BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen Q, Yang W, Wang X, Li X, Qi S, Zhang Y, Gao MQ. TGF-β1 Induces EMT in Bovine Mammary Epithelial Cells Through the TGFβ1/Smad Signaling Pathway. Cell Physiol Biochem 2017;43:82-93. [PMID: 28848180 DOI: 10.1159/000480321] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021;81:419-43. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zhang Z, Zhu H, Liu Y, Quan F, Zhang X, Yu L. LncRNA HOTAIR mediates TGF-β2-induced cell growth and epithelial–mesenchymal transition in human lens epithelial cells. Acta Biochimica et Biophysica Sinica 2018;50:1028-37. [DOI: 10.1093/abbs/gmy101] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
3 Zhang J, Jiang H, Xu D, Wu WJ, Chen HD, He L. DNA-PKcs Mediates An Epithelial-Mesenchymal Transition Process Promoting Cutaneous Squamous Cell Carcinoma Invasion And Metastasis By Targeting The TGF-β1/Smad Signaling Pathway. Onco Targets Ther 2019;12:9395-405. [PMID: 31807020 DOI: 10.2147/OTT.S205017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
4 Yang BL, Zhu P, Li YR, Xu MM, Wang H, Qiao LC, Xu HX, Chen HJ. Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn’s disease intestinal fibrosis. World J Gastroenterol 2018; 24(30): 3414-3425 [PMID: 30122880 DOI: 10.3748/wjg.v24.i30.3414] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
5 Hirose Y, Shirai K, Hirai Y. Membrane-tethered syntaxin-4 locally abrogates E-cadherin function and activates Smad signals, contributing to asymmetric mammary epithelial morphogenesis. J Cell Biochem 2018;119:7525-39. [PMID: 29767852 DOI: 10.1002/jcb.27064] [Reference Citation Analysis]
6 Liu S, Hou H, Zhang P, Wu Y, He X, Li H, Yan N. Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells. Mol Med Rep 2019;19:1159-67. [PMID: 30535436 DOI: 10.3892/mmr.2018.9722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
7 Soelch S, Beaufort N, Loessner D, Kotzsch M, Reuning U, Luther T, Kirchner T, Magdolen V. Rab31-dependent regulation of transforming growth factor ß expression in breast cancer cells. Mol Med 2021;27:158. [PMID: 34906074 DOI: 10.1186/s10020-021-00419-8] [Reference Citation Analysis]
8 Takegahara K, Usuda J, Inoue T, Sonokawa T, Matsui T, Matsumoto M. Antiaging gene Klotho regulates epithelial-mesenchymal transition and increases sensitivity to pemetrexed by inducing lipocalin-2 expression. Oncol Lett 2021;21:418. [PMID: 33841579 DOI: 10.3892/ol.2021.12679] [Reference Citation Analysis]
9 Zou M, Zhang G, Zou J, Liu Y, Liu B, Hu X, Cheng Z. Inhibition of the ERK1/2-ubiquitous calpains pathway attenuates experimental pulmonary fibrosis in vivo and in vitro. Exp Cell Res 2020;391:111886. [PMID: 32017927 DOI: 10.1016/j.yexcr.2020.111886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021;87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Reference Citation Analysis]
11 Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harb Perspect Med 2020;10:a037366. [PMID: 31501266 DOI: 10.1101/cshperspect.a037366] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
12 Jiang Y, Zhou J, Hou D, Luo P, Gao H, Ma Y, Chen YS, Li L, Zou D, Zhang H, Zhang Y, Jing Z. Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-β1/Smad signaling pathway. J Pathol 2019;249:26-38. [PMID: 30953361 DOI: 10.1002/path.5278] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
13 Wang J, Liang S, Duan X. Molecular mechanism of miR-153 inhibiting migration, invasion and epithelial-mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF-β) signaling pathway. J Cell Biochem 2019;120:9539-46. [PMID: 30525231 DOI: 10.1002/jcb.28230] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
14 Feng F, Cheng P, Xu S, Li N, Wang H, Zhang Y, Wang W. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact 2020;319:109024. [PMID: 32097614 DOI: 10.1016/j.cbi.2020.109024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Li WQ, Zhang JP, Wang YY, Li XZ, Sun L. MicroRNA-422a functions as a tumor suppressor in non-small cell lung cancer through SULF2-mediated TGF-β/SMAD signaling pathway. Cell Cycle 2019;18:1727-44. [PMID: 31204561 DOI: 10.1080/15384101.2019.1632135] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
16 Gifre-Renom L, Carratalá JV, Parés S, Sánchez-García L, Ferrer-Miralles N, Villaverde A, Bach A, Garcia-Fruitós E, Arís A. Potential of MMP-9 based nanoparticles at optimizing the cow dry period: pulling apart the effects of MMP-9 and nanoparticles. Sci Rep 2020;10:11299. [PMID: 32647244 DOI: 10.1038/s41598-020-67176-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Parés S, Cano-Garrido O, Bach A, Ferrer-Miralles N, Villaverde A, Garcia-Fruitós E, Arís A. The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off. Animals (Basel) 2021;11:3415. [PMID: 34944191 DOI: 10.3390/ani11123415] [Reference Citation Analysis]
18 Wang LP, Lin J, Ma XQ, Xu DY, Shi CF, Wang W, Jiang XJ. Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis. J Exp Clin Cancer Res 2021;40:177. [PMID: 34039401 DOI: 10.1186/s13046-021-01973-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Liu YJ, Zeng SH, Hu YD, Zhang YH, Li JP. Overexpression of NREP Promotes Migration and Invasion in Gastric Cancer Through Facilitating Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2021;9:746194. [PMID: 34746143 DOI: 10.3389/fcell.2021.746194] [Reference Citation Analysis]
20 Pang X, Shao L, Nie X, Yan H, Li C, Yeo AJ, Lavin MF, Xia Q, Shao H, Yu G, Jia Q, Peng C. Emodin attenuates silica-induced lung injury by inhibition of inflammation, apoptosis and epithelial-mesenchymal transition. Int Immunopharmacol 2021;91:107277. [PMID: 33352442 DOI: 10.1016/j.intimp.2020.107277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Su C, Tao D, Ren L, Guo S, Zhou W, Wu H, Jiang H. The effective role of sodium copper chlorophyllin on the dysfunction of bone marrow mesenchymal stem cells in multiple myeloma via regulating TGF-β1. Tissue Cell 2020;67:101406. [PMID: 32835939 DOI: 10.1016/j.tice.2020.101406] [Reference Citation Analysis]
22 Wang H, Wang X, Li X, Wang Q, Qing S, Zhang Y, Gao MQ. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis. FEBS J 2019;286:1780-95. [PMID: 30771271 DOI: 10.1111/febs.14783] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
23 Qiu J, Wang Y, Guo W, Xu L, Mou Y, Cui L, Han F, Sun Y. Role of TGF-β1-mediated epithelial-mesenchymal transition in the pathogenesis of tympanosclerosis. Exp Ther Med 2021;21:6. [PMID: 33235615 DOI: 10.3892/etm.2020.9438] [Reference Citation Analysis]
24 Wu Y, Sun Y, Zhang Z, Chen J, Dong G. Effects of Peptidoglycan, Lipoteichoic Acid and Lipopolysaccharide on Inflammation, Proliferation and Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Toxins (Basel) 2020;12:E497. [PMID: 32748871 DOI: 10.3390/toxins12080497] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhao Y, Yang Z, Miao Y, Fan M, Zhao X, Wei Q, Ma B. G protein-coupled estrogen receptor 1 inhibits the epithelial-mesenchymal transition of goat mammary epithelial cells via NF-κB signalling pathway. Reprod Domest Anim 2021;56:1137-44. [PMID: 34021926 DOI: 10.1111/rda.13957] [Reference Citation Analysis]
26 Mitz CA, Viloria-Petit AM. TGF-beta signalling in bovine mammary gland involution and a comparative assessment of MAC-T and BME-UV1 cells as in vitro models for its study. PeerJ 2019;6:e6210. [PMID: 30671288 DOI: 10.7717/peerj.6210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Song Y, Lv S, Wang F, Liu X, Cheng J, Liu S, Wang X, Chen W, Guan G, Liu G, Peng C. Overexpression of BMP‑7 reverses TGF‑β1‑induced epithelial‑mesenchymal transition by attenuating the Wnt3/β‑catenin and TGF-β1/Smad2/3 signaling pathways in HK‑2 cells. Mol Med Rep 2020;21:833-41. [PMID: 31974602 DOI: 10.3892/mmr.2019.10875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
28 Imaizumi T, Kurosaka D, Tanaka U, Sakai D, Fukuda K, Sanbe A. Topical administration of a ROCK inhibitor prevents anterior subcapsular cataract induced by UV-B irradiation. Exp Eye Res 2019;181:145-9. [PMID: 30690025 DOI: 10.1016/j.exer.2019.01.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Cai X, Wang L, Wang X, Hou F. Silence of IGFBP7 suppresses apoptosis and epithelial mesenchymal transformation of high glucose induced-podocytes. Exp Ther Med 2018;16:1095-102. [PMID: 30112052 DOI: 10.3892/etm.2018.6298] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
30 Li J, Jiang ZZ, Li YY, Tang WT, Yin J, Long XP. LncRNA CHRF promotes TGF-β1 induced EMT in alveolar epithelial cells by inhibiting miR-146a up-regulating L1CAM expression. Exp Lung Res 2021;47:198-209. [PMID: 33754922 DOI: 10.1080/01902148.2021.1891354] [Reference Citation Analysis]
31 Zhang MK, Shang QJ, Li SY, Wang B, Liu G, Wang ZL. TGF-β1: is it related to the stiffness of breast lesions and can it predict axillary lymph node metastasis? Ann Transl Med 2021;9:870. [PMID: 34164504 DOI: 10.21037/atm-21-1705] [Reference Citation Analysis]
32 Tong H, Yin H, Hossain MA, Wang Y, Wu F, Dong X, Gao S, Zhan K, He W. Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem 2019;120:5118-27. [PMID: 30320898 DOI: 10.1002/jcb.27788] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
33 Yang X, Hu J, Shi C, Dai J. Activation of TGF-β1 Pathway by SCUBE3 Regulates TWIST1 Expression and Promotes Breast Cancer Progression. Cancer Biotherapy and Radiopharmaceuticals 2020;35:120-8. [DOI: 10.1089/cbr.2019.2990] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Xu T, Pan L, Li L, Hu S, Zhou H, Yang C, Yang J, Li H, Liu Y, Meng X, Li J. MicroRNA-708 modulates Hepatic Stellate Cells activation and enhances extracellular matrix accumulation via direct targeting TMEM88. J Cell Mol Med 2020;24:7127-40. [PMID: 32463570 DOI: 10.1111/jcmm.15119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Kong X, Bu J, Chen J, Ni B, Fu B, Zhou F, Pang S, Zhang J, Xu S, He C. PIGF and Flt-1 on the surface of macrophages induces the production of TGF-β1 by polarized tumor-associated macrophages to promote lung cancer angiogenesis. Eur J Pharmacol 2021;912:174550. [PMID: 34610279 DOI: 10.1016/j.ejphar.2021.174550] [Reference Citation Analysis]
36 Wang Z, Zhang Y, Wang H, Wang X, Yu Z, Zhao L. Synthesis and Biological Evaluation of 4-(pyridine-4-oxy)-3-(tetrahydro-2H-pyran-4-yl)-pyrazole Derivatives as Novel, Potent of ALK5 Receptor Inhibitors. Bioorganic & Medicinal Chemistry Letters 2022. [DOI: 10.1016/j.bmcl.2022.128552] [Reference Citation Analysis]
37 Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, Hong W, Yang X. Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. Eur J Med Chem 2020;191:112154. [PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
38 Liu H, Zhao Y, Wu Y, Yan Y, Zhao X, Wei Q, Ma B. NF-κB-Dependent Snail Expression Promotes Epithelial-Mesenchymal Transition in Mastitis. Animals (Basel) 2021;11:3422. [PMID: 34944199 DOI: 10.3390/ani11123422] [Reference Citation Analysis]