BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract 2013;22:103-30. [PMID: 23075911 DOI: 10.1159/000341715] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Rai S, Gupta TP, Shaki O, Kale A. Hydrogen Peroxide: Its Use in an Extensive Acute Wound to Promote Wound Granulation and Infection Control - Is it Better Than Normal Saline? Int J Low Extrem Wounds 2021;:15347346211032555. [PMID: 34338578 DOI: 10.1177/15347346211032555] [Reference Citation Analysis]
2 Rajic Z, Tovmasyan A, de Santana OL, Peixoto IN, Spasojevic I, do Monte SA, Ventura E, Rebouças JS, Batinic-Haberle I. Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP5+, and its alkoxyalkyl analogues. J Inorg Biochem 2017;169:50-60. [PMID: 28131001 DOI: 10.1016/j.jinorgbio.2017.01.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
3 Weitzel DH, Tovmasyan A, Ashcraft KA, Rajic Z, Weitner T, Liu C, Li W, Buckley AF, Prasad MR, Young KH, Rodriguiz RM, Wetsel WC, Peters KB, Spasojevic I, Herndon JE 2nd, Batinic-Haberle I, Dewhirst MW. Radioprotection of the brain white matter by Mn(III) n-Butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol Cancer Ther 2015;14:70-9. [PMID: 25319393 DOI: 10.1158/1535-7163.MCT-14-0343] [Cited by in Crossref: 50] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
4 Weitner T, Kos I, Mandić Z, Batinić-Haberle I, Biruš M. Acid-base and electrochemical properties of manganese meso(ortho- and meta-N-ethylpyridyl)porphyrins: voltammetric and chronocoulometric study of protolytic and redox equilibria. Dalton Trans 2013;42:14757-65. [PMID: 23933742 DOI: 10.1039/c3dt50767j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
5 Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021;10:130. [PMID: 33477607 DOI: 10.3390/antiox10010130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Soldevila-Barreda JJ, Sadler PJ. Approaches to the design of catalytic metallodrugs. Curr Opin Chem Biol 2015;25:172-83. [PMID: 25765750 DOI: 10.1016/j.cbpa.2015.01.024] [Cited by in Crossref: 102] [Cited by in F6Publishing: 85] [Article Influence: 14.6] [Reference Citation Analysis]
7 Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018;29:749-91. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
8 Gad SC, Sullivan DW Jr, Spasojevic I, Mujer CV, Spainhour CB, Crapo JD. Nonclinical Safety and Toxicokinetics of MnTnBuOE-2-PyP5+ (BMX-001). Int J Toxicol 2016;35:438-53. [PMID: 27098749 DOI: 10.1177/1091581816642766] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
9 Delmastro-greenwood MM, Tse HM, Piganelli JD. Effects of Metalloporphyrins on Reducing Inflammation and Autoimmunity. Antioxidants & Redox Signaling 2014;20:2465-77. [DOI: 10.1089/ars.2013.5257] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
10 Mizrahi A, Zilbermann I, Maimon E, Cohen H, Meyerstein D. Different oxidation mechanisms of Mn II (polyphosphate) n by the radicals and. Journal of Coordination Chemistry 2016;69:1709-21. [DOI: 10.1080/00958972.2016.1190451] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
11 Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 2015;22:686-729. [PMID: 25546574 DOI: 10.1089/ars.2014.5952] [Cited by in Crossref: 119] [Cited by in F6Publishing: 110] [Article Influence: 17.0] [Reference Citation Analysis]
12 Liochev SI. Superoxide dismutase mimics, other mimics, antioxidants, prooxidants, and related matters. Chem Res Toxicol 2013;26:1312-9. [PMID: 23905839 DOI: 10.1021/tx4001623] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
13 Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019;8:E490. [PMID: 31627290 DOI: 10.3390/antiox8100490] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
14 Carroll D, St Clair DK. Hematopoietic Stem Cells: Normal Versus Malignant. Antioxid Redox Signal 2018;29:1612-32. [PMID: 29084438 DOI: 10.1089/ars.2017.7326] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
15 Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015;5:43-65. [PMID: 25827425 DOI: 10.1016/j.redox.2015.01.017] [Cited by in Crossref: 106] [Cited by in F6Publishing: 81] [Article Influence: 15.1] [Reference Citation Analysis]
16 Hitomi Y, Ekawa T, Kodera M. Water Proton Relaxivity, Superoxide Dismutase-like Activity, and Cytotoxicity of a Manganese(III) Porphyrin Having Four Poly(ethylene glycol) Tails. Chem Lett 2014;43:732-4. [DOI: 10.1246/cl.140029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
17 Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal 2014;20:2416-36. [PMID: 23964890 DOI: 10.1089/ars.2013.5576] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
18 Abedi M, Nabid MR, Shirvani-arani S, Bahrami-samani A, Vahidfar N. Preparation and biological evaluation of a carrier free 90yttrium labelled porphyrin as a possible agent for targeted therapy of tumor. J Porphyrins Phthalocyanines 2017;21:24-30. [DOI: 10.1142/s1088424617300038] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Cline JM, Dugan G, Bourland JD, Perry DL, Stitzel JD, Weaver AA, Jiang C, Tovmasyan A, Owzar K, Spasojevic I, Batinic-Haberle I, Vujaskovic Z. Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 2018;7:E40. [PMID: 29518913 DOI: 10.3390/antiox7030040] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
20 Tovmasyan A, Maia CG, Weitner T, Carballal S, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Ferrer-Sueta G, Radi R, Reboucas JS, Spasojevic I, Benov L, Batinic-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med 2015;86:308-21. [PMID: 26026699 DOI: 10.1016/j.freeradbiomed.2015.05.018] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
21 Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxidants & Redox Signaling 2020;33:247-62. [DOI: 10.1089/ars.2020.8093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Tovmasyan A, Babayan N, Poghosyan D, Margaryan K, Harutyunyan B, Grigoryan R, Sarkisyan N, Spasojevic I, Mamyan S, Sahakyan L, Aroutiounian R, Ghazaryan R, Gasparyan G. Novel amphiphilic cationic porphyrin and its Ag(II) complex as potential anticancer agents. J Inorg Biochem 2014;140:94-103. [PMID: 25086237 DOI: 10.1016/j.jinorgbio.2014.06.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
23 Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food and Chemical Toxicology 2018;112:320-31. [DOI: 10.1016/j.fct.2018.01.002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 92] [Article Influence: 27.5] [Reference Citation Analysis]
24 Tovmasyan A, Bueno-Janice JC, Jaramillo MC, Sampaio RS, Reboucas JS, Kyui N, Benov L, Deng B, Huang TT, Tome ME, Spasojevic I, Batinic-Haberle I. Radiation-Mediated Tumor Growth Inhibition Is Significantly Enhanced with Redox-Active Compounds That Cycle with Ascorbate. Antioxid Redox Signal 2018;29:1196-214. [PMID: 29390861 DOI: 10.1089/ars.2017.7218] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
25 Batinic-haberle I, Tovmasyan A. Superoxide dismutase mimics and other redox-active therapeutics. In: Armstrong D, Stratton RD, editors. Oxidative Stress and Antioxidant Protection. Hoboken: John Wiley & Sons, Inc; 2016. pp. 415-70. [DOI: 10.1002/9781118832431.ch27] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Archambeau JO, Tovmasyan A, Pearlstein RD, Crapo JD, Batinic-Haberle I. Superoxide dismutase mimic, MnTE-2-PyP(5+) ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol 2013;1:599-607. [PMID: 24363995 DOI: 10.1016/j.redox.2013.10.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
27 Li J, Wei J, Gao Z, Yin G, Li H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics 2021;13:mfab005. [PMID: 33576808 DOI: 10.1093/mtomcs/mfab005] [Reference Citation Analysis]
28 Chatterjee A, Zhu Y, Tong Q, Kosmacek EA, Lichter EZ, Oberley-Deegan RE. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage. Antioxidants (Basel) 2018;7:E21. [PMID: 29370088 DOI: 10.3390/antiox7010021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
29 Xie H, Gu S, Zhang J, Hu Q, Yu X, Kong J. Novel PEI–AuNPs–Mn III PPIX nanocomposite with enhanced peroxidase-like catalytic activity in aqueous media. Comptes Rendus Chimie 2018;21:104-11. [DOI: 10.1016/j.crci.2017.11.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Allen BD, Limoli CL. Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radic Biol Med 2022;178:189-201. [PMID: 34875340 DOI: 10.1016/j.freeradbiomed.2021.12.002] [Reference Citation Analysis]
31 Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H2O2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. Oxid Med Cell Longev 2021;2021:6653790. [PMID: 33815656 DOI: 10.1155/2021/6653790] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
32 Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018;29:1691-724. [PMID: 29926755 DOI: 10.1089/ars.2017.7453] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 13.8] [Reference Citation Analysis]
33 Alonso-Castro AJ, Zapata-Morales JR, Hernández-Munive A, Campos-Xolalpa N, Pérez-Gutiérrez S, Pérez-González C. Synthesis, antinociceptive and anti-inflammatory effects of porphyrins. Bioorg Med Chem 2015;23:2529-37. [PMID: 25863493 DOI: 10.1016/j.bmc.2015.03.043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kubota R, Asayama S, Kawakami H. Catalytic antioxidants for therapeutic medicine. J Mater Chem B 2019;7:3165-91. [DOI: 10.1039/c8tb03365j] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
35 Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS, Batinic-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res 2014;48:1426-42. [PMID: 25185063 DOI: 10.3109/10715762.2014.960865] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
36 Patel A, Kosmacek EA, Fisher KW, Goldner W, Oberley-Deegan RE. MnTnBuOE-2-PyP treatment protects from radioactive iodine (I-131) treatment-related side effects in thyroid cancer. Radiat Environ Biophys 2020;59:99-109. [PMID: 31728622 DOI: 10.1007/s00411-019-00820-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
37 Haghnejad Azar A, Oryan S, Bohlooli S, Panahpour H. Alpha-Tocopherol Reduces Brain Edema and Protects Blood-Brain Barrier Integrity following Focal Cerebral Ischemia in Rats. Med Princ Pract 2017;26:17-22. [PMID: 27606423 DOI: 10.1159/000450648] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
38 Costa JG, Saraiva N, Guerreiro PS, Louro H, Silva MJ, Miranda JP, Castro M, Batinic-haberle I, Fernandes AS, Oliveira NG. Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints. Food and Chemical Toxicology 2016;87:65-76. [DOI: 10.1016/j.fct.2015.11.018] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 11.0] [Reference Citation Analysis]
39 Haber A, Gross Z. Catalytic antioxidant therapy by metallodrugs: lessons from metallocorroles. Chem Commun 2015;51:5812-27. [DOI: 10.1039/c4cc08715a] [Cited by in Crossref: 37] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
40 Yang B, Yao H, Yang J, Chen C, Guo Y, Fu H, Shi J. In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. J Am Chem Soc 2021. [PMID: 34881869 DOI: 10.1021/jacs.1c09993] [Reference Citation Analysis]
41 Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014;20:2372-415. [PMID: 23875805 DOI: 10.1089/ars.2012.5147] [Cited by in Crossref: 152] [Cited by in F6Publishing: 136] [Article Influence: 16.9] [Reference Citation Analysis]
42 Girek B, Sliwa W. Hybrids of cationic porphyrins with nanocarbons. J Incl Phenom Macrocycl Chem 2015;82:283-300. [PMID: 26167127 DOI: 10.1007/s10847-015-0485-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
43 Slosky LM, Vanderah TW. Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat 2015;25:443-66. [PMID: 25576197 DOI: 10.1517/13543776.2014.1000862] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
44 Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CG, Reboucas JS, Radi R, Spasojevic I, Benov L, Batinic-Haberle I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 2014;53:11467-83. [PMID: 25333724 DOI: 10.1021/ic501329p] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
45 Mapuskar KA, Anderson CM, Spitz DR, Batinic-Haberle I, Allen BG, E Oberley-Deegan R. Utilizing Superoxide Dismutase Mimetics to Enhance Radiation Therapy Response While Protecting Normal Tissues. Semin Radiat Oncol 2019;29:72-80. [PMID: 30573187 DOI: 10.1016/j.semradonc.2018.10.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
46 Weitner T, Kos I, Sheng H, Tovmasyan A, Reboucas JS, Fan P, Warner DS, Vujaskovic Z, Batinic-Haberle I, Spasojevic I. Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic Biol Med 2013;58:73-80. [PMID: 23328731 DOI: 10.1016/j.freeradbiomed.2013.01.006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
47 Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014;20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
48 Zhu G, Wang Q, Lu S, Niu Y. Hydrogen Peroxide: A Potential Wound Therapeutic Target? Med Princ Pract 2017;26:301-8. [PMID: 28384636 DOI: 10.1159/000475501] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 9.2] [Reference Citation Analysis]
49 Harmandar K, Tunç G, Küçük T, Gürek AG, Atilla D. Asymmetrically meso -substituted porphyrin derivative containing the triazole group: Synthesis, characterization and photo-physicochemical properties. J Porphyrins Phthalocyanines 2022;26:78-83. [DOI: 10.1142/s1088424621500875] [Reference Citation Analysis]
50 Anselmo W, Branchetti E, Grau JB, Li G, Ayoub S, Lai EK, Rioux N, Tovmasyan A, Fortier JH, Sacks MS, Batinic-Haberle I, Hazen SL, Levy RJ, Ferrari G. Porphyrin-Based SOD Mimic MnTnBu OE -2-PyP5+ Inhibits Mechanisms of Aortic Valve Remodeling in Human and Murine Models of Aortic Valve Sclerosis. J Am Heart Assoc 2018;7:e007861. [PMID: 30371255 DOI: 10.1161/JAHA.117.007861] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
51 Batinić-haberle I, Tovmasyan A, Spasojević I. Mn Porphyrin-Based Redox-Active Therapeutics. In: Batinić-haberle I, Rebouças JS, Spasojević I, editors. Redox-Active Therapeutics. Cham: Springer International Publishing; 2016. pp. 165-212. [DOI: 10.1007/978-3-319-30705-3_8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
52 Tovmasyan A, Sampaio RS, Boss MK, Bueno-Janice JC, Bader BH, Thomas M, Reboucas JS, Orr M, Chandler JD, Go YM, Jones DP, Venkatraman TN, Haberle S, Kyui N, Lascola CD, Dewhirst MW, Spasojevic I, Benov L, Batinic-Haberle I. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radic Biol Med 2015;89:1231-47. [PMID: 26496207 DOI: 10.1016/j.freeradbiomed.2015.10.416] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 6.3] [Reference Citation Analysis]
53 Zhang J, Cui Z, Zhu Y, Zhu Z, Qi Q, Wang Q. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol Adv 2022;:107904. [PMID: 34999139 DOI: 10.1016/j.biotechadv.2021.107904] [Reference Citation Analysis]
54 Gauter-Fleckenstein B, Reboucas JS, Fleckenstein K, Tovmasyan A, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+). Redox Biol 2014;2:400-10. [PMID: 24624330 DOI: 10.1016/j.redox.2013.12.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
55 Miriyala S, Thippakorn C, Chaiswing L, Xu Y, Noel T, Tovmasyan A, Batinic-Haberle I, Vander Kooi CW, Chi W, Latif AA, Panchatcharam M, Prachayasittikul V, Butterfield DA, Vore M, Moscow J, St Clair DK. Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radic Biol Med 2016;91:68-80. [PMID: 26689472 DOI: 10.1016/j.freeradbiomed.2015.12.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
56 Evans MK, Tovmasyan A, Batinic-Haberle I, Devi GR. Mn porphyrin in combination with ascorbate acts as a pro-oxidant and mediates caspase-independent cancer cell death. Free Radic Biol Med 2014;68:302-14. [PMID: 24334253 DOI: 10.1016/j.freeradbiomed.2013.11.031] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 6.0] [Reference Citation Analysis]
57 Medhora M, Gao F, Wu Q, Molthen RC, Jacobs ER, Moulder JE, Fish BL. Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 2014;182:545-55. [PMID: 25361399 DOI: 10.1667/RR13425.1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
58 Tovmasyan A, Weitner T, Sheng H, Lu M, Rajic Z, Warner DS, Spasojevic I, Reboucas JS, Benov L, Batinic-Haberle I. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg Chem 2013;52:5677-91. [PMID: 23646875 DOI: 10.1021/ic3012519] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
59 Lindsay SE, Lindsay HG, Kallet J, Weaver MR, Curran-Everett D, Crapo JD, Regan EA. MnTE-2-PyP disrupts Staphylococcus aureus biofilms in a novel fracture model. J Orthop Res 2020. [PMID: 33347639 DOI: 10.1002/jor.24967] [Reference Citation Analysis]
60 Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021;26:1844. [PMID: 33805942 DOI: 10.3390/molecules26071844] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Shrishrimal S, Chatterjee A, Kosmacek EA, Davis PJ, McDonald JT, Oberley-Deegan RE. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic Biol Med 2020;152:255-70. [PMID: 32222469 DOI: 10.1016/j.freeradbiomed.2020.03.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
62 Leu D, Spasojevic I, Nguyen H, Deng B, Tovmasyan A, Weitner T, Sampaio RS, Batinic-Haberle I, Huang TT. CNS bioavailability and radiation protection of normal hippocampal neurogenesis by a lipophilic Mn porphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5. Redox Biol 2017;12:864-71. [PMID: 28454069 DOI: 10.1016/j.redox.2017.04.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
63 Li AM, Martins J, Tovmasyan A, Valentine JS, Batinic-Haberle I, Spasojevic I, Gralla EB. Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds in Saccharomyces cerevisiae. Redox Biol 2014;3:1-6. [PMID: 25462059 DOI: 10.1016/j.redox.2014.09.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
64 Nielsen MT, Madsen KM, Seppälä S, Christensen U, Riisberg L, Harrison SJ, Møller BL, Nørholm MH. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth Biol 2015;4:274-82. [PMID: 24905856 DOI: 10.1021/sb500055u] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]