BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun. 2020;12:4-20. [PMID: 31610541 DOI: 10.1159/000503030] [Cited by in Crossref: 122] [Cited by in F6Publishing: 115] [Article Influence: 40.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang C, Cheng S, Kuo S. Asthma and COVID-19 Associations: Focus on IgE-Related Immune Pathology. Life 2022;12:153. [DOI: 10.3390/life12020153] [Reference Citation Analysis]
2 Gabriele L, Fragale A, Romagnoli G, Parlato S, Lapenta C, Santini SM, Ozato K, Capone I. Type I IFN-dependent antibody response at the basis of sex dimorphism in the outcome of COVID-19. Cytokine Growth Factor Rev 2021;58:66-74. [PMID: 33071044 DOI: 10.1016/j.cytogfr.2020.10.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
3 Beeckmans S, Van Driessche E. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Front Mol Biosci 2021;8:671923. [PMID: 34109214 DOI: 10.3389/fmolb.2021.671923] [Reference Citation Analysis]
4 Huang K, Chu JJH. Editorial: Evolution & Genomic Adaptation of Emerging and Re-emerging RNA Viruses. Front Microbiol 2021;12:777257. [DOI: 10.3389/fmicb.2021.777257] [Reference Citation Analysis]
5 Yan S, Wu G. Spatial and temporal roles of SARS-CoV PLpro -A snapshot. FASEB J 2021;35:e21197. [PMID: 33368679 DOI: 10.1096/fj.202002271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Li Y, Renner DM, Comar CE, Whelan JN, Reyes HM, Cardenas-Diaz FL, Truitt R, Tan LH, Dong B, Alysandratos KD, Huang J, Palmer JN, Adappa ND, Kohanski MA, Kotton DN, Silverman RH, Yang W, Morrisey E, Cohen NA, Weiss SR. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial derived cells and cardiomyocytes. bioRxiv 2020:2020. [PMID: 32995797 DOI: 10.1101/2020.09.24.312553] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
7 Xiao Y, Lidsky PV, Shirogane Y, Aviner R, Wu CT, Li W, Zheng W, Talbot D, Catching A, Doitsh G, Su W, Gekko CE, Nayak A, Ernst JD, Brodsky L, Brodsky E, Rousseau E, Capponi S, Bianco S, Nakamura R, Jackson PK, Frydman J, Andino R. A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell 2021;184:6037-6051.e14. [PMID: 34852237 DOI: 10.1016/j.cell.2021.11.023] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’brien DP, Pinto-fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022;12:300. [DOI: 10.3390/biom12020300] [Reference Citation Analysis]
9 Yang CW, Chen MF. Low compositions of human toll-like receptor 7/8-stimulating RNA motifs in the MERS-CoV, SARS-CoV and SARS-CoV-2 genomes imply a substantial ability to evade human innate immunity. PeerJ 2021;9:e11008. [PMID: 33665043 DOI: 10.7717/peerj.11008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Angelopoulou A, Alexandris N, Konstantinou E, Mesiakaris K, Zanidis C, Farsalinos K, Poulas K. Imiquimod - A toll like receptor 7 agonist - Is an ideal option for management of COVID 19. Environ Res. 2020;188:109858. [PMID: 32846644 DOI: 10.1016/j.envres.2020.109858] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
11 Schulze Lammers FC, Bonifacius A, Tischer-Zimmermann S, Goudeva L, Martens J, Lepenies B, von Karpowitz M, Einecke G, Beutel G, Skripuletz T, Blasczyk R, Beier R, Maecker-Kolhoff B, Eiz-Vesper B. Antiviral T-Cell Frequencies in a Healthy Population: Reference Values for Evaluating Antiviral Immune Cell Profiles in Immunocompromised Patients. J Clin Immunol 2022. [PMID: 34989946 DOI: 10.1007/s10875-021-01205-1] [Reference Citation Analysis]
12 Axfors C, Ioannidis JPA. Infection fatality rate of COVID-19 in community-dwelling elderly populations. Eur J Epidemiol. [DOI: 10.1007/s10654-022-00853-w] [Reference Citation Analysis]
13 Maggi E, Canonica GW, Moretta L. COVID-19: Unanswered questions on immune response and pathogenesis. J Allergy Clin Immunol. 2020;146:18-22. [PMID: 32389590 DOI: 10.1016/j.jaci.2020.05.001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 21.5] [Reference Citation Analysis]
14 Dyavar SR, Singh R, Emani R, Pawar GP, Chaudhari VD, Podany AT, Avedissian SN, Fletcher CV, Salunke DB. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed Pharmacother 2021;141:111794. [PMID: 34153851 DOI: 10.1016/j.biopha.2021.111794] [Reference Citation Analysis]
15 Lonati C, Gatti S, Catania A. Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic Reactions Induced by Respiratory Viruses. Front Endocrinol (Lausanne) 2020;11:569241. [PMID: 33362713 DOI: 10.3389/fendo.2020.569241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Poulas K, Farsalinos K, Zanidis C. Activation of TLR7 and Innate Immunity as an Efficient Method Against COVID-19 Pandemic: Imiquimod as a Potential Therapy. Front Immunol 2020;11:1373. [PMID: 32612613 DOI: 10.3389/fimmu.2020.01373] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
17 Ali AS, Al-Hakami AM, Shati AA, Asseri AA, Al-Qahatani SM. Salient Conclusive Remarks on Epidemiology and Clinical Manifestations of Pediatric COVID-19: Narrative Review. Front Pediatr 2020;8:584694. [PMID: 33335873 DOI: 10.3389/fped.2020.584694] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Lewis DSM, Ho J, Wills S, Kawall A, Sharma A, Chavada K, Ebert MCCJC, Evoli S, Singh A, Rayalam S, Mody V, Taval S. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Sci Rep 2022;12:2145. [PMID: 35140265 DOI: 10.1038/s41598-022-06104-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Gewaid H, Aoyagi H, Arita M, Watashi K, Suzuki R, Sakai S, Kumagai K, Yamaji T, Fukasawa M, Kato F, Hishiki T, Mimata A, Sakamaki Y, Ichinose S, Hanada K, Muramatsu M, Wakita T, Aizaki H. Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories. J Virol. 2020;94. [PMID: 32938759 DOI: 10.1128/jvi.01080-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Bastard P, Zhang Q, Zhang S, Jouanguy E, Casanova J. Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology 2022. [DOI: 10.1016/j.coi.2022.01.003] [Reference Citation Analysis]
21 Benoni R, Krafcikova P, Baranowski MR, Kowalska J, Boura E, Cahová H. Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase. Viruses 2021;13:1722. [PMID: 34578302 DOI: 10.3390/v13091722] [Reference Citation Analysis]
22 De Rose DU, Piersigilli F, Ronchetti MP, Santisi A, Bersani I, Dotta A, Danhaive O, Auriti C; Study Group of Neonatal Infectious Diseases of The Italian Society of Neonatology (SIN). Novel Coronavirus disease (COVID-19) in newborns and infants: what we know so far. Ital J Pediatr. 2020;46:56. [PMID: 32349772 DOI: 10.1186/s13052-020-0820-x] [Cited by in Crossref: 66] [Cited by in F6Publishing: 49] [Article Influence: 33.0] [Reference Citation Analysis]
23 Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020;46:467-88. [PMID: 32468014 DOI: 10.3892/ijmm.2020.4608] [Cited by in Crossref: 46] [Cited by in F6Publishing: 53] [Article Influence: 23.0] [Reference Citation Analysis]
24 Sadanandam A, Bopp T, Dixit S, Knapp DJHF, Emperumal CP, Vergidis P, Rajalingam K, Melcher A, Kannan N. A blood transcriptome-based analysis of disease progression, immune regulation, and symptoms in coronavirus-infected patients. Cell Death Discov 2020;6:141. [PMID: 33293514 DOI: 10.1038/s41420-020-00376-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
25 Li JY, Zhou ZJ, Wang Q, He QN, Zhao MY, Qiu Y, Ge XY. Innate Immunity Evasion Strategies of Highly Pathogenic Coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2. Front Microbiol 2021;12:770656. [PMID: 34777324 DOI: 10.3389/fmicb.2021.770656] [Reference Citation Analysis]
26 Forns X, Navasa M. Liver transplant immunosuppression during the covid-19 pandemic. Gastroenterol Hepatol 2020;43:457-63. [PMID: 32646657 DOI: 10.1016/j.gastrohep.2020.06.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Xu-Chen X, Weinstock J, Rastogi D, Koumbourlis A, Nino G. The airway epithelium during infancy and childhood: A complex multicellular immune barrier. Basic review for clinicians. Paediatr Respir Rev 2021;38:9-15. [PMID: 34030977 DOI: 10.1016/j.prrv.2021.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Thierry AR, Roch B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J Clin Med 2020;9:E2942. [PMID: 32933031 DOI: 10.3390/jcm9092942] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
29 Álvez F. SARS-CoV2 coronavirus: so far polite with children. Debatable immunological and non-immunological evidence. Allergol Immunopathol (Madr) 2020;48:500-6. [PMID: 32771236 DOI: 10.1016/j.aller.2020.05.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Palermo E, Di Carlo D, Sgarbanti M, Hiscott J. Type I Interferons in COVID-19 Pathogenesis. Biology (Basel) 2021;10:829. [PMID: 34571706 DOI: 10.3390/biology10090829] [Reference Citation Analysis]
31 Ding Y, Yan H, Guo W. Clinical Characteristics of Children With COVID-19: A Meta-Analysis. Front Pediatr. 2020;8:431. [PMID: 32719759 DOI: 10.3389/fped.2020.00431] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 18.0] [Reference Citation Analysis]
32 Simbirtsev AS. Immunopathogenesis and perspectives for immunotherapy of coronavirus infection. VIČ-infekc immunosupr 2021;12:7-22. [DOI: 10.22328/2077-9828-2020-12-4-7-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Maghool F, Valiani A, Safari T, Emami MH, Mohammadzadeh S. Gastrointestinal and renal complications in SARS-CoV-2-infected patients: Role of immune system. Scand J Immunol 2021;93:e12999. [PMID: 33190306 DOI: 10.1111/sji.12999] [Reference Citation Analysis]
34 [DOI: 10.1101/2020.07.30.228478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Zhang Z, Li X, Zhang W, Shi ZL, Zheng Z, Wang T. Clinical Features and Treatment of 2019-nCov Pneumonia Patients in Wuhan: Report of A Couple Cases. Virol Sin 2020;35:330-6. [PMID: 32034637 DOI: 10.1007/s12250-020-00203-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
36 Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease.Int Immunopharmacol. 2021;90:107225. [PMID: 33302033 DOI: 10.1016/j.intimp.2020.107225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
37 Girkin JLN, Maltby S, Bartlett NW. Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. Eur Respir Rev 2022;31:210274. [PMID: 35508333 DOI: 10.1183/16000617.0274-2021] [Reference Citation Analysis]
38 Guillon A, Hiemstra PS, Si-Tahar M. Pulmonary immune responses against SARS-CoV-2 infection: harmful or not? Intensive Care Med 2020;46:1897-900. [PMID: 32681297 DOI: 10.1007/s00134-020-06170-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
39 Peters EMJ, Schedlowski M, Watzl C, Gimsa U. [Can Stress Interact with SARS-CoV-2? A Narrative Review with a Focus on Stress-Reducing Interventions that may Improve Defence against COVID-19]. Psychother Psychosom Med Psychol 2021;71:61-71. [PMID: 33440452 DOI: 10.1055/a-1322-3205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Guihot A, Litvinova E, Autran B, Debré P, Vieillard V. Cell-Mediated Immune Responses to COVID-19 Infection. Front Immunol 2020;11:1662. [PMID: 32719687 DOI: 10.3389/fimmu.2020.01662] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
41 Wang X, Gui J. Cell-mediated immunity to SARS-CoV-2. Pediatr Investig 2020;4:281-91. [PMID: 33376956 DOI: 10.1002/ped4.12228] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
42 Kamle S, Ma B, He CH, Akosman B, Zhou Y, Lee CM, El-Deiry WS, Huntington K, Liang O, Machan JT, Kang MJ, Shin HJ, Mizoguchi E, Lee CG, Elias JA. Chitinase 3-like-1 is a therapeutic target that mediates the effects of aging in COVID-19. JCI Insight 2021;6:e148749. [PMID: 34747367 DOI: 10.1172/jci.insight.148749] [Reference Citation Analysis]
43 Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Front Immunol 2022;13:894534. [DOI: 10.3389/fimmu.2022.894534] [Reference Citation Analysis]
44 Arora S, Singh P, Dohare R, Jha R, Ali Syed M. Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19). Gene 2020;762:145057. [PMID: 32805314 DOI: 10.1016/j.gene.2020.145057] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
45 Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol 2021:S0198-8859(21)00230-5. [PMID: 34583856 DOI: 10.1016/j.humimm.2021.09.004] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Bibert S, Guex N, Lourenco J, Brahier T, Papadimitriou-Olivgeris M, Damonti L, Manuel O, Liechti R, Götz L, Tschopp J, Quinodoz M, Vollenweider P, Pagani JL, Oddo M, Hügli O, Lamoth F, Erard V, Voide C, Delorenzi M, Rufer N, Candotti F, Rivolta C, Boillat-Blanco N, Bochud PY; RegCOVID Study Group. Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza Virus Infected Patients. Front Immunol 2021;12:666163. [PMID: 34135895 DOI: 10.3389/fimmu.2021.666163] [Reference Citation Analysis]
47 Khan MA, Islam ABMMK. SARS-CoV-2 Proteins Exploit Host's Genetic and Epigenetic Mediators for the Annexation of Key Host Signaling Pathways. Front Mol Biosci 2020;7:598583. [PMID: 33585554 DOI: 10.3389/fmolb.2020.598583] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Alexiou A, Batiha GE. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front Cell Infect Microbiol 2021;11:666987. [PMID: 34568081 DOI: 10.3389/fcimb.2021.666987] [Reference Citation Analysis]
49 Li Y, Min L, Zhang X. Usefulness of procalcitonin (PCT), C-reactive protein (CRP), and white blood cell (WBC) levels in the differential diagnosis of acute bacterial, viral, and mycoplasmal respiratory tract infections in children. BMC Pulm Med 2021;21:386. [PMID: 34836530 DOI: 10.1186/s12890-021-01756-4] [Reference Citation Analysis]
50 Buonsenso D, Sali M, Pata D, De Rose C, Sanguinetti M, Valentini P, Delogu G. Children and COVID-19: Microbiological and immunological insights. Pediatr Pulmonol 2020;55:2547-55. [PMID: 32710652 DOI: 10.1002/ppul.24978] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
51 Caselli D, Aricò M. 2019-nCoV: Polite with children! Pediatr Rep 2020;12:8495. [PMID: 32153742 DOI: 10.4081/pr.2020.8495] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
52 Zepeda-Cervantes J, Martínez-Flores D, Ramírez-Jarquín JO, Tecalco-Cruz ÁC, Alavez-Pérez NS, Vaca L, Sarmiento-Silva RE. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022;14:94. [PMID: 35062298 DOI: 10.3390/v14010094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020;9:E1027. [PMID: 33302366 DOI: 10.3390/pathogens9121027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
54 Franzo G, Tucciarone CM, Legnardi M, Cecchinato M. Effect of genome composition and codon bias on infectious bronchitis virus evolution and adaptation to target tissues. BMC Genomics 2021;22:244. [PMID: 33827429 DOI: 10.1186/s12864-021-07559-5] [Reference Citation Analysis]
55 Peters EMJ, Schedlowski M, Watzl C, Gimsa U. To stress or not to stress: Brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2. Neurobiol Stress 2021;14:100296. [PMID: 33527083 DOI: 10.1016/j.ynstr.2021.100296] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
56 Ioannidis JPA. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ 2021;99:19-33F. [PMID: 33716331 DOI: 10.2471/BLT.20.265892] [Cited by in Crossref: 61] [Cited by in F6Publishing: 43] [Article Influence: 30.5] [Reference Citation Analysis]
57 Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res 2020;116:2197-206. [PMID: 33063089 DOI: 10.1093/cvr/cvaa284] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
58 Liou TG, Adler FR, Cahill BC, Cox DR, Cox JE, Grant GJ, Hanson KE, Hartsell SC, Hatton ND, Helms MN, Jensen JL, Kartsonaki C, Li Y, Leung DT, Marvin JE, Middleton EA, Osburn-Staker SM, Packer KA, Shakir SM, Sturrock AB, Tardif KD, Warren KJ, Waddoups LJ, Weaver LJ, Zimmerman E, Paine R 3rd. SARS-CoV-2 innate effector associations and viral load in early nasopharyngeal infection. Physiol Rep 2021;9:e14761. [PMID: 33625796 DOI: 10.14814/phy2.14761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
59 Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 2020;17:174. [PMID: 33183352 DOI: 10.1186/s12985-020-01449-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Fadl N, Ali E, Salem TZ. COVID-19: Risk Factors Associated with Infectivity and Severity. Scand J Immunol 2021;93:e13039. [PMID: 33710663 DOI: 10.1111/sji.13039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
61 Bakhshandeh B, Sorboni SG, Javanmard AR, Mottaghi SS, Mehrabi MR, Sorouri F, Abbasi A, Jahanafrooz Z. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect Genet Evol 2021;90:104773. [PMID: 33607284 DOI: 10.1016/j.meegid.2021.104773] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
62 Jin XH, Zhou HL, Chen LL, Wang GF, Han QY, Zhang JG, Zhang X, Chen QY, Ye YH, Lin A, Yan WH. Peripheral immunological features of COVID-19 patients in Taizhou, China: A retrospective study. Clin Immunol 2021;222:108642. [PMID: 33253854 DOI: 10.1016/j.clim.2020.108642] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Tosta E. The adaptation of SARS-CoV-2 to humans. Mem Inst Oswaldo Cruz 2022;116:e210127. [PMID: 35019068 DOI: 10.1590/0074-02760210127] [Reference Citation Analysis]
64 Zhao J, Sun L, Zhao Y, Feng D, Cheng J, Zhang G. Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation. J Virol 2020:JVI. [PMID: 33361429 DOI: 10.1128/JVI.02103-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
65 Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol 2021;21:475-84. [PMID: 34211186 DOI: 10.1038/s41577-021-00578-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
66 Littera R, Chessa L, Deidda S, Angioni G, Campagna M, Lai S, Melis M, Cipri S, Firinu D, Santus S, Lai A, Porcella R, Rassu S, Meloni F, Schirru D, Cordeddu W, Kowalik MA, Ragatzu P, Vacca M, Cannas F, Alba F, Carta MG, Del Giacco S, Restivo A, Deidda S, Palimodde A, Congera P, Perra R, Orrù G, Pes F, Loi M, Murru C, Urru E, Onali S, Coghe F, Giglio S, Perra A. Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection. PLoS One 2021;16:e0255608. [PMID: 34352002 DOI: 10.1371/journal.pone.0255608] [Reference Citation Analysis]
67 Hu T, Pan M, Yin Y, Wang C, Cui Y, Wang Q. The Regulatory Network of Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Pathway in Viral Evasion. Front Microbiol 2021;12:790714. [PMID: 34966372 DOI: 10.3389/fmicb.2021.790714] [Reference Citation Analysis]
68 Lindner HA, Velásquez SY, Thiel M, Kirschning T. Lung Protection vs. Infection Resolution: Interleukin 10 Suspected of Double-Dealing in COVID-19. Front Immunol 2021;12:602130. [PMID: 33746948 DOI: 10.3389/fimmu.2021.602130] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Roy K, Agarwal S, Banerjee R, Paul MK, Purbey PK. COVID-19 and gut immunomodulation. World J Gastroenterol 2021; 27(46): 7925-7942 [DOI: 10.3748/wjg.v27.i46.7925] [Reference Citation Analysis]
70 Fleites YA, Aguiar J, Cinza Z, Bequet M, Marrero E, Vizcaíno M, Esquivel I, Diaz M, Sin-Mayor A, Garcia M, Martinez SM, Beato A, Galarraga AG, Mendoza-Mari Y, Valdés I, García G, Lemos G, González I, Canaán-Haden C, Figueroa N, Oquendo R, Akbar SM, Mahtab MA, Uddin MH, Guillén GE, Muzio VL, Pentón E, Aguilar JC. HeberNasvac, a Therapeutic Vaccine for Chronic Hepatitis B, Stimulates Local and Systemic Markers of Innate Immunity: Potential Use in SARS-CoV-2 Postexposure Prophylaxis. Euroasian J Hepatogastroenterol 2021;11:59-70. [PMID: 34786358 DOI: 10.5005/jp-journals-10018-1344] [Reference Citation Analysis]
71 Gigante A, Aquili A, Farinelli L, Caraffa A, Ronconi G, Enrica Gallenga C, Tetè G, Kritas SK, Conti P. Sodium chromo-glycate and palmitoylethanolamide: A possible strategy to treat mast cell-induced lung inflammation in COVID-19. Med Hypotheses 2020;143:109856. [PMID: 32460208 DOI: 10.1016/j.mehy.2020.109856] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
72 Saygili E, Yildiz-Ozturk E, Green MJ, Ghaemmaghami AM, Yesil-Celiktas O. Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response. Biomicrofluidics 2021;15:021501. [PMID: 33791050 DOI: 10.1063/5.0038924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
73 Berthelot JM, Drouet L, Lioté F. Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? Emerg Microbes Infect 2020;9:1514-22. [PMID: 32574107 DOI: 10.1080/22221751.2020.1785336] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
74 Malcangi G, Inchingolo AD, Inchingolo AM, Santacroce L, Marinelli G, Mancini A, Vimercati L, Maggiore ME, D'Oria MT, Hazballa D, Bordea IR, Xhajanka E, Scarano A, Farronato M, Tartaglia GM, Giovanniello D, Nucci L, Serpico R, Sammartino G, Capozzi L, Parisi A, Di Domenico M, Lorusso F, Contaldo M, Inchingolo F, Dipalma G. COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies. Microorganisms 2021;9:1964. [PMID: 34576859 DOI: 10.3390/microorganisms9091964] [Reference Citation Analysis]
75 [DOI: 10.1101/2020.05.13.20101253] [Cited by in Crossref: 85] [Cited by in F6Publishing: 21] [Reference Citation Analysis]
76 Parsa S, Mogharab V, Ebrahimi M, Ahmadi SR, Shahi B, Mehramiz NJ, Foroughian M, Zarenezhad M, Kalani N, Abdi MH, Javdani F, Keshavarz P, Hatami N. COVID-19 as a worldwide selective event and bitter taste receptor polymorphisms: An ecological correlational study. Int J Biol Macromol 2021;177:204-10. [PMID: 33582215 DOI: 10.1016/j.ijbiomac.2021.02.070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Shahbazi M, Jafari M, Moulana Z, Sepidarkish M, Bagherzadeh M, Rezanejad M, Mirzakhani M, Javanian M, Bayani M, Sadeghi-Haddad-Zavareh M, Mehdinezhad H, Ghadimi R, Ghasemzadeh M, Shokuhi Rad A, Mohammadnia-Afrouzi M. Reduced frequency of T helper 17 and T helper 1 cells and their association with critical coronavirus disease 2019. APMIS 2021;129:271-9. [PMID: 33792109 DOI: 10.1111/apm.13129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020;11:588409. [PMID: 33335518 DOI: 10.3389/fmicb.2020.588409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
79 Shahgolzari M, Yavari A, Arjeini Y, Miri SM, Darabi A, Mozaffari Nejad AS, Keshavarz M. Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. Gene Rep 2021;25:101417. [PMID: 34778602 DOI: 10.1016/j.genrep.2021.101417] [Reference Citation Analysis]
80 Kashani NR, Azadbakht J, Ehteram H, Kashani HH, Rajabi-moghadam H, Ahmad E, Nikzad H, Hosseini ES. Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Front Mol Biosci 2022;9:770775. [DOI: 10.3389/fmolb.2022.770775] [Reference Citation Analysis]
81 Das A, Roy S, Swarnakar S, Chatterjee N. Understanding the immunological aspects of SARS-CoV-2 causing COVID-19 pandemic: A therapeutic approach. Clin Immunol 2021;:108804. [PMID: 34303849 DOI: 10.1016/j.clim.2021.108804] [Reference Citation Analysis]
82 Rai KR, Shrestha P, Yang B, Chen Y, Liu S, Maarouf M, Chen JL. Acute Infection of Viral Pathogens and Their Innate Immune Escape. Front Microbiol 2021;12:672026. [PMID: 34239508 DOI: 10.3389/fmicb.2021.672026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Zaunders J, Phetsouphanh C. Long-term and short-term immunity to SARS-CoV-2: why it matters. Microbiol Aust 2021;42:34. [DOI: 10.1071/ma21010] [Reference Citation Analysis]
84 Fage C, Hénaut M, Carbonneau J, Piret J, Boivin G. Influenza A(H1N1)pdm09 Virus but Not Respiratory Syncytial Virus Interferes with SARS-CoV-2 Replication during Sequential Infections in Human Nasal Epithelial Cells. Viruses 2022;14:395. [DOI: 10.3390/v14020395] [Reference Citation Analysis]
85 Müller WEG, Neufurth M, Wang S, Tan R, Schröder HC, Wang X. Morphogenetic (Mucin Expression) as Well as Potential Anti-Corona Viral Activity of the Marine Secondary Metabolite Polyphosphate on A549 Cells. Mar Drugs 2020;18:E639. [PMID: 33327522 DOI: 10.3390/md18120639] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
86 Korte W, Buljan M, Rösslein M, Wick P, Golubov V, Jentsch J, Reut M, Peier K, Nohynek B, Fischer A, Stolz R, Cettuzzi M, Nolte O. SARS-CoV-2 IgG and IgA antibody response is gender dependent; and IgG antibodies rapidly decline early on. J Infect 2021;82:e11-4. [PMID: 32853597 DOI: 10.1016/j.jinf.2020.08.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
87 van den Hoogen B, Santoni A, Sciumé G, Bowie A, O'Farrelly C, O'Neill L, Anthonsen M, Pardali K, Young S, Bergthaler A, Manel N, Zahn R, Kikkert M, Snijder E, van Kuppeveld F, Fouchier R, Hiscott J. Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie Sklodowska-Curie innovative training network. Virus Res 2020;287:198094. [PMID: 32730781 DOI: 10.1016/j.virusres.2020.198094] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, Spandidos DA, Tsatsakis A. Towards effective COVID‑19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med 2020;46:3-16. [PMID: 32377694 DOI: 10.3892/ijmm.2020.4596] [Cited by in Crossref: 75] [Cited by in F6Publishing: 96] [Article Influence: 37.5] [Reference Citation Analysis]
89 Hirschenberger M, Hunszinger V, Sparrer KMJ. Implications of Innate Immunity in Post-Acute Sequelae of Non-Persistent Viral Infections. Cells 2021;10:2134. [PMID: 34440903 DOI: 10.3390/cells10082134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Singh MK, Mobeen A, Chandra A, Joshi S, Ramachandran S. A meta-analysis of comorbidities in COVID-19: Which diseases increase the susceptibility of SARS-CoV-2 infection? Comput Biol Med 2021;130:104219. [PMID: 33486379 DOI: 10.1016/j.compbiomed.2021.104219] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Kushwaha SK, Kesarwani V, Choudhury S, Gandhi S, Sharma S. SARS-CoV-2 transcriptome analysis and molecular cataloguing of immunodominant epitopes for multi-epitope based vaccine design. Genomics 2020;112:5044-54. [PMID: 32920121 DOI: 10.1016/j.ygeno.2020.09.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
92 Market M, Angka L, Martel AB, Bastin D, Olanubi O, Tennakoon G, Boucher DM, Ng J, Ardolino M, Auer RC. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front Immunol 2020;11:1512. [PMID: 32655581 DOI: 10.3389/fimmu.2020.01512] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 28.5] [Reference Citation Analysis]
93 Ouyang Y, Yin J, Wang W, Shi H, Shi Y, Xu B, Qiao L, Feng Y, Pang L, Wei F, Guo X, Jin R, Chen D. Downregulated Gene Expression Spectrum and Immune Responses Changed During the Disease Progression in Patients With COVID-19. Clin Infect Dis. 2020;71:2052-2060. [PMID: 32307550 DOI: 10.1093/cid/ciaa462] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 25.5] [Reference Citation Analysis]
94 Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch 2021;478:137-50. [PMID: 33604758 DOI: 10.1007/s00428-021-03053-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
95 Khalaf K, Papp N, Chou JT, Hana D, Mackiewicz A, Kaczmarek M. SARS-CoV-2: Pathogenesis, and Advancements in Diagnostics and Treatment. Front Immunol 2020;11:570927. [PMID: 33123144 DOI: 10.3389/fimmu.2020.570927] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
96 Piret J, Boivin G. Viral Interference between Respiratory Viruses. Emerg Infect Dis 2022;28:273-81. [DOI: 10.3201/eid2802.211727] [Reference Citation Analysis]
97 De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021;93:e13043. [PMID: 33783027 DOI: 10.1111/sji.13043] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
98 Keam S, Megawati D, Patel SK, Tiwari R, Dhama K, Harapan H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2020;30:e2123. [PMID: 32648313 DOI: 10.1002/rmv.2123] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 20.0] [Reference Citation Analysis]
99 De Toma I, Dierssen M. Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19. Sci Rep 2021;11:1930. [PMID: 33479353 DOI: 10.1038/s41598-021-81451-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
100 Soleimanian S, Yaghobi R. Harnessing Memory NK Cell to Protect Against COVID-19. Front Pharmacol 2020;11:1309. [PMID: 32973527 DOI: 10.3389/fphar.2020.01309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
101 Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes. J Proteome Res 2020;19:4275-90. [PMID: 32686937 DOI: 10.1021/acs.jproteome.0c00421] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
102 Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T. Innate Immune Responses to Acute Viral Infection During Pregnancy. Front Immunol 2020;11:572567. [PMID: 33101294 DOI: 10.3389/fimmu.2020.572567] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
103 Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G, Fernandez M, Caccuri F, Caruso A, Rizzo R. TLR3 and TLR7 RNA Sensor Activation during SARS-CoV-2 Infection. Microorganisms 2021;9:1820. [PMID: 34576716 DOI: 10.3390/microorganisms9091820] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
104 [DOI: 10.1101/2020.09.03.280727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Li Y, Renner DM, Comar CE, Whelan JN, Reyes HM, Cardenas-Diaz FL, Truitt R, Tan LH, Dong B, Alysandratos KD, Huang J, Palmer JN, Adappa ND, Kohanski MA, Kotton DN, Silverman RH, Yang W, Morrisey EE, Cohen NA, Weiss SR. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proc Natl Acad Sci U S A 2021;118:e2022643118. [PMID: 33811184 DOI: 10.1073/pnas.2022643118] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 40.0] [Reference Citation Analysis]
106 Zhao G, Xu Y, Li J, Cui X, Tan X, Zhang H, Dang L. Sex differences in immune responses to SARS-CoV-2 in patients with COVID-19. Biosci Rep 2021;41:BSR20202074. [PMID: 33350432 DOI: 10.1042/BSR20202074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Fanunza E, Grandi N, Quartu M, Carletti F, Ermellino L, Milia J, Corona A, Capobianchi MR, Ippolito G, Tramontano E. INMI1 Zika Virus NS4B Antagonizes the Interferon Signaling by Suppressing STAT1 Phosphorylation. Viruses 2021;13:2448. [PMID: 34960717 DOI: 10.3390/v13122448] [Reference Citation Analysis]
108 Lenoci G, Galante D, Ceci E, Manzulli V, Moramarco AM, Chiaromonte A, Labarile G, Lattarulo S, Resta A, Pace L, Rondinone V, Parisi A, Cipolletta D, Marino L, Padalino I, Serrecchia L, Aceti A, Iatarola M, Tolve F, Fasanella A. Sars-CoV-2 isolation from a 10-day-old newborn in Italy: A case report. IDCases 2020;22:e00960. [PMID: 32963961 DOI: 10.1016/j.idcr.2020.e00960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
109 Kumar S, Nyodu R, Maurya VK, Saxena SK. Host Immune Response and Immunobiology of Human SARS-CoV-2 Infection. In: Saxena SK, editor. Coronavirus Disease 2019 (COVID-19). Singapore: Springer; 2020. pp. 43-53. [DOI: 10.1007/978-981-15-4814-7_5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 10] [Article Influence: 18.0] [Reference Citation Analysis]
110 Franzo G. SARS-CoV-2 and other human coronavirus show genome patterns previously associated to reduced viral recognition and altered immune response. Sci Rep 2021;11:10696. [PMID: 34021237 DOI: 10.1038/s41598-021-90278-4] [Reference Citation Analysis]
111 Boutin S, Hildebrand D, Boulant S, Kreuter M, Rüter J, Pallerla SR, Velavan TP, Nurjadi D. Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 2021;78:5953-76. [PMID: 34223911 DOI: 10.1007/s00018-021-03889-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Elumalai E, Suresh Kumar M. Identification of neo-andrographolide compound targeting NS1 Lys14: an important residue in NS1 activity driving dengue pathogenesis. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2068073] [Reference Citation Analysis]
113 Hobbs CV, Khaitan A, Kirmse BM, Borkowsky W. COVID-19 in Children: A Review and Parallels to Other Hyperinflammatory Syndromes. Front Pediatr 2020;8:593455. [PMID: 33330288 DOI: 10.3389/fped.2020.593455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
114 Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021;7:2150-76. [PMID: 33979143 DOI: 10.1021/acsbiomaterials.1c00318] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
115 Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol 2020;85:104502. [PMID: 32798769 DOI: 10.1016/j.meegid.2020.104502] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
116 Negi N, Maurya SP, Singh R, Das BK. An update on host immunity correlates and prospects of re-infection in COVID-19. Int Rev Immunol 2021;:1-26. [PMID: 34961403 DOI: 10.1080/08830185.2021.2019727] [Reference Citation Analysis]
117 Alam ASMRU, Islam OK, Hasan MS, Islam MR, Mahmud S, Al-Emran HM, Jahid IK, Crandall KA, Hossain MA. Dominant clade-featured SARS-CoV-2 co-occurring mutations reveal plausible epistasis: An in silico based hypothetical model. J Med Virol 2021. [PMID: 34676891 DOI: 10.1002/jmv.27416] [Reference Citation Analysis]
118 Othman SI, Nayel MA, Alwaele MA, Al Fassam H, Abu-Taweel GM, Altoom NG, Almalki AM, Allam AA, Alturki AM, El-Shabasy RM. Immunology and controlling of coronaviruses; the current enemy for humanity: A review. Int J Biol Macromol 2021:S0141-8130(21)02381-3. [PMID: 34732305 DOI: 10.1016/j.ijbiomac.2021.10.216] [Reference Citation Analysis]
119 Isoldi S, Mallardo S, Marcellino A, Bloise S, Dilillo A, Iorfida D, Testa A, Del Giudice E, Martucci V, Sanseviero M, Barberi A, Raponi M, Ventriglia F, Lubrano R. The comprehensive clinic, laboratory, and instrumental evaluation of children with COVID-19: A 6-months prospective study. J Med Virol 2021;93:3122-32. [PMID: 33570199 DOI: 10.1002/jmv.26871] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
120 Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S. Regulation and Function of Interferon-Lambda (IFNλ) and Its Receptor in Asthma. Front Immunol 2021;12:731807. [PMID: 34899691 DOI: 10.3389/fimmu.2021.731807] [Reference Citation Analysis]
121 Chamontin C, Bossis G, Nisole S, Arhel NJ, Maarifi G. Regulation of Viral Restriction by Post-Translational Modifications. Viruses 2021;13:2197. [PMID: 34835003 DOI: 10.3390/v13112197] [Reference Citation Analysis]
122 Azevedo MLV, Zanchettin AC, Vaz de Paula CB, Motta Júnior JDS, Malaquias MAS, Raboni SM, Neto PC, Zeni RC, Prokopenko A, Borges NH, Godoy TM, Benevides APK, de Souza DG, Baena CP, Machado-Souza C, de Noronha L. Lung Neutrophilic Recruitment and IL-8/IL-17A Tissue Expression in COVID-19. Front Immunol 2021;12:656350. [PMID: 33868301 DOI: 10.3389/fimmu.2021.656350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27(30): 5047-5059 [PMID: 34497434 DOI: 10.3748/wjg.v27.i30.5047] [Reference Citation Analysis]
124 Tosta E. The seven constitutive respiratory defense barriers against SARS-CoV-2 infection. Rev Soc Bras Med Trop 2021;54:e04612021. [PMID: 34932765 DOI: 10.1590/0037-8682-0461-2021] [Reference Citation Analysis]
125 Messner CB, Demichev V, Wendisch D, Michalick L, White M, Freiwald A, Textoris-Taube K, Vernardis SI, Egger AS, Kreidl M, Ludwig D, Kilian C, Agostini F, Zelezniak A, Thibeault C, Pfeiffer M, Hippenstiel S, Hocke A, von Kalle C, Campbell A, Hayward C, Porteous DJ, Marioni RE, Langenberg C, Lilley KS, Kuebler WM, Mülleder M, Drosten C, Suttorp N, Witzenrath M, Kurth F, Sander LE, Ralser M. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst 2020;11:11-24.e4. [PMID: 32619549 DOI: 10.1016/j.cels.2020.05.012] [Cited by in Crossref: 152] [Cited by in F6Publishing: 124] [Article Influence: 76.0] [Reference Citation Analysis]
126 [DOI: 10.1101/2020.05.06.050260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
127 Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021;214:105778. [PMID: 33253656 DOI: 10.1016/j.actatropica.2020.105778] [Cited by in Crossref: 82] [Cited by in F6Publishing: 57] [Article Influence: 82.0] [Reference Citation Analysis]
128 Bloise S, Marcellino A, Testa A, Dilillo A, Mallardo S, Isoldi S, Martucci V, Sanseviero MT, Del Giudice E, Iorfida D, Ventriglia F, Lubrano R. Serum IgG levels in children 6 months after SARS-CoV-2 infection and comparison with adults. Eur J Pediatr 2021. [PMID: 34023936 DOI: 10.1007/s00431-021-04124-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
129 Egesten A, Herwald H. Mast Cells and More. J Innate Immun 2021;13:129-30. [PMID: 33887720 DOI: 10.1159/000516180] [Reference Citation Analysis]
130 Kumar A, Prasoon P, Sekhawat PS, Pareek V, Faiq MA, Kumari C, Narayan RK, Kulandhasamy M, Kant K. Pathogenesis guided therapeutic management of COVID-19: an immunological perspective. Int Rev Immunol 2021;40:54-71. [PMID: 33111578 DOI: 10.1080/08830185.2020.1840566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
131 Govender R, Moodley J, Naicker T. The COVID-19 Pandemic: an Appraisal of its Impact on Human Immunodeficiency Virus Infection and Pre-Eclampsia. Curr Hypertens Rep 2021;23:9. [PMID: 33570681 DOI: 10.1007/s11906-021-01126-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021;12:444-69. [PMID: 33660566 DOI: 10.1080/21505594.2021.1871823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
133 Bouayad A. Innate immune evasion by SARS-CoV-2: Comparison with SARS-CoV.Rev Med Virol. 2020;30:1-9. [PMID: 32734714 DOI: 10.1002/rmv.2135] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
134 Van Damme W, Dahake R, van de Pas R, Vanham G, Assefa Y. COVID-19: Does the infectious inoculum dose-response relationship contribute to understanding heterogeneity in disease severity and transmission dynamics? Med Hypotheses 2021;146:110431. [PMID: 33288314 DOI: 10.1016/j.mehy.2020.110431] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
135 Dioguardi M, Cazzolla AP, Arena C, Sovereto D, Caloro GA, Dioguardi A, Crincoli V, Laino L, Troiano G, Lo Muzio L. Innate Immunity in Children and the Role of ACE2 Expression in SARS-CoV-2 Infection. Pediatr Rep 2021;13:363-82. [PMID: 34287338 DOI: 10.3390/pediatric13030045] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
136 Effendi WI, Nagano T. The Crucial Role of NLRP3 Inflammasome in Viral Infection-Associated Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021;22:10447. [PMID: 34638790 DOI: 10.3390/ijms221910447] [Reference Citation Analysis]
137 Daly S, O'Sullivan A, MacLoughlin R. Cellular Immunotherapy and the Lung. Vaccines (Basel) 2021;9:1018. [PMID: 34579255 DOI: 10.3390/vaccines9091018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022;12:805472. [DOI: 10.3389/fmicb.2021.805472] [Reference Citation Analysis]
139 Gunjegaonkar SM, Shanmugarajan TS, Arunsundar M, Arjun UVNV, Devi K, Wankhede SB, Ravichandiran V. Harnessing immunotherapy to combat COVID-19: A modern snake oil or silver bullet? Therapie 2021;76:335-45. [PMID: 34238584 DOI: 10.1016/j.therap.2020.10.004] [Reference Citation Analysis]
140 Noor R. Antiviral drugs against severe acute respiratory syndrome coronavirus 2 infection triggering the coronavirus disease-19 pandemic. Tzu Chi Med J 2021;33:7-12. [PMID: 33505872 DOI: 10.4103/tcmj.tcmj_100_20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
141 Akamatsu MA, de Castro JT, Takano CY, Ho PL. Off balance: Interferons in COVID-19 lung infections. EBioMedicine 2021;73:103642. [PMID: 34678609 DOI: 10.1016/j.ebiom.2021.103642] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
142 Dong S, Liu P, Luo Y, Cui Y, Song L, Chen Y. Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage. Aging (Albany NY) 2020;12:13791-802. [PMID: 32633728 DOI: 10.18632/aging.103511] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
143 Liu P, Hong Y, Yang B, Shrestha P, Sajjad N, Chen JL. Induction of the Antiviral Immune Response and Its Circumvention by Coronaviruses. Viruses 2020;12:E1039. [PMID: 32961897 DOI: 10.3390/v12091039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
144 Kowalik MM, Trzonkowski P, Łasińska-Kowara M, Mital A, Smiatacz T, Jaguszewski M. COVID-19 - Toward a comprehensive understanding of the disease. Cardiol J 2020;27:99-114. [PMID: 32378729 DOI: 10.5603/CJ.a2020.0065] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
145 Beecker J, Papp KA, Dutz J, Vender RB, Gniadecki R, Cooper C, Gisondi P, Gooderham M, Hong CH, Kirchhof MG, Lynde CW, Maari C, Poulin Y, Puig L. Position statement for a pragmatic approach to immunotherapeutics in patients with inflammatory skin diseases during the coronavirus disease 2019 pandemic and beyond. J Eur Acad Dermatol Venereol 2021;35:797-806. [PMID: 33533553 DOI: 10.1111/jdv.17075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
146 Pradhan D, Biswasroy P, Kar B, Bhuyan SK, Ghosh G, Rath G. Clinical Interventions and Budding Applications of Probiotics in the Treatment and Prevention of Viral Infections. Arch Med Res 2021:S0188-4409(21)00203-4. [PMID: 34690010 DOI: 10.1016/j.arcmed.2021.09.008] [Reference Citation Analysis]
147 van den Elsen K, Quek JP, Luo D. Molecular Insights into the Flavivirus Replication Complex. Viruses 2021;13:956. [PMID: 34064113 DOI: 10.3390/v13060956] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
148 Clark B, Poulton K. SARS-CoV-2: An immunogenetics call to arms. Int J Immunogenet 2020;47:319-23. [PMID: 32654378 DOI: 10.1111/iji.12504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
149 Pruimboom L. SARS-CoV 2; Possible alternative virus receptors and pathophysiological determinants. Med Hypotheses 2021;146:110368. [PMID: 33189453 DOI: 10.1016/j.mehy.2020.110368] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
150 Liu T, Yang Q, Wei W, Wang K, Wang E. Toll/IL-1 receptor-containing proteins STIR-1, STIR-2 and STIR-3 synergistically assist Yersinia ruckeri SC09 immune escape. Fish Shellfish Immunol 2020;103:357-65. [PMID: 32461169 DOI: 10.1016/j.fsi.2020.05.007] [Reference Citation Analysis]
151 Piazzi M, Bavelloni A, Faenza I, Blalock W. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. Biochim Biophys Acta Mol Cell Res 2020;1867:118769. [PMID: 32512016 DOI: 10.1016/j.bbamcr.2020.118769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]