/journal.pone.0030771] [Cited by in Crossref: 128] [Cited by in F6Publishing: 129] [Article Influence: 14.2] [Reference Citation Analysis]
131 Sarma NJ, Tiriveedhi V, Subramanian V, Shenoy S, Crippin JS, Chapman WC, Mohanakumar T. Hepatitis C virus mediated changes in miRNA-449a modulates inflammatory biomarker YKL40 through components of the NOTCH signaling pathway. PLoS One. 2012;7:e50826. [PMID: 23226395 DOI: 10.1371/journal.pone.0050826] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
132 Lavoz C, Rodrigues-Diez R, Benito-Martin A, Rayego-Mateos S, Rodrigues-Diez RR, Alique M, Ortiz A, Mezzano S, Egido J, Ruiz-Ortega M. Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. PLoS One 2012;7:e40490. [PMID: 22792351 DOI: 10.1371/journal.pone.0040490] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
133 Hsu YC, Chang PJ, Tung CW, Shih YH, Ni WC, Li YC, Uto T, Shoyama Y, Ho C, Lin CL. De-Glycyrrhizinated Licorice Extract Attenuates High Glucose-Stimulated Renal Tubular Epithelial-Mesenchymal Transition via Suppressing the Notch2 Signaling Pathway. Cells 2020;9:E125. [PMID: 31948095 DOI: 10.3390/cells9010125] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
134 Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016;14:15-39. [PMID: 26847481 DOI: 10.3121/cmr.2015.1282] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 14.6] [Reference Citation Analysis]
135 Murta D, Batista M, Silva E, Trindade A, Henrique D, Duarte A, Lopes-da-Costa L. Dynamics of Notch pathway expression during mouse testis post-natal development and along the spermatogenic cycle. PLoS One 2013;8:e72767. [PMID: 24015274 DOI: 10.1371/journal.pone.0072767] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
136 Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 2017;91:552-60. [PMID: 27773427 DOI: 10.1016/j.kint.2016.08.025] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
137 Weidenbusch M, Rodler S, Song S, Romoli S, Marschner JA, Kraft F, Holderied A, Kumar S, Mulay SR, Honarpisheh M, Kumar Devarapu S, Lech M, Anders HJ. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Biosci Rep 2017;37:BSR20170099. [PMID: 29054964 DOI: 10.1042/BSR20170099] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
138 LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016;418:227-41. [PMID: 27565024 DOI: 10.1016/j.ydbio.2016.08.023] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 10.0] [Reference Citation Analysis]
139 Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 2016;12:426-39. [PMID: 27140856 DOI: 10.1038/nrneph.2016.54] [Cited by in Crossref: 162] [Cited by in F6Publishing: 160] [Article Influence: 32.4] [Reference Citation Analysis]
140 Nishad R, Meshram P, Singh AK, Reddy GB, Pasupulati AK. Activation of Notch1 signaling in podocytes by glucose-derived AGEs contributes to proteinuria. BMJ Open Diabetes Res Care 2020;8:e001203. [PMID: 32601154 DOI: 10.1136/bmjdrc-2020-001203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
141 Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, Williams WW, Sadlier DM, Makinen VP. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8:e1002921. [PMID: 23028342 DOI: 10.1371/journal.pgen.1002921] [Cited by in Crossref: 169] [Cited by in F6Publishing: 153] [Article Influence: 18.8] [Reference Citation Analysis]
142 Peired AJ, Melica ME, Molli A, Nardi C, Romagnani P, Lasagni L. Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle? Cells 2021;10:E59. [PMID: 33401654 DOI: 10.3390/cells10010059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, Rastaldi MP, Hartleben G. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197-2209. [PMID: 21606591 DOI: 10.1172/jci44774] [Cited by in Crossref: 357] [Cited by in F6Publishing: 239] [Article Influence: 35.7] [Reference Citation Analysis]
144 Hu B, Wu Z, Bai D, Liu T, Ullenbruch MR, Phan SH. Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis. Am J Pathol 2015;185:3066-75. [PMID: 26358219 DOI: 10.1016/j.ajpath.2015.07.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
145 Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res 2019;209:90-104. [PMID: 31085163 DOI: 10.1016/j.trsl.2019.04.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
146 Canalis E, Zanotti S, Smerdel-Ramoya A. Connective tissue growth factor is a target of notch signaling in cells of the osteoblastic lineage. Bone 2014;64:273-80. [PMID: 24792956 DOI: 10.1016/j.bone.2014.04.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
147 Idowu J, Home T, Patel N, Magenheimer B, Tran PV, Maser RL, Ward CJ, Calvet JP, Wallace DP, Sharma M. Aberrant Regulation of Notch3 Signaling Pathway in Polycystic Kidney Disease. Sci Rep 2018;8:3340. [PMID: 29463793 DOI: 10.1038/s41598-018-21132-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
148 Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, Susztak K. Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism. J Am Soc Nephrol. 2016;27:439-453. [PMID: 26054542 DOI: 10.1681/ASN.2014121181] [Cited by in Crossref: 53] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
149 Zhang K, Zhang YQ, Ai WB, Hu QT, Zhang QJ, Wan LY, Wang XL, Liu CB, Wu JF. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling. World J Gastroenterol 2015; 21(3): 878-887 [PMID: 25624721 DOI: 10.3748/wjg.v21.i3.878] [Cited by in CrossRef: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
150 Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem 2019. [PMID: 30767300 DOI: 10.1002/jcb.28380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
151 Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020;11:569322. [PMID: 33041867 DOI: 10.3389/fphys.2020.569322] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
152 Breyer MD, Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov 2016;15:568-88. [PMID: 27230798 DOI: 10.1038/nrd.2016.67] [Cited by in Crossref: 122] [Cited by in F6Publishing: 118] [Article Influence: 24.4] [Reference Citation Analysis]
153 Ó hAinmhire E, Humphreys BD. Fibrotic Changes Mediating Acute Kidney Injury to Chronic Kidney Disease Transition. Nephron 2017;137:264-7. [PMID: 28595180 DOI: 10.1159/000474960] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]