BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cell Physiol Biochem 2007;20:947-56. [PMID: 17982277 DOI: 10.1159/000110455] [Cited by in Crossref: 305] [Cited by in F6Publishing: 308] [Article Influence: 21.8] [Reference Citation Analysis]
Number Citing Articles
1 Guillot-Sestier MV, Town T. Innate immunity in Alzheimer's disease: a complex affair. CNS Neurol Disord Drug Targets 2013;12:593-607. [PMID: 23574177 DOI: 10.2174/1871527311312050008] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 8.0] [Reference Citation Analysis]
2 Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019;23:865-82. [PMID: 31580163 DOI: 10.1080/14728222.2019.1676416] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
3 Keene CD, Chang R, Stephen C, Nivison M, Nutt SE, Look A, Breyer RM, Horner PJ, Hevner R, Montine TJ. Protection of hippocampal neurogenesis from toll-like receptor 4-dependent innate immune activation by ablation of prostaglandin E2 receptor subtype EP1 or EP2. Am J Pathol 2009;174:2300-9. [PMID: 19389932 DOI: 10.2353/ajpath.2009.081153] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
4 Abulfadl Y, El-maraghy N, Ahmed AE, Nofal S, Abdel-mottaleb Y, Badary O. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum Exp Toxicol 2018;37:1092-104. [DOI: 10.1177/0960327118755256] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
5 Michaud JP, Richard KL, Rivest S. MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer's disease. Mol Neurodegener 2011;6:5. [PMID: 21235801 DOI: 10.1186/1750-1326-6-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 3.6] [Reference Citation Analysis]
6 Rezaeian L, Kalalian-Moghaddam H, Mohseni F, Khaksari M, Rafaiee R. Effects of berberine hydrochloride on methamphetamine-induced anxiety behaviors and relapse in rats. Iran J Basic Med Sci 2020;23:1480-8. [PMID: 33235706 DOI: 10.22038/ijbms.2020.47285.10884] [Reference Citation Analysis]
7 Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Progress in Neurobiology 2015;126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
8 Carty M, Bowie AG. Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochem Pharmacol 2011;81:825-37. [PMID: 21241665 DOI: 10.1016/j.bcp.2011.01.003] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 9.3] [Reference Citation Analysis]
9 Painter MM, Atagi Y, Liu CC, Rademakers R, Xu H, Fryer JD, Bu G. TREM2 in CNS homeostasis and neurodegenerative disease. Mol Neurodegener 2015;10:43. [PMID: 26337043 DOI: 10.1186/s13024-015-0040-9] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 12.7] [Reference Citation Analysis]
10 Niu F, Liao K, Hu G, Moidunny S, Roy S, Buch S. HIV Tat-Mediated Induction of Monocyte Transmigration Across the Blood-Brain Barrier: Role of Chemokine Receptor CXCR3. Front Cell Dev Biol 2021;9:724970. [PMID: 34527676 DOI: 10.3389/fcell.2021.724970] [Reference Citation Analysis]
11 Yin GN, Jeon H, Lee S, Lee HW, Cho JY, Suk K. Role of soluble CD14 in cerebrospinal fluid as a regulator of glial functions. J Neurosci Res 2009;87:2578-90. [PMID: 19360901 DOI: 10.1002/jnr.22081] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
12 Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, Neher JJ, Tremblay ME, Combs CK. Inflammatory mechanisms in neurodegeneration. J Neurochem 2019;149:562-81. [PMID: 30702751 DOI: 10.1111/jnc.14674] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 18.5] [Reference Citation Analysis]
13 Fujikura M, Iwahara N, Hisahara S, Kawamata J, Matsumura A, Yokokawa K, Saito T, Manabe T, Matsushita T, Suzuki S, Shimohama S, Ouchi Y. CD14 and Toll-Like Receptor 4 Promote Fibrillar Aβ42 Uptake by Microglia Through A Clathrin-Mediated Pathway. JAD 2019;68:323-37. [DOI: 10.3233/jad-180904] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
14 Gerring ZF, Lupton MK, Edey D, Gamazon ER, Derks EM. An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer's disease. Alzheimers Res Ther 2020;12:43. [PMID: 32299494 DOI: 10.1186/s13195-020-00611-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
15 Hao W, Liu Y, Liu S, Walter S, Grimm MO, Kiliaan AJ, Penke B, Hartmann T, Rübe CE, Menger MD, Fassbender K. Myeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer's disease-related symptoms and pathology. Brain 2011;134:278-92. [PMID: 21115468 DOI: 10.1093/brain/awq325] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 3.4] [Reference Citation Analysis]
16 Heneka MT, Rodríguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res Rev 2010;63:189-211. [PMID: 19944719 DOI: 10.1016/j.brainresrev.2009.11.004] [Cited by in Crossref: 185] [Cited by in F6Publishing: 172] [Article Influence: 15.4] [Reference Citation Analysis]
17 Lin LF, Luo HM. Screening of treatment targets for Alzheimer's disease from the molecular mechanisms of impairment by β-amyloid aggregation and tau hyperphosphorylation. Neurosci Bull 2011;27:53-60. [PMID: 21270904 DOI: 10.1007/s12264-011-1040-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
18 Salminen A, Suuronen T, Kaarniranta K. ROCK, PAK, and Toll of synapses in Alzheimer's disease. Biochem Biophys Res Commun 2008;371:587-90. [PMID: 18466762 DOI: 10.1016/j.bbrc.2008.04.148] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 3.5] [Reference Citation Analysis]
19 Wang L, Tian Y, Yu J, Chen W, Wu Z, Zhang Q, Zhang W, Tan L. Association between late-onset Alzheimer's disease and microsatellite polymorphisms in intron II of the human toll-like receptor 2 gene. Neuroscience Letters 2011;489:164-7. [DOI: 10.1016/j.neulet.2010.12.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
20 Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2016;310:H404-15. [PMID: 26637556 DOI: 10.1152/ajpheart.00247.2015] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 10.0] [Reference Citation Analysis]
21 Genung NE, Guckian KM. Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). Prog Med Chem 2017;56:117-63. [PMID: 28314411 DOI: 10.1016/bs.pmch.2016.11.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
22 Račková L. Cholesterol load of microglia: contribution of membrane architecture changes to neurotoxic power? Arch Biochem Biophys 2013;537:91-103. [PMID: 23831332 DOI: 10.1016/j.abb.2013.06.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
23 Bell MT, Puskas F, Agoston VA, Cleveland JC, Freeman KA, Gamboni F, Herson PS, Meng X, Smith PD, Weyant MJ, Fullerton DA, Reece TB. Toll-Like Receptor 4–Dependent Microglial Activation Mediates Spinal Cord Ischemia–Reperfusion Injury. Circulation 2013;128. [DOI: 10.1161/circulationaha.112.000024] [Cited by in Crossref: 59] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
24 Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K. TLR2 is a primary receptor for Alzheimer's amyloid β peptide to trigger neuroinflammatory activation. J Immunol 2012;188:1098-107. [PMID: 22198949 DOI: 10.4049/jimmunol.1101121] [Cited by in Crossref: 226] [Cited by in F6Publishing: 226] [Article Influence: 22.6] [Reference Citation Analysis]
25 Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918-934. [PMID: 20303880 DOI: 10.1016/j.cell.2010.02.016] [Cited by in Crossref: 1921] [Cited by in F6Publishing: 1858] [Article Influence: 174.6] [Reference Citation Analysis]
26 Yuan C, Aierken A, Xie Z, Li N, Zhao J, Qing H. The age-related microglial transformation in Alzheimer's disease pathogenesis. Neurobiol Aging 2020;92:82-91. [PMID: 32408056 DOI: 10.1016/j.neurobiolaging.2020.03.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
27 Zhang L, Li YJ, Wu XY, Hong Z, Wei WS. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J Neurochem. 2015;132:713-723. [PMID: 25545945 DOI: 10.1111/jnc.13021] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 10.8] [Reference Citation Analysis]
28 Solito E, Sastre M. Microglia function in Alzheimer's disease. Front Pharmacol 2012;3:14. [PMID: 22363284 DOI: 10.3389/fphar.2012.00014] [Cited by in Crossref: 187] [Cited by in F6Publishing: 176] [Article Influence: 20.8] [Reference Citation Analysis]
29 Quan W, Luo Q, Hao W, Tomic I, Furihata T, Schulz-Schäffer W, Menger MD, Fassbender K, Liu Y. Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP/PS1-transgenic mice. Glia 2021;69:1987-2005. [PMID: 33934399 DOI: 10.1002/glia.24007] [Reference Citation Analysis]
30 Noailles A, Kutsyr O, Maneu V, Ortuño-Lizarán I, Campello L, de Juan E, Gómez-Vicente V, Cuenca N, Lax P. The Absence of Toll-Like Receptor 4 Mildly Affects the Structure and Function in the Adult Mouse Retina. Front Cell Neurosci 2019;13:59. [PMID: 30873007 DOI: 10.3389/fncel.2019.00059] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Selles MC, Oliveira MM, Ferreira ST. Brain Inflammation Connects Cognitive and Non-Cognitive Symptoms in Alzheimer's Disease. J Alzheimers Dis 2018;64:S313-27. [PMID: 29710716 DOI: 10.3233/JAD-179925] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
32 Walter L, Neumann H. Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 2009;31:513-25. [DOI: 10.1007/s00281-009-0180-5] [Cited by in Crossref: 99] [Cited by in F6Publishing: 91] [Article Influence: 8.3] [Reference Citation Analysis]
33 Zhan X, Stamova B, Sharp FR. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Front Aging Neurosci 2018;10:42. [PMID: 29520228 DOI: 10.3389/fnagi.2018.00042] [Cited by in Crossref: 94] [Cited by in F6Publishing: 84] [Article Influence: 31.3] [Reference Citation Analysis]
34 Colín-González AL, Ali SF, Túnez I, Santamaría A. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochem Int 2015;89:83-91. [PMID: 26122973 DOI: 10.1016/j.neuint.2015.06.011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 7.7] [Reference Citation Analysis]
35 Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016;55:166-78. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
36 Yan L, Liang J, Zhou Y, Huang J, Zhang T, Wang X, Yin H. Switch Off "Parallel Circuit": Insight of New Strategy of Simultaneously Suppressing Canonical and Noncanonical Inflammation Activation in Endotoxemic Mice. Adv Biosyst 2020;4:e2000037. [PMID: 32419296 DOI: 10.1002/adbi.202000037] [Reference Citation Analysis]
37 Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B. Caspase signalling controls microglia activation and neurotoxicity. Nature 2011;472:319-24. [PMID: 21389984 DOI: 10.1038/nature09788] [Cited by in Crossref: 341] [Cited by in F6Publishing: 356] [Article Influence: 34.1] [Reference Citation Analysis]
38 Ding BJ, Ma WW, He LL, Zhou X, Yuan LH, Yu HL, Feng JF, Xiao R. Soybean isoflavone alleviates β-amyloid 1-42 induced inflammatory response to improve learning and memory ability by down regulation of Toll-like receptor 4 expression and nuclear factor-κB activity in rats. Int J Dev Neurosci 2011;29:537-42. [PMID: 21515354 DOI: 10.1016/j.ijdevneu.2011.04.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 4.8] [Reference Citation Analysis]
39 Vuono R, Kouli A, Legault EM, Chagnon L, Allinson KS, La Spada A, Biunno I, Barker RA, Drouin-Ouellet J; REGISTRY Investigators of the European Huntington's Disease Network. Association Between Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Genetic Variants and Clinical Progression of Huntington's Disease. Mov Disord 2020;35:401-8. [PMID: 31724242 DOI: 10.1002/mds.27911] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 von Bernhardi R, Heredia F, Salgado N, Muñoz P. Microglia Function in the Normal Brain. Adv Exp Med Biol 2016;949:67-92. [PMID: 27714685 DOI: 10.1007/978-3-319-40764-7_4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
41 Katsel P, Tan W, Haroutunian V. Gain in brain immunity in the oldest-old differentiates cognitively normal from demented individuals. PLoS One 2009;4:e7642. [PMID: 19865478 DOI: 10.1371/journal.pone.0007642] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 3.1] [Reference Citation Analysis]
42 Casali BT, Reed-Geaghan EG. Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells 2021;10:957. [PMID: 33924200 DOI: 10.3390/cells10040957] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
43 Steiner L, Gold M, Mengel D, Dodel R, Bach JP. The endogenous α7 nicotinic acetylcholine receptor antagonist kynurenic acid modulates amyloid-β-induced inflammation in BV-2 microglial cells. J Neurol Sci 2014;344:94-9. [PMID: 25064444 DOI: 10.1016/j.jns.2014.06.032] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
44 Ajit D, Udan ML, Paranjape G, Nichols MR. Amyloid-beta(1-42) fibrillar precursors are optimal for inducing tumor necrosis factor-alpha production in the THP-1 human monocytic cell line. Biochemistry 2009;48:9011-21. [PMID: 19694428 DOI: 10.1021/bi9003777] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
45 Kawamoto EM, Scavone C, Mattson MP, Camandola S. Curcumin requires tumor necrosis factor α signaling to alleviate cognitive impairment elicited by lipopolysaccharide. Neurosignals 2013;21:75-88. [PMID: 22572473 DOI: 10.1159/000336074] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
46 Hopper AT, Campbell BM, Kao H, Pintchovski SA, Staal RG. Recent Developments in Targeting Neuroinflammation in Disease. Annual Reports in Medicinal Chemistry Volume 47. Elsevier; 2012. pp. 37-53. [DOI: 10.1016/b978-0-12-396492-2.00004-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
47 Timmerman R, Burm SM, Bajramovic JJ. Tissue-specific features of microglial innate immune responses. Neurochem Int 2021;142:104924. [PMID: 33248205 DOI: 10.1016/j.neuint.2020.104924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012;32:2657-66. [PMID: 22357850 DOI: 10.1523/JNEUROSCI.4837-11.2012] [Cited by in Crossref: 109] [Cited by in F6Publishing: 83] [Article Influence: 12.1] [Reference Citation Analysis]
49 Shmuel-Galia L, Klug Y, Porat Z, Charni M, Zarmi B, Shai Y. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. J Biol Chem 2017;292:13415-27. [PMID: 28655763 DOI: 10.1074/jbc.M117.784983] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
50 Panarsky R, Luques L, Weinstock M. Anti-inflammatory effects of ladostigil and its metabolites in aged rat brain and in microglial cells. J Neuroimmune Pharmacol 2012;7:488-98. [PMID: 22454040 DOI: 10.1007/s11481-012-9358-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
51 Wan Y, Wang G, Chen SD. Genetic predisposition to inflammation: a new risk factor of Alzheimer's disease. Neurosci Bull 2008;24:314-22. [PMID: 18839025 DOI: 10.1007/s12264-008-0619-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
52 Chen M, Chang YY, Huang S, Xiao LH, Zhou W, Zhang LY, Li C, Zhou RP, Tang J, Lin L, Du ZY, Zhang K. Aromatic-Turmerone Attenuates LPS-Induced Neuroinflammation and Consequent Memory Impairment by Targeting TLR4-Dependent Signaling Pathway. Mol Nutr Food Res 2018;62. [PMID: 28849618 DOI: 10.1002/mnfr.201700281] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
53 Shi J, Johansson J, Woodling NS, Wang Q, Montine TJ, Andreasson K. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol 2010;184:7207-18. [PMID: 20483760 DOI: 10.4049/jimmunol.0903487] [Cited by in Crossref: 99] [Cited by in F6Publishing: 99] [Article Influence: 9.0] [Reference Citation Analysis]
54 Liu W, Huang S, Li Y, Zhang K, Zheng X. Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway. Food Nutr Res 2019;63. [PMID: 31073286 DOI: 10.29219/fnr.v63.1516] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
55 Li X, Long J, He T, Belshaw R, Scott J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease. Sci Rep 2015;5:12393. [PMID: 26202100 DOI: 10.1038/srep12393] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 11.5] [Reference Citation Analysis]
56 Northrop NA, Yamamoto BK. Neuroimmune pharmacology from a neuroscience perspective. J Neuroimmune Pharmacol 2011;6:10-9. [PMID: 20717737 DOI: 10.1007/s11481-010-9239-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
57 Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 2011;34:269-81. [PMID: 21419501 DOI: 10.1016/j.tins.2011.02.005] [Cited by in Crossref: 311] [Cited by in F6Publishing: 301] [Article Influence: 31.1] [Reference Citation Analysis]
58 Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O'Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica ML, Takata K, Teeling J, Town T, Van Eldik LJ. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016;138:653-93. [PMID: 27248001 DOI: 10.1111/jnc.13667] [Cited by in Crossref: 79] [Cited by in F6Publishing: 78] [Article Influence: 19.8] [Reference Citation Analysis]
59 Kraft AD, Harry GJ. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011;8:2980-3018. [PMID: 21845170 DOI: 10.3390/ijerph8072980] [Cited by in Crossref: 163] [Cited by in F6Publishing: 161] [Article Influence: 16.3] [Reference Citation Analysis]
60 Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein-Cline M, Kanabar P, Collins N, Ben-Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015;133:465-88. [PMID: 25689586 DOI: 10.1111/jnc.13072] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 13.2] [Reference Citation Analysis]
61 Marwarha G, Rostad S, Lilek J, Kleinjan M, Schommer J, Ghribi O. Palmitate Increases β-site AβPP-Cleavage Enzyme 1 Activity and Amyloid-β Genesis by Evoking Endoplasmic Reticulum Stress and Subsequent C/EBP Homologous Protein Activation. J Alzheimers Dis 2017;57:907-25. [PMID: 28304295 DOI: 10.3233/JAD-161130] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
62 Xu JJ, Guo S, Xue R, Xiao L, Kou JN, Liu YQ, Han JY, Fu JJ, Wei N. Adalimumab ameliorates memory impairments and neuroinflammation in chronic cerebral hypoperfusion rats. Aging (Albany NY) 2021;13:14001-14. [PMID: 34030135 DOI: 10.18632/aging.203009] [Reference Citation Analysis]
63 Chiarini A, Armato U, Hu P, Dal Prà I. Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2020;21:E9036. [PMID: 33261147 DOI: 10.3390/ijms21239036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
64 Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM. Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2015;12:90. [PMID: 25962427 DOI: 10.1186/s12974-015-0310-z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
65 Gong T, Jiang W, Gao Z, Chen Y, Gao S. Dibromoacetic Acid Induced Hepatotoxicity in Mice through Oxidative Stress and Toll-Like Receptor 4 Signaling Pathway Activation. Oxid Med Cell Longev 2019;2019:5637235. [PMID: 31827682 DOI: 10.1155/2019/5637235] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
66 Robert C, Wilson CS, Lipton RB, Arreto CD. Evolution of the Research Literature and the Scientific Community of Alzheimer's Disease from 1983-2017: A 35-Year Survey. J Alzheimers Dis 2020;75:1105-34. [PMID: 32390624 DOI: 10.3233/JAD-191281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Johansson JU, Woodling NS, Shi J, Andreasson KI. Inflammatory Cyclooxygenase Activity and PGE2 Signaling in Models of Alzheimer's Disease. Curr Immunol Rev 2015;11:125-31. [PMID: 28413375 DOI: 10.2174/1573395511666150707181414] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
68 Seo E, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacological Research 2018;129:262-73. [DOI: 10.1016/j.phrs.2017.11.030] [Cited by in Crossref: 91] [Cited by in F6Publishing: 84] [Article Influence: 30.3] [Reference Citation Analysis]
69 Lin C, Zhao S, Zhu Y, Fan Z, Wang J, Zhang B, Chen Y. Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease. Comput Struct Biotechnol J 2019;17:1309-17. [PMID: 31921396 DOI: 10.1016/j.csbj.2019.09.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
70 Boutajangout A, Wisniewski T. The innate immune system in Alzheimer's disease. Int J Cell Biol 2013;2013:576383. [PMID: 24223593 DOI: 10.1155/2013/576383] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
71 de Wit NM, Mol K, Rodríguez-Lorenzo S, de Vries HE, Kooij G. The Role of Sphingolipids and Specialized Pro-Resolving Mediators in Alzheimer's Disease. Front Immunol 2020;11:620348. [PMID: 33633739 DOI: 10.3389/fimmu.2020.620348] [Reference Citation Analysis]
72 Guillot-Sestier MV, Town T. Let's make microglia great again in neurodegenerative disorders. J Neural Transm (Vienna) 2018;125:751-70. [PMID: 29027011 DOI: 10.1007/s00702-017-1792-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
73 Calvo-Rodríguez M, de la Fuente C, García-Durillo M, García-Rodríguez C, Villalobos C, Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 2017;14:24. [PMID: 28143556 DOI: 10.1186/s12974-017-0802-0] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 13.0] [Reference Citation Analysis]
74 Balducci C, Forloni G. Novel targets in Alzheimer's disease: A special focus on microglia. Pharmacol Res 2018;130:402-13. [PMID: 29391235 DOI: 10.1016/j.phrs.2018.01.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
75 Zhao BS, Liu Y, Gao XY, Zhai HQ, Guo JY, Wang XY. Effects of ginsenoside Rg1 on the expression of toll-like receptor 3, 4 and their signalling transduction factors in the NG108-15 murine neuroglial cell line. Molecules 2014;19:16925-36. [PMID: 25340298 DOI: 10.3390/molecules191016925] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
76 Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2018;46:341-67. [PMID: 30806249 DOI: 10.1615/CritRevBiomedEng.2018027166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
77 Lindsay A, Hickman D, Srinivasan M. A nuclear factor-kappa B inhibiting peptide suppresses innate immune receptors and gliosis in a transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2021;138:111405. [PMID: 33756153 DOI: 10.1016/j.biopha.2021.111405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Mol Neurobiol 2021;58:2407-22. [PMID: 33421016 DOI: 10.1007/s12035-020-02227-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Davies NW, Guillemin G, Brew BJ. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder. Int J Tryptophan Res 2010;3:121-40. [PMID: 22084594 DOI: 10.4137/ijtr.s4321] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
80 Tan L, Schedl P, Song HJ, Garza D, Konsolaki M. The Toll-->NFkappaB signaling pathway mediates the neuropathological effects of the human Alzheimer's Abeta42 polypeptide in Drosophila. PLoS One 2008;3:e3966. [PMID: 19088848 DOI: 10.1371/journal.pone.0003966] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 5.7] [Reference Citation Analysis]
81 Wara-aswapati N, Chayasadom A, Surarit R, Pitiphat W, Boch JA, Nagasawa T, Ishikawa I, Izumi Y. Induction of Toll-Like Receptor Expression by Porphyromonas gingivalis. Journal of Periodontology 2013;84:1010-8. [DOI: 10.1902/jop.2012.120362] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
82 Frederiksen HR, Haukedal H, Freude K. Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. Biomed Res Int 2019;2019:7420189. [PMID: 31396533 DOI: 10.1155/2019/7420189] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
83 Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155-161. [PMID: 20037584 DOI: 10.1038/ni.1836] [Cited by in Crossref: 896] [Cited by in F6Publishing: 878] [Article Influence: 74.7] [Reference Citation Analysis]
84 Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J Neuroinflammation 2014;11:48. [PMID: 24625061 DOI: 10.1186/1742-2094-11-48] [Cited by in Crossref: 160] [Cited by in F6Publishing: 159] [Article Influence: 22.9] [Reference Citation Analysis]
85 Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Role of Microglia TLRs in Neurodegeneration. Front Cell Neurosci 2018;12:329. [PMID: 30333729 DOI: 10.3389/fncel.2018.00329] [Cited by in Crossref: 86] [Cited by in F6Publishing: 77] [Article Influence: 28.7] [Reference Citation Analysis]
86 Broussard GJ, Mytar J, Li RC, Klapstein GJ. The role of inflammatory processes in Alzheimer's disease. Inflammopharmacology 2012;20:109-26. [PMID: 22535513 DOI: 10.1007/s10787-012-0130-z] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 6.0] [Reference Citation Analysis]
87 Venegas C, Heneka MT. Inflammasome-mediated innate immunity in Alzheimer's disease. FASEB J 2019;33:13075-84. [PMID: 31702392 DOI: 10.1096/fj.201900439] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
88 Ontiveros-Torres MÁ, Labra-Barrios ML, Díaz-Cintra S, Aguilar-Vázquez AR, Moreno-Campuzano S, Flores-Rodríguez P, Luna-Herrera C, Mena R, Perry G, Florán-Garduño B, Luna-Muñoz J, Luna-Arias JP. Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse. J Alzheimers Dis 2016;52:243-69. [PMID: 27031470 DOI: 10.3233/JAD-150837] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
89 Zhou J, Deng Y, Li F, Yin C, Shi J, Gong Q. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomedicine & Pharmacotherapy 2019;111:315-24. [DOI: 10.1016/j.biopha.2018.10.201] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
90 Dhankhar J, Agrawal N, Shrivastava A. An interplay between immune response and neurodegenerative disease progression: An assessment using Drosophila as a model. J Neuroimmunol 2020;346:577302. [PMID: 32683186 DOI: 10.1016/j.jneuroim.2020.577302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Gold M, Dolga AM, Koepke J, Mengel D, Culmsee C, Dodel R, Koczulla AR, Bach JP. α1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity. J Neuroinflammation 2014;11:165. [PMID: 25245568 DOI: 10.1186/s12974-014-0165-8] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
92 Biber K, Bhattacharya A, Campbell BM, Piro JR, Rohe M, Staal RGW, Talanian RV, Möller T. Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development. Front Pharmacol 2019;10:840. [PMID: 31507408 DOI: 10.3389/fphar.2019.00840] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
93 Dileep K, Remya C, Tintu I, Sadasivan C. Designing of multi-target-directed ligands against the enzymes associated with neuroinflammation: an in silico approach. Frontiers in Life Science 2014;7:174-85. [DOI: 10.1080/21553769.2014.901924] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
94 Chen R, Zhang Q, Yan Y, Zhang Y, Zhang T. Legumain Knockout Protects Against Aβ1-42-Induced AD-like Cognitive Deficits and Synaptic Plasticity Dysfunction Via Inhibiting Neuroinflammation Without Cleaving APP. Mol Neurobiol 2021;58:1607-20. [PMID: 33219900 DOI: 10.1007/s12035-020-02219-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 2012;9:23. [PMID: 22277195 DOI: 10.1186/1742-2094-9-23] [Cited by in Crossref: 169] [Cited by in F6Publishing: 168] [Article Influence: 18.8] [Reference Citation Analysis]
96 Vasconcelos AR, Yshii LM, Viel TA, Buck HS, Mattson MP, Scavone C, Kawamoto EM. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 2014;11:85. [PMID: 24886300 DOI: 10.1186/1742-2094-11-85] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 12.1] [Reference Citation Analysis]
97 Schmöle AC, Lundt R, Toporowski G, Hansen JN, Beins E, Halle A, Zimmer A. Cannabinoid Receptor 2-Deficiency Ameliorates Disease Symptoms in a Mouse Model with Alzheimer's Disease-Like Pathology. J Alzheimers Dis 2018;64:379-92. [PMID: 29865078 DOI: 10.3233/JAD-180230] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
98 Guan H, Li J, Tan X, Luo S, Liu Y, Meng Y, Wu B, Zhou Y, Yang Y, Chen H, Hou L, Qiu Y, Li J. Natural Xanthone α-Mangostin Inhibits LPS-Induced Microglial Inflammatory Responses and Memory Impairment by Blocking the TAK1/NF-κB Signaling Pathway. Mol Nutr Food Res 2020;64:e2000096. [PMID: 32506806 DOI: 10.1002/mnfr.202000096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
99 Narayanankutty A. Toll-like Receptors as a Novel Therapeutic Target for Natural Products Against Chronic Diseases. Curr Drug Targets 2019;20:1068-80. [PMID: 30806312 DOI: 10.2174/1389450120666190222181506] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
100 Borden EA, Furey M, Gattone NJ, Hambardikar VD, Liang XH, Scoma ER, Abou Samra A, D-Gary LR, Dennis DJ, Fricker D, Garcia C, Jiang Z, Khan SA, Kumarasamy D, Kuppala H, Ringrose S, Rosenheim EJ, Van Exel K, Vudhayagiri HS, Zhang J, Zhang Z, Guitart-Mampel M, Urquiza P, Solesio ME. Is there a link between inorganic polyphosphate (polyP), mitochondria, and neurodegeneration? Pharmacol Res 2021;163:105211. [PMID: 33010423 DOI: 10.1016/j.phrs.2020.105211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
101 Zhang L, Xu J, Gao J, Wu Y, Yin M, Zhao W. CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer's disease. Rev Neurosci 2018;29:837-48. [PMID: 29729150 DOI: 10.1515/revneuro-2017-0084] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
102 Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K. Virgin Coconut Oil-Induced Neuroprotection in Lipopolysaccharide-Challenged Rats is Mediated, in Part, Through Cholinergic, Anti-Oxidative and Anti-Inflammatory Pathways. J Diet Suppl 2020;:1-27. [PMID: 33962540 DOI: 10.1080/19390211.2020.1830223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
103 Suh EC, Jung YJ, Kim YA, Park EM, Lee SJ, Lee KE. Knockout of Toll-like receptor 2 attenuates Aβ25-35-induced neurotoxicity in organotypic hippocampal slice cultures. Neurochem Int 2013;63:818-25. [PMID: 24161618 DOI: 10.1016/j.neuint.2013.10.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
104 Shijo M, Honda H, Suzuki SO, Hamasaki H, Hokama M, Abolhassani N, Nakabeppu Y, Ninomiya T, Kitazono T, Iwaki T. Association of adipocyte enhancer-binding protein 1 with Alzheimer's disease pathology in human hippocampi. Brain Pathol 2018;28:58-71. [PMID: 27997051 DOI: 10.1111/bpa.12475] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
105 Smit T, Deshayes NAC, Borchelt DR, Kamphuis W, Middeldorp J, Hol EM. Reactive astrocytes as treatment targets in Alzheimer's disease-Systematic review of studies using the APPswePS1dE9 mouse model. Glia 2021;69:1852-81. [PMID: 33634529 DOI: 10.1002/glia.23981] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
106 Thummayot S, Tocharus C, Jumnongprakhon P, Suksamrarn A, Tocharus J. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells. Acta Pharmacol Sin 2018;39:1439-52. [PMID: 29671417 DOI: 10.1038/aps.2017.203] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
107 Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ. Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer's disease. J Neurochem 2010;113:389-401. [PMID: 20132482 DOI: 10.1111/j.1471-4159.2010.06595.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 4.0] [Reference Citation Analysis]
108 Qi Y, Ji XF, Chi TY, Liu P, Jin G, Xu Q, Jiao Q, Wang LH, Zou LB. Xanthoceraside attenuates amyloid β peptide1-42-induced memory impairments by reducing neuroinflammatory responses in mice. Eur J Pharmacol 2018;820:18-30. [PMID: 29229533 DOI: 10.1016/j.ejphar.2017.11.045] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
109 Munawara U, Catanzaro M, Xu W, Tan C, Hirokawa K, Bosco N, Dumoulin D, Khalil A, Larbi A, Lévesque S, Ramassamy C, Barron AE, Cunnane S, Beauregard PB, Bellenger JP, Rodrigues S, Desroches M, Witkowski JM, Laurent B, Frost EH, Fulop T. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer's disease. Immun Ageing 2021;18:29. [PMID: 34154615 DOI: 10.1186/s12979-021-00236-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 2010;10:365-76. [DOI: 10.1038/nri2748] [Cited by in Crossref: 417] [Cited by in F6Publishing: 404] [Article Influence: 37.9] [Reference Citation Analysis]
111 Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017;36:11-9. [PMID: 28235660 DOI: 10.1016/j.arr.2017.02.004] [Cited by in Crossref: 160] [Cited by in F6Publishing: 158] [Article Influence: 40.0] [Reference Citation Analysis]
112 Guo M, Zhang H, Li Y, Gu Q, Wei W, Wang Y, Zhang X, Liu X, Song L, Chai Z, Yu J, Ma C. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer's disease mice via the downregulation of TLR4/Myd88/NF-κB pathway. Journal of Neuroimmunology 2020;346:577284. [DOI: 10.1016/j.jneuroim.2020.577284] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
113 Shao QH, Yan WF, Zhang Z, Ma KL, Peng SY, Cao YL, Yuan YH, Chen NH. Nurr1: A vital participant in the TLR4-NF-κB signal pathway stimulated by α-synuclein in BV-2 cells. Neuropharmacology 2019;144:388-99. [PMID: 29634982 DOI: 10.1016/j.neuropharm.2018.04.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
114 Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci. 2009;29:11982-11992. [PMID: 19776284 DOI: 10.1523/jneurosci.3158-09.2009] [Cited by in Crossref: 341] [Cited by in F6Publishing: 241] [Article Influence: 28.4] [Reference Citation Analysis]
115 Wang Y, Weng Y, Shi Y, Xia X, Wang S, Duan H. Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma. J Membr Biol 2014;247:591-9. [PMID: 24878539 DOI: 10.1007/s00232-014-9675-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
116 Song S, Zhou F, Chen WR. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases. J Neuroinflammation 2012;9:219. [PMID: 22989325 DOI: 10.1186/1742-2094-9-219] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 5.8] [Reference Citation Analysis]
117 Nowicki M, Mã¼ller K, Serke H, Kosacka J, Vilser C, Ricken A, Spanel-borowski K. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root gangion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J Neurosci Res 2010;88:403-12. [DOI: 10.1002/jnr.22205] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
118 Zhang W, Wang L, Yu J, Chi Z, Tan L. Increased expressions of TLR2 and TLR4 on peripheral blood mononuclear cells from patients with Alzheimer's disease. Journal of the Neurological Sciences 2012;315:67-71. [DOI: 10.1016/j.jns.2011.11.032] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
119 Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A. Alcohol and Alzheimer's Disease-Does Alcohol Dependence Contribute to Beta-Amyloid Deposition, Neuroinflammation and Neurodegeneration in Alzheimer's Disease? Alcohol Alcohol 2017;52:151-8. [PMID: 27915236 DOI: 10.1093/alcalc/agw092] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
120 Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: A reappraisal. Mechanisms of Ageing and Development 2019;178:46-63. [DOI: 10.1016/j.mad.2019.01.004] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 16.5] [Reference Citation Analysis]
121 Hoh Kam J, Morgan JE, Jeffery G. Aged complement factor H knockout mice kept in a clean barriered environment have reduced retinal pathology. Exp Eye Res 2016;149:116-25. [PMID: 27397653 DOI: 10.1016/j.exer.2016.07.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
122 Landreth GE, Reed-Geaghan EG. Toll-like receptors in Alzheimer's disease. Curr Top Microbiol Immunol 2009;336:137-53. [PMID: 19688332 DOI: 10.1007/978-3-642-00549-7_8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 81] [Article Influence: 3.8] [Reference Citation Analysis]
123 Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV. Toll-like receptors in neurodegeneration. Brain Res Rev 2009;59:278-92. [PMID: 18822314 DOI: 10.1016/j.brainresrev.2008.09.001] [Cited by in Crossref: 277] [Cited by in F6Publishing: 264] [Article Influence: 21.3] [Reference Citation Analysis]
124 van Noort JM, Bsibsi M. Toll-like receptors in the CNS: implications for neurodegeneration and repair. Prog Brain Res 2009;175:139-48. [PMID: 19660653 DOI: 10.1016/S0079-6123(09)17509-X] [Cited by in Crossref: 81] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
125 Chen YC, Yip PK, Huang YL, Sun Y, Wen LL, Chu YM, Chen TF. Sequence variants of toll like receptor 4 and late-onset Alzheimer's disease. PLoS One 2012;7:e50771. [PMID: 23272070 DOI: 10.1371/journal.pone.0050771] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
126 Kushairi N, Tarmizi NAKA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, David P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends in Food Science & Technology 2020;104:153-62. [DOI: 10.1016/j.tifs.2020.07.029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
127 Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15:827-835. [PMID: 22610069 DOI: 10.1038/nn.3113] [Cited by in Crossref: 439] [Cited by in F6Publishing: 430] [Article Influence: 48.8] [Reference Citation Analysis]
128 Villalba M, Hott M, Martin C, Aguila B, Valdivia S, Quezada C, Zambrano A, Concha MI, Otth C. Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes. Med Microbiol Immunol 2012;201:371-9. [PMID: 22622619 DOI: 10.1007/s00430-012-0247-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
129 Gouveia A, Bajwa E, Klegeris A. Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochimica et Biophysica Acta (BBA) - General Subjects 2017;1861:2274-81. [DOI: 10.1016/j.bbagen.2017.06.017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
130 Leem E, Jeong KH, Won SY, Shin WH, Kim SR. Prothrombin Kringle-2: A Potential Inflammatory Pathogen in the Parkinsonian Dopaminergic System. Exp Neurobiol 2016;25:147-55. [PMID: 27574481 DOI: 10.5607/en.2016.25.4.147] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
131 Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer's disease. Mol Neurobiol 2010;41:115-28. [PMID: 20195797 DOI: 10.1007/s12035-010-8106-8] [Cited by in Crossref: 111] [Cited by in F6Publishing: 109] [Article Influence: 10.1] [Reference Citation Analysis]
132 Ledo JH, Azevedo EP, Beckman D, Ribeiro FC, Santos LE, Razolli DS, Kincheski GC, Melo HM, Bellio M, Teixeira AL, Velloso LA, Foguel D, De Felice FG, Ferreira ST. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice. J Neurosci 2016;36:12106-16. [PMID: 27903721 DOI: 10.1523/JNEUROSCI.1269-16.2016] [Cited by in Crossref: 79] [Cited by in F6Publishing: 43] [Article Influence: 19.8] [Reference Citation Analysis]
133 Chen R, Yuan H, Zhang T, Wang Z, Hu A, Wu L, Yang Z, Mao Y, Ji D, Zhu X. Heme Oxygenase-2 Suppress TNF-α and IL6 Expression via TLR4/MyD88-Dependent Signaling Pathway in Mouse Cerebral Vascular Endothelial Cells. Mol Neurobiol 2014;50:971-8. [DOI: 10.1007/s12035-014-8693-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
134 Ko HM, Lee SH, Kim KC, Joo SH, Choi WS, Shin CY. The Role of TLR4 and Fyn Interaction on Lipopolysaccharide-Stimulated PAI-1 Expression in Astrocytes. Mol Neurobiol 2015;52:8-25. [DOI: 10.1007/s12035-014-8837-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
135 Guedes JR, Custódia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. Human Molecular Genetics 2014;23:6286-301. [DOI: 10.1093/hmg/ddu348] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 12.0] [Reference Citation Analysis]
136 Trotta T, Porro C, Calvello R, Panaro MA. Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol 2014;268:1-12. [PMID: 24529856 DOI: 10.1016/j.jneuroim.2014.01.014] [Cited by in Crossref: 119] [Cited by in F6Publishing: 115] [Article Influence: 17.0] [Reference Citation Analysis]
137 Han S, Park J, Mook-jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Progress in Neurobiology 2016;137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 9.8] [Reference Citation Analysis]
138 Sun Z, Zhao T, Lv S, Gao Y, Masters J, Weng H. Dexmedetomidine attenuates spinal cord ischemia-reperfusion injury through both anti-inflammation and anti-apoptosis mechanisms in rabbits. J Transl Med 2018;16:209. [PMID: 30031397 DOI: 10.1186/s12967-018-1583-7] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
139 Ock J, Suk K. Anti-inflammatory effects of synthetic compound KT-14480 in lipopolysaccharide-stimulated microglia cells. Journal of Pharmacy and Pharmacology 2010;62:279-85. [DOI: 10.1211/jpp.62.02.0017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
140 Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 2008;12:762-80. [PMID: 18363841 DOI: 10.1111/j.1582-4934.2008.00314.x] [Cited by in Crossref: 135] [Cited by in F6Publishing: 138] [Article Influence: 10.4] [Reference Citation Analysis]
141 Wu Z, Sun L, Hashioka S, Yu S, Schwab C, Okada R, Hayashi Y, McGeer PL, Nakanishi H. Differential pathways for interleukin-1β production activated by chromogranin A and amyloid β in microglia. Neurobiol Aging 2013;34:2715-25. [PMID: 23831373 DOI: 10.1016/j.neurobiolaging.2013.05.018] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 7.0] [Reference Citation Analysis]
142 Buchanan MM, Hutchinson M, Watkins LR, Yin H. Toll-like receptor 4 in CNS pathologies. J Neurochem 2010;114:13-27. [PMID: 20402965 DOI: 10.1111/j.1471-4159.2010.06736.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 127] [Article Influence: 4.7] [Reference Citation Analysis]
143 Wiciński M, Wódkiewicz E, Słupski M, Walczak M, Socha M, Malinowski B, Pawlak-Osińska K. Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer's Disease. Biomed Res Int 2018;2018:6091014. [PMID: 30186862 DOI: 10.1155/2018/6091014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
144 D'Orléans-Juste P, Akide Ndunge OB, Desbiens L, Tanowitz HB, Desruisseaux MS. Endothelins in inflammatory neurological diseases. Pharmacol Ther 2019;194:145-60. [PMID: 30291906 DOI: 10.1016/j.pharmthera.2018.10.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
145 Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-Del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020;11:560375. [PMID: 33224105 DOI: 10.3389/fendo.2020.560375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
146 He Y, Zheng M, Ma Y, Han X, Ma X, Qu C, Du Y. Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochemical and Biophysical Research Communications 2012;429:125-30. [DOI: 10.1016/j.bbrc.2012.10.129] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
147 Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A. Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer's pathology. J Cell Mol Med 2008;12:2255-62. [PMID: 18793350 DOI: 10.1111/j.1582-4934.2008.00496.x] [Cited by in Crossref: 112] [Cited by in F6Publishing: 111] [Article Influence: 8.6] [Reference Citation Analysis]
148 Wilkins HM, Carl SM, Greenlief AC, Festoff BW, Swerdlow RH. Bioenergetic dysfunction and inflammation in Alzheimer's disease: a possible connection. Front Aging Neurosci 2014;6:311. [PMID: 25426068 DOI: 10.3389/fnagi.2014.00311] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
149 Patel AK, Hackam AS. A novel protective role for the innate immunity Toll-Like Receptor 3 (TLR3) in the retina via Stat3. Mol Cell Neurosci 2014;63:38-48. [PMID: 25264029 DOI: 10.1016/j.mcn.2014.09.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
150 Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys 2009;55:55-79. [PMID: 19672563 DOI: 10.1007/s12013-009-9059-2] [Cited by in Crossref: 61] [Cited by in F6Publishing: 52] [Article Influence: 5.1] [Reference Citation Analysis]
151 Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D, Latz E, Geyer M, Heneka MT. β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia. Cell Rep 2020;30:3743-3754.e6. [PMID: 32187546 DOI: 10.1016/j.celrep.2020.02.025] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
152 Chavali VD, Agarwal M, Vyas VK, Saxena B. Neuroprotective Effects of Ethyl Pyruvate against Aluminum Chloride-Induced Alzheimer's Disease in Rats via Inhibiting Toll-Like Receptor 4. J Mol Neurosci 2020;70:836-50. [PMID: 32030557 DOI: 10.1007/s12031-020-01489-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
153 Atkinson TJ. Toll-like receptors, transduction-effector pathways, and disease diversity: evidence of an immunobiological paradigm explaining all human illness? Int Rev Immunol 2008;27:255-81. [PMID: 18574739 DOI: 10.1080/08830180801959072] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
154 Romano GL, Platania CB, Forte S, Salomone S, Drago F, Bucolo C. MicroRNA target prediction in glaucoma. Prog Brain Res 2015;220:217-40. [PMID: 26497793 DOI: 10.1016/bs.pbr.2015.04.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
155 Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010;58:253-63. [PMID: 19705460 DOI: 10.1002/glia.20928] [Cited by in Crossref: 73] [Cited by in F6Publishing: 225] [Article Influence: 6.6] [Reference Citation Analysis]
156 Arranz L, De Castro NM, Baeza I, De la Fuente M. Differential expression of Toll-like receptor 2 and 4 on peritoneal leukocyte populations from long-lived and non-selected old female mice. Biogerontology 2010;11:475-82. [DOI: 10.1007/s10522-010-9270-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
157 Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019;13:46. [PMID: 30863282 DOI: 10.3389/fncel.2019.00046] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
158 Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 2019;10:1008. [PMID: 31572186 DOI: 10.3389/fphar.2019.01008] [Cited by in Crossref: 134] [Cited by in F6Publishing: 131] [Article Influence: 67.0] [Reference Citation Analysis]
159 Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019;332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 34.5] [Reference Citation Analysis]
160 Dubovický M, Császár E, Melicherčíková K, Kuniaková M, Račková L. Modulation of microglial function by the antidepressant drug venlafaxine. Interdiscip Toxicol 2014;7:201-7. [PMID: 26109901 DOI: 10.2478/intox-2014-0029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
161 Li N, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W. GLP-2 Attenuates LPS-Induced Inflammation in BV-2 Cells by Inhibiting ERK1/2, JNK1/2 and NF-κB Signaling Pathways. Int J Mol Sci 2016;17:190. [PMID: 26861286 DOI: 10.3390/ijms17020190] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
162 Shi S, Liang D, Chen Y, Xie Y, Wang Y, Wang L, Wang Z, Qiao Z. Gx-50 reduces β-amyloid-induced TNF-α, IL-1β, NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer's disease. Eur J Immunol 2016;46:665-76. [PMID: 26643273 DOI: 10.1002/eji.201545855] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
163 Miron J, Picard C, Frappier J, Dea D, Théroux L, Poirier J. TLR4 Gene Expression and Pro-Inflammatory Cytokines in Alzheimer's Disease and in Response to Hippocampal Deafferentation in Rodents. J Alzheimers Dis 2018;63:1547-56. [PMID: 29782315 DOI: 10.3233/JAD-171160] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
164 Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting. Cells 2020;9:E383. [PMID: 32046119 DOI: 10.3390/cells9020383] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 39.0] [Reference Citation Analysis]
165 Choo XY, Alukaidey L, White AR, Grubman A. Neuroinflammation and copper in Alzheimer's disease. Int J Alzheimers Dis 2013;2013:145345. [PMID: 24369524 DOI: 10.1155/2013/145345] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
166 Brew BJ, Crowe SM, Landay A, Cysique LA, Guillemin G. Neurodegeneration and ageing in the HAART era. J Neuroimmune Pharmacol 2009;4:163-74. [PMID: 19067177 DOI: 10.1007/s11481-008-9143-1] [Cited by in Crossref: 131] [Cited by in F6Publishing: 131] [Article Influence: 10.1] [Reference Citation Analysis]
167 Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I, Piancone F, Calabrese E, Nemni R, Clerici M. Neuroinflammation and brain functional disconnection in Alzheimer's disease. Front Aging Neurosci 2013;5:81. [PMID: 24324435 DOI: 10.3389/fnagi.2013.00081] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
168 Lobenwein D, Tepeköylü C, Kozaryn R, Pechriggl EJ, Bitsche M, Graber M, Fritsch H, Semsroth S, Stefanova N, Paulus P, Czerny M, Grimm M, Holfeld J. Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury. J Am Heart Assoc 2015;4:e002440. [PMID: 26508745 DOI: 10.1161/JAHA.115.002440] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
169 Momtazmanesh S, Perry G, Rezaei N. Toll-like receptors in Alzheimer's disease. Journal of Neuroimmunology 2020;348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
170 Doorn KJ, Moors T, Drukarch B, van de Berg WDj, Lucassen PJ, van Dam AM. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson's disease patients. Acta Neuropathol Commun 2014;2:90. [PMID: 25099483 DOI: 10.1186/s40478-014-0090-1] [Cited by in Crossref: 47] [Cited by in F6Publishing: 93] [Article Influence: 6.7] [Reference Citation Analysis]
171 Pedrioli G, Patani R, Paganetti P. Chloroquine, the Coronavirus Crisis, and Neurodegeneration: A Perspective. Front Neurol 2020;11:596528. [PMID: 33281734 DOI: 10.3389/fneur.2020.596528] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
172 Kim DH, Choi S, Jho J, Park M, Kang J, Park SJ, Ryu JH, Jo J, Kim HH, Kim BC. Infliximab ameliorates AD-associated object recognition memory impairment. Behavioural Brain Research 2016;311:384-91. [DOI: 10.1016/j.bbr.2016.06.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
173 Harry GJ. Microglia during development and aging. Pharmacol Ther 2013;139:313-26. [PMID: 23644076 DOI: 10.1016/j.pharmthera.2013.04.013] [Cited by in Crossref: 228] [Cited by in F6Publishing: 221] [Article Influence: 28.5] [Reference Citation Analysis]
174 Chen X, Shi X, Zhang X, Lei H, Long S, Su H, Pei Z, Huang R. Scutellarin attenuates hypertension-induced expression of brain Toll-like receptor 4/nuclear factor kappa B. Mediators Inflamm 2013;2013:432623. [PMID: 24223475 DOI: 10.1155/2013/432623] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
175 Shal B, Khan A, Khan AU, Ullah R, Ali G, Islam SU, Haq IU, Ali H, Seo EK, Khan S. Alleviation of Memory Deficit by Bergenin via the Regulation of Reelin and Nrf-2/NF-κB Pathway in Transgenic Mouse Model. Int J Mol Sci 2021;22:6603. [PMID: 34203049 DOI: 10.3390/ijms22126603] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
176 Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H, Xiao R. Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 2014;30:90-5. [PMID: 24290604 DOI: 10.1016/j.nut.2013.06.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
177 Miron J, Picard C, Lafaille-Magnan MÉ, Savard M, Labonté A, Breitner J, Rosa-Neto P, Auld D, Poirier J; PREVENT-AD research group. Association of TLR4 with Alzheimer's disease risk and presymptomatic biomarkers of inflammation. Alzheimers Dement 2019;15:951-60. [PMID: 31175027 DOI: 10.1016/j.jalz.2019.03.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
178 Koo JH, Jang YC, Hwang DJ, Um HS, Lee NH, Jung JH, Cho JY. Treadmill exercise produces neuroprotective effects in a murine model of Parkinson's disease by regulating the TLR2/MyD88/NF-κB signaling pathway. Neuroscience 2017;356:102-13. [PMID: 28527958 DOI: 10.1016/j.neuroscience.2017.05.016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
179 Trudler D, Farfara D, Frenkel D. Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: towards future therapeutic application. Mediators Inflamm. 2010;2010. [PMID: 20706642 DOI: 10.1155/2010/497987] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 5.7] [Reference Citation Analysis]
180 Costello DA, Lynch MA. Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus 2013;23:696-707. [PMID: 23554175 DOI: 10.1002/hipo.22129] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 6.3] [Reference Citation Analysis]
181 Wong RS, Cechetto DF, Whitehead SN. Assessing the Effects of Acute Amyloid β Oligomer Exposure in the Rat. Int J Mol Sci 2016;17:E1390. [PMID: 27563885 DOI: 10.3390/ijms17091390] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
182 Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012;9:179. [PMID: 22824372 DOI: 10.1186/1742-2094-9-179] [Cited by in Crossref: 258] [Cited by in F6Publishing: 245] [Article Influence: 28.7] [Reference Citation Analysis]
183 Belkhelfa M, Beder N, Mouhoub D, Amri M, Hayet R, Tighilt N, Bakheti S, Laimouche S, Azzouz D, Belhadj R, Touil-Boukoffa C. The involvement of neuroinflammation and necroptosis in the hippocampus during vascular dementia. J Neuroimmunol 2018;320:48-57. [PMID: 29759140 DOI: 10.1016/j.jneuroim.2018.04.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
184 Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer's disease. Neurosci Bull 2014;30:317-30. [PMID: 24652457 DOI: 10.1007/s12264-013-1422-z] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 7.4] [Reference Citation Analysis]
185 Brudek T, Winge K, Agander TK, Pakkenberg B. Screening of Toll-like receptors expression in multiple system atrophy brains. Neurochem Res 2013;38:1252-9. [PMID: 23525968 DOI: 10.1007/s11064-013-1020-5] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
186 Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2008;5:23. [PMID: 18510752 DOI: 10.1186/1742-2094-5-23] [Cited by in Crossref: 160] [Cited by in F6Publishing: 161] [Article Influence: 12.3] [Reference Citation Analysis]
187 Wenzel TJ, Bajwa E, Klegeris A. Cytochrome c can be released into extracellular space and modulate functions of human astrocytes in a toll-like receptor 4-dependent manner. Biochim Biophys Acta Gen Subj 2019;1863:129400. [PMID: 31344401 DOI: 10.1016/j.bbagen.2019.07.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
188 Zhi Z, Tang X, Wang Y, Chen R, Ji H. Sinensetin Attenuates Amyloid Beta25-35-Induced Oxidative Stress, Inflammation, and Apoptosis in SH-SY5Y Cells Through the TLR4/NF-κB Signaling Pathway. Neurochem Res 2021. [PMID: 34309775 DOI: 10.1007/s11064-021-03406-x] [Reference Citation Analysis]
189 Drouin-Ouellet J, Cicchetti F. Inflammation and neurodegeneration: the story 'retolled'. Trends Pharmacol Sci 2012;33:542-51. [PMID: 22944460 DOI: 10.1016/j.tips.2012.07.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 4.8] [Reference Citation Analysis]
190 Maximus PS, Al Achkar Z, Hamid PF, Hasnain SS, Peralta CA. Adipocytokines: Are they the Theory of Everything? Cytokine 2020;133:155144. [PMID: 32559663 DOI: 10.1016/j.cyto.2020.155144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
191 Pereira CF, Santos AE, Moreira PI, Pereira AC, Sousa FJ, Cardoso SM, Cruz MT. Is Alzheimer’s disease an inflammasomopathy? Ageing Research Reviews 2019;56:100966. [DOI: 10.1016/j.arr.2019.100966] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
192 Gao Y, Zhang J, Li S, Zhang Y, Zhao Y, Chang C, Qiu Y, Yang G. Cattle Encephalon Glycoside and Ignotin Protects Neurons Against Microglia-Induced Neuroinflammation via Elevating BDNF Expression and Inhibiting TLR4/NF-κB Pathway. Neurochem Res 2021;46:326-36. [PMID: 33185801 DOI: 10.1007/s11064-020-03168-y] [Reference Citation Analysis]
193 Lehmann SM, Rosenberger K, Krüger C, Habbel P, Derkow K, Kaul D, Rybak A, Brandt C, Schott E, Wulczyn FG, Lehnardt S. Extracellularly delivered single-stranded viral RNA causes neurodegeneration dependent on TLR7. J Immunol 2012;189:1448-58. [PMID: 22745379 DOI: 10.4049/jimmunol.1201078] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
194 Morales-Ropero JM, Arroyo-Urea S, Neubrand VE, Martín-Oliva D, Marín-Teva JL, Cuadros MA, Vangheluwe P, Navascués J, Mata AM, Sepúlveda MR. The endoplasmic reticulum Ca2+ -ATPase SERCA2b is upregulated in activated microglia and its inhibition causes opposite effects on migration and phagocytosis. Glia 2021;69:842-57. [PMID: 33105046 DOI: 10.1002/glia.23931] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
195 Gaikwad S, Agrawal-Rajput R. Lipopolysaccharide from Rhodobacter sphaeroides Attenuates Microglia-Mediated Inflammation and Phagocytosis and Directs Regulatory T Cell Response. Int J Inflam 2015;2015:361326. [PMID: 26457222 DOI: 10.1155/2015/361326] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
196 DeCarlo CA, Tuokko HA, Williams D, Dixon RA, MacDonald SW. BioAge: toward a multi-determined, mechanistic account of cognitive aging. Ageing Res Rev 2014;18:95-105. [PMID: 25278166 DOI: 10.1016/j.arr.2014.09.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
197 Obulesu M, Jhansilakshmi M. Neuroinflammation in Alzheimer's disease: an understanding of physiology and pathology. International Journal of Neuroscience 2013;124:227-35. [DOI: 10.3109/00207454.2013.831852] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
198 Yi H, Patel AK, Sodhi CP, Hackam DJ, Hackam AS. Novel role for the innate immune receptor Toll-like receptor 4 (TLR4) in the regulation of the Wnt signaling pathway and photoreceptor apoptosis. PLoS One 2012;7:e36560. [PMID: 22615780 DOI: 10.1371/journal.pone.0036560] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
199 Wan F, Zang S, Yu G, Xiao H, Wang J, Tang J. Ginkgolide B Suppresses Methamphetamine-Induced Microglial Activation Through TLR4-NF-κB Signaling Pathway in BV2 Cells. Neurochem Res 2017;42:2881-91. [DOI: 10.1007/s11064-017-2309-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
200 De Paola M, Mariani A, Bigini P, Peviani M, Ferrara G, Molteni M, Gemma S, Veglianese P, Castellaneta V, Boldrin V, Rossetti C, Chiabrando C, Forloni G, Mennini T, Fanelli R. Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration. Mol Med 2012;18:971-81. [PMID: 22562723 DOI: 10.2119/molmed.2012.00020] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 5.9] [Reference Citation Analysis]
201 Wirths O, Breyhan H, Marcello A, Cotel M, Brück W, Bayer TA. Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiology of Aging 2010;31:747-57. [DOI: 10.1016/j.neurobiolaging.2008.06.011] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 6.6] [Reference Citation Analysis]
202 Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016;39:1032-49. [PMID: 27515048 DOI: 10.1007/s12272-016-0806-9] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 13.0] [Reference Citation Analysis]
203 Ingham V, Williams A, Bate C. Glimepiride reduces CD14 expression and cytokine secretion from macrophages. J Neuroinflammation 2014;11:115. [PMID: 24952384 DOI: 10.1186/1742-2094-11-115] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
204 Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 2011;186:4973-83. [PMID: 21402900 DOI: 10.4049/jimmunol.1003600] [Cited by in Crossref: 200] [Cited by in F6Publishing: 205] [Article Influence: 20.0] [Reference Citation Analysis]
205 Sleegers K, Lambert JC, Bertram L, Cruts M, Amouyel P, Van Broeckhoven C. The pursuit of susceptibility genes for Alzheimer's disease: progress and prospects. Trends Genet 2010;26:84-93. [PMID: 20080314 DOI: 10.1016/j.tig.2009.12.004] [Cited by in Crossref: 81] [Cited by in F6Publishing: 80] [Article Influence: 7.4] [Reference Citation Analysis]
206 Femenia T, Qian Y, Arentsen T, Forssberg H, Diaz Heijtz R. Toll-like receptor-4 regulates anxiety-like behavior and DARPP-32 phosphorylation. Brain, Behavior, and Immunity 2018;69:273-82. [DOI: 10.1016/j.bbi.2017.11.022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
207 Pascual M, Calvo-Rodriguez M, Núñez L, Villalobos C, Ureña J, Guerri C. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 2021;73:900-15. [PMID: 34033211 DOI: 10.1002/iub.2510] [Reference Citation Analysis]
208 Mukhara D, Oh U, Neigh GN. Neuroinflammation. Handb Clin Neurol 2020;175:235-59. [PMID: 33008528 DOI: 10.1016/B978-0-444-64123-6.00017-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
209 Jayanti S, Vítek L, Tiribelli C, Gazzin S. The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases. Antioxidants (Basel) 2020;9:E900. [PMID: 32971784 DOI: 10.3390/antiox9090900] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
210 Chen SH, Oyarzabal EA, Hong JS. Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Curr Opin Pharmacol 2016;26:54-60. [PMID: 26498406 DOI: 10.1016/j.coph.2015.10.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
211 Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Front Cell Infect Microbiol 2017;7:276. [PMID: 28676848 DOI: 10.3389/fcimb.2017.00276] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 14.0] [Reference Citation Analysis]
212 Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 2009;64:110-22. [PMID: 19840553 DOI: 10.1016/j.neuron.2009.08.039] [Cited by in Crossref: 441] [Cited by in F6Publishing: 434] [Article Influence: 36.8] [Reference Citation Analysis]
213 Giunti D, Parodi B, Cordano C, Uccelli A, Kerlero de Rosbo N. Can we switch microglia's phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology 2014;141:328-39. [PMID: 24116890 DOI: 10.1111/imm.12177] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 7.0] [Reference Citation Analysis]
214 Floreani NA, Rump TJ, Abdul Muneer PM, Alikunju S, Morsey BM, Brodie MR, Persidsky Y, Haorah J. Alcohol-induced interactive phosphorylation of Src and toll-like receptor regulates the secretion of inflammatory mediators by human astrocytes. J Neuroimmune Pharmacol 2010;5:533-45. [PMID: 20379791 DOI: 10.1007/s11481-010-9213-z] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 3.6] [Reference Citation Analysis]
215 Urrutia PJ, Hirsch EC, González-Billault C, Núñez MT. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem 2017;142:140-52. [PMID: 28266714 DOI: 10.1111/jnc.14005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
216 Osera C, Pascale A, Amadio M, Venturini L, Govoni S, Ricevuti G. Pentraxins and Alzheimer's disease: at the interface between biomarkers and pharmacological targets. Ageing Res Rev 2012;11:189-98. [PMID: 22186030 DOI: 10.1016/j.arr.2011.12.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
217 Sharma A, Maheshwari RK. Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain. Journal of General Virology 2009;90:1836-47. [DOI: 10.1099/vir.0.010280-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.4] [Reference Citation Analysis]
218 Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011;91:461-553. [PMID: 21527731 DOI: 10.1152/physrev.00011.2010] [Cited by in Crossref: 2004] [Cited by in F6Publishing: 1970] [Article Influence: 200.4] [Reference Citation Analysis]
219 Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease. Cell Mol Neurobiol 2015;35:71-83. [PMID: 25149075 DOI: 10.1007/s10571-014-0101-6] [Cited by in Crossref: 120] [Cited by in F6Publishing: 120] [Article Influence: 17.1] [Reference Citation Analysis]
220 Xu J, Barger SW, Drew PD. The PPAR-gamma Agonist 15-Deoxy-Delta-Prostaglandin J(2) Attenuates Microglial Production of IL-12 Family Cytokines: Potential Relevance to Alzheimer's Disease. PPAR Res 2008;2008:349185. [PMID: 18615183 DOI: 10.1155/2008/349185] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
221 Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2021;78:1233-61. [PMID: 33057840 DOI: 10.1007/s00018-020-03656-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
222 Abuelezz SA, Hendawy N. HMGB1/RAGE/TLR4 axis and glutamate as novel targets for PCSK9 inhibitor in high fat cholesterol diet induced cognitive impairment and amyloidosis. Life Sci 2021;273:119310. [PMID: 33667517 DOI: 10.1016/j.lfs.2021.119310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
223 Fragoso-Morales LG, Correa-Basurto J, Rosales-Hernández MC. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer's Disease Murine Models. Antioxidants (Basel) 2021;10:218. [PMID: 33540840 DOI: 10.3390/antiox10020218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Kim S, Moon GJ, Kim HJ, Kim DG, Kim J, Nam Y, Sharma C, Leem E, Lee S, Kim KS, Ha CM, McLean C, Jin BK, Shin WH, Kim DW, Oh YS, Hong CW, Kim SR. Control of hippocampal prothrombin kringle-2 (pKr-2) expression reduces neurotoxic symptoms in five familial Alzheimer's disease mice. Br J Pharmacol 2021. [PMID: 34524687 DOI: 10.1111/bph.15681] [Reference Citation Analysis]
225 Grace PM, Ramos KM, Rodgers KM, Wang X, Hutchinson MR, Lewis MT, Morgan KN, Kroll JL, Taylor FR, Strand KA, Zhang Y, Berkelhammer D, Huey MG, Greene LI, Cochran TA, Yin H, Barth DS, Johnson KW, Rice KC, Maier SF, Watkins LR. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience 2014;280:299-317. [PMID: 25241065 DOI: 10.1016/j.neuroscience.2014.09.020] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
226 Mackus M, Adams S, Barzilay A, Benson S, Blau L, Iversen J, Johnson SJ, Keshavarzian A, Scholey A, Smith GS, Trela C, Vatsalya V, Verster JC. Proceeding of the 8th Alcohol Hangover Research Group Meeting. Curr Drug Abuse Rev 2016;9:106-12. [PMID: 28034278 DOI: 10.2174/1874473709666161229121527] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
227 Suento WJ, Kunisawa K, Wulaer B, Kosuge A, Iida T, Fujigaki S, Fujigaki H, Yamamoto Y, Tanra AJ, Saito K, Mouri A, Nabeshima T. Prefrontal cortex miR-874-3p prevents lipopolysaccharide-induced depression-like behavior through inhibition of indoleamine 2,3-dioxygenase 1 expression in mice. J Neurochem 2021;157:1963-78. [PMID: 33095942 DOI: 10.1111/jnc.15222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
228 Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer's disease. J Neurochem. 2016;136:815-825. [PMID: 26525612 DOI: 10.1111/jnc.13413] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 9.2] [Reference Citation Analysis]
229 Pinchaud K, Maguin-gaté K, Olivier J. Dietary arachidonic acid: a Janus face actor in brain and Alzheimer’s disease? OCL 2018;25:D406. [DOI: 10.1051/ocl/2018033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
230 Zhou Y, Chen Y, Xu C, Zhang H, Lin C. TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Front Neurosci 2020;14:602508. [PMID: 33390886 DOI: 10.3389/fnins.2020.602508] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
231 Didangelos A, Puglia M, Iberl M, Sanchez-Bellot C, Roschitzki B, Bradbury EJ. High-throughput proteomics reveal alarmins as amplifiers of tissue pathology and inflammation after spinal cord injury. Sci Rep 2016;6:21607. [PMID: 26899371 DOI: 10.1038/srep21607] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 10.6] [Reference Citation Analysis]
232 Lee SY, Kim B, Jeong HK, Min KJ, Liu T, Park JY, Joe EH, Jou I. Enhanced phosphatidylinositol 4-phosphate 5-kinase alpha expression and PI(4,5)P2 production in LPS-stimulated microglia. Neurochem Int 2010;57:600-7. [PMID: 20659513 DOI: 10.1016/j.neuint.2010.07.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
233 Figuera-Losada M, Rojas C, Slusher BS. Inhibition of microglia activation as a phenotypic assay in early drug discovery. J Biomol Screen 2014;19:17-31. [PMID: 23945875 DOI: 10.1177/1087057113499406] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
234 Costello DA, Watson MB, Cowley TR, Murphy N, Murphy Royal C, Garlanda C, Lynch MA. Interleukin-1alpha and HMGB1 mediate hippocampal dysfunction in SIGIRR-deficient mice. J Neurosci 2011;31:3871-9. [PMID: 21389242 DOI: 10.1523/JNEUROSCI.6676-10.2011] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 4.1] [Reference Citation Analysis]
235 Walker DG, Whetzel AM, Lue LF. Expression of suppressor of cytokine signaling genes in human elderly and Alzheimer's disease brains and human microglia. Neuroscience 2015;302:121-37. [PMID: 25286386 DOI: 10.1016/j.neuroscience.2014.09.052] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
236 Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012;120:461-72. [PMID: 22118570 DOI: 10.1111/j.1471-4159.2011.07594.x] [Cited by in Crossref: 251] [Cited by in F6Publishing: 230] [Article Influence: 25.1] [Reference Citation Analysis]
237 Fellner A, Barhum Y, Angel A, Perets N, Steiner I, Offen D, Lev N. Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates Motor Dysfunction and Spinal Cord Pathology in an Amyotrophic Lateral Sclerosis Mouse Model. Int J Mol Sci 2017;18:E1666. [PMID: 28763002 DOI: 10.3390/ijms18081666] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
238 Verbeek RE, Siersema PD, Ten Kate FJ, Fluiter K, Souza RF, Vleggaar FP, Bus P, van Baal JW. Toll-like receptor 4 activation in Barrett's esophagus results in a strong increase in COX-2 expression. J Gastroenterol 2014;49:1121-34. [PMID: 23955118 DOI: 10.1007/s00535-013-0862-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
239 Weston LL, Jiang S, Chisholm D, Jantzie LL, Bhaskar K. Interleukin-10 deficiency exacerbates inflammation-induced tau pathology. J Neuroinflammation 2021;18:161. [PMID: 34275478 DOI: 10.1186/s12974-021-02211-1] [Reference Citation Analysis]
240 Jayadev S, Case A, Eastman AJ, Nguyen H, Pollak J, Wiley JC, Möller T, Morrison RS, Garden GA. Presenilin 2 is the predominant γ-secretase in microglia and modulates cytokine release. PLoS One 2010;5:e15743. [PMID: 21206757 DOI: 10.1371/journal.pone.0015743] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
241 Eikelenboom P, Hoozemans JJ, Veerhuis R, van Exel E, Rozemuller AJ, van Gool WA. Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer's disease. Alzheimers Res Ther 2012;4:15. [PMID: 22647384 DOI: 10.1186/alzrt118] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 7.2] [Reference Citation Analysis]
242 Le OT, Nguyen TT, Lee SY. Phosphoinositide turnover in Toll-like receptor signaling and trafficking. BMB Rep 2014;47:361-8. [PMID: 24856829 DOI: 10.5483/bmbrep.2014.47.7.088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
243 Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. Neuroglia: Functional Paralysis and Reactivity in Alzheimer’s Disease and Other Neurodegenerative Pathologies. In: Beart P, Robinson M, Rattray M, Maragakis NJ, editors. Neurodegenerative Diseases. Cham: Springer International Publishing; 2017. pp. 427-49. [DOI: 10.1007/978-3-319-57193-5_17] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
244 Gołaszewska A, Bik W, Motyl T, Orzechowski A. Bridging the Gap between Alzheimer's Disease and Alzheimer's-like Diseases in Animals. Int J Mol Sci 2019;20:E1664. [PMID: 30987146 DOI: 10.3390/ijms20071664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
245 Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 2013;4:1562. [PMID: 23463005 DOI: 10.1038/ncomms2534] [Cited by in Crossref: 399] [Cited by in F6Publishing: 398] [Article Influence: 49.9] [Reference Citation Analysis]
246 Marzabadi CH, Franck RW. Small-Molecule Carbohydrate-Based Immunostimulants. Chemistry 2017;23:1728-42. [PMID: 27385422 DOI: 10.1002/chem.201601539] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
247 Murray E, Sharma R, Smith KB, Mar KD, Barve R, Lukasik M, Pirwani AF, Malette-guyon E, Lamba S, Thomas BJ, Sadeghi-emamchaie H, Liang J, Mallet J, Matar C, Ismail N. Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain, Behavior, and Immunity 2019;81:198-212. [DOI: 10.1016/j.bbi.2019.06.016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 15.0] [Reference Citation Analysis]
248 Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front Immunol 2019;10:1000. [PMID: 31134076 DOI: 10.3389/fimmu.2019.01000] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 31.0] [Reference Citation Analysis]
249 Ma W, Ding B, Yu H, Yuan L, Xi Y, Xiao R. Genistein alleviates β-amyloid-induced inflammatory damage through regulating Toll-like receptor 4/nuclear factor κB. J Med Food 2015;18:273-9. [PMID: 25384233 DOI: 10.1089/jmf.2014.3150] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
250 Yu HL, Li XY, Zhou X, Yuan LH, Ma WW, Xi YD, Zhao X, Wu J, Xiao R. Beta amyloid peptide (25-35) leading to inflammation through Toll-like receptors and the anti-inflammatory effect of genistein in BV-2 cells. J Mol Neurosci 2013;51:771-8. [PMID: 23949608 DOI: 10.1007/s12031-013-0063-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
251 Hu Y, Li H, Zhang J, Zhang X, Xia X, Qiu C, Liao Y, Chen H, Song Z, Zhou W. Periodontitis Induced by P. gingivalis-LPS Is Associated With Neuroinflammation and Learning and Memory Impairment in Sprague-Dawley Rats. Front Neurosci 2020;14:658. [PMID: 32714134 DOI: 10.3389/fnins.2020.00658] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
252 Nguyen TT, Kim YM, Kim TD, Le OT, Kim JJ, Kang HC, Hasegawa H, Kanaho Y, Jou I, Lee SY. Phosphatidylinositol 4-phosphate 5-kinase α facilitates Toll-like receptor 4-mediated microglial inflammation through regulation of the Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) location. J Biol Chem 2013;288:5645-59. [PMID: 23297396 DOI: 10.1074/jbc.M112.410126] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
253 Kilic U, Elibol B, Uysal O, Kilic E, Yulug B, Sayin Sakul A, Babacan Yildiz G. Specific alterations in the circulating levels of the SIRT1, TLR4, and IL7 proteins in patients with dementia. Experimental Gerontology 2018;111:203-9. [DOI: 10.1016/j.exger.2018.07.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
254 Frank S, Copanaki E, Burbach GJ, Müller UC, Deller T. Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett 2009;453:41-4. [PMID: 19429012 DOI: 10.1016/j.neulet.2009.01.075] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 4.4] [Reference Citation Analysis]
255 Zheng Z, Yuan R, Song M, Huo Y, Liu W, Cai X, Zou H, Chen C, Ye J. The toll-like receptor 4-mediated signaling pathway is activated following optic nerve injury in mice. Brain Res 2012;1489:90-7. [PMID: 23103505 DOI: 10.1016/j.brainres.2012.10.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
256 Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X. MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol 2018;234:904-14. [PMID: 30076715 DOI: 10.1002/jcp.26918] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
257 Filipovich-rimon T, Fleisher-berkovich S. Glial response to lipopolysaccharide: Possible role of endothelins. Peptides 2010;31:2269-75. [DOI: 10.1016/j.peptides.2010.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
258 Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders. J Physiol 2021;599:1379-89. [PMID: 33404072 DOI: 10.1113/JP279771] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
259 Adermark L, Bowers MS. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res 2016;40:1802-16. [PMID: 27476876 DOI: 10.1111/acer.13168] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
260 Shen X, Venero JL, Joseph B, Burguillos MA. Caspases orchestrate microglia instrumental functions. Progress in Neurobiology 2018;171:50-71. [DOI: 10.1016/j.pneurobio.2018.09.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
261 Wang LZ, Yu JT, Miao D, Wu ZC, Zong Y, Wen CQ, Tan L. Genetic association of TLR4/11367 polymorphism with late-onset Alzheimer's disease in a Han Chinese population. Brain Res 2011;1381:202-7. [PMID: 21236243 DOI: 10.1016/j.brainres.2011.01.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
262 Wang Z, Vilekar P, Huang J, Weaver DF. Furosemide as a Probe Molecule for the Treatment of Neuroinflammation in Alzheimer’s Disease. ACS Chem Neurosci 2020;11:4152-68. [DOI: 10.1021/acschemneuro.0c00445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
263 Chen R, Wang Z, Zhi Z, Tian J, Zhao Y, Sun J. Targeting the TLR4/NF-κB pathway in β-amyloid-stimulated microglial cells: A possible mechanism that oxysophoridine exerts anti-oxidative and anti-inflammatory effects in an in vitro model of Alzheimer's disease. Brain Res Bull 2021;175:150-7. [PMID: 34329731 DOI: 10.1016/j.brainresbull.2021.07.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
264 Woodward NC, Levine MC, Haghani A, Shirmohammadi F, Saffari A, Sioutas C, Morgan TE, Finch CE. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J Neuroinflammation 2017;14:84. [PMID: 28410596 DOI: 10.1186/s12974-017-0858-x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 16.0] [Reference Citation Analysis]
265 Liang T, Ju H, Zhou Y, Yang Y, Shi Y, Fang H. Inhibition of glycogen synthase kinase 3β improves cognitive function in aged mice by upregulating claudin presences in cerebral endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2020;52:363-70. [PMID: 32141492 DOI: 10.1093/abbs/gmaa002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
266 Molteni M, Gemma S, Rossetti C. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation. Mediators Inflamm 2016;2016:6978936. [PMID: 27293318 DOI: 10.1155/2016/6978936] [Cited by in Crossref: 145] [Cited by in F6Publishing: 145] [Article Influence: 29.0] [Reference Citation Analysis]
267 Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020;57:4825-44. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
268 Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer's disease. Neurobiol Dis 2010;37:503-9. [PMID: 19833208 DOI: 10.1016/j.nbd.2009.10.006] [Cited by in Crossref: 291] [Cited by in F6Publishing: 284] [Article Influence: 24.3] [Reference Citation Analysis]
269 Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020;9:E1717. [PMID: 32709045 DOI: 10.3390/cells9071717] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 35.0] [Reference Citation Analysis]
270 Rose KN, Barlock BJ, Dasilva NA, Johnson SL, Liu C, Ma H, Nelson R, Akhlaghi F, Seeram NP. Anti-neuroinflammatory effects of a food-grade phenolic-enriched maple syrup extract in a mouse model of Alzheimer’s disease. Nutritional Neuroscience 2021;24:710-9. [DOI: 10.1080/1028415x.2019.1672009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
271 Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, Ricevuti G. Alzheimer's disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmunity Reviews 2011;11:149-53. [DOI: 10.1016/j.autrev.2011.09.005] [Cited by in Crossref: 104] [Cited by in F6Publishing: 89] [Article Influence: 10.4] [Reference Citation Analysis]
272 Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer's disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Progress in Neurobiology 2009;87:181-94. [DOI: 10.1016/j.pneurobio.2009.01.001] [Cited by in Crossref: 227] [Cited by in F6Publishing: 219] [Article Influence: 18.9] [Reference Citation Analysis]
273 Xie K, Liu Y, Hao W, Walter S, Penke B, Hartmann T, Schachner M, Fassbender K. Tenascin-C deficiency ameliorates Alzheimer's disease-related pathology in mice. Neurobiol Aging 2013;34:2389-98. [PMID: 23673309 DOI: 10.1016/j.neurobiolaging.2013.04.013] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
274 Conte C, Sichetti M, Traina G. Gut–Brain Axis: Focus on Neurodegeneration and Mast Cells. Applied Sciences 2020;10:1828. [DOI: 10.3390/app10051828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
275 Rego Â, Viana SD, Ribeiro CA, Rodrigues-Santos P, Pereira FC. Monophosphoryl Lipid-A: A Promising Tool for Alzheimer's Disease Toll. J Alzheimers Dis 2016;52:1189-202. [PMID: 27079716 DOI: 10.3233/JAD-151183] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
276 Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017;58:1733-55. [PMID: 28389477 DOI: 10.1194/jlr.R076315] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
277 Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008;213:114-21. [PMID: 18586243 DOI: 10.1016/j.expneurol.2008.05.014] [Cited by in Crossref: 174] [Cited by in F6Publishing: 169] [Article Influence: 13.4] [Reference Citation Analysis]
278 Pretorius E, Bester J, Page MJ, Kell DB. The Potential of LPS-Binding Protein to Reverse Amyloid Formation in Plasma Fibrin of Individuals With Alzheimer-Type Dementia. Front Aging Neurosci 2018;10:257. [PMID: 30186156 DOI: 10.3389/fnagi.2018.00257] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
279 Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021;15:652593. [PMID: 33841102 DOI: 10.3389/fncel.2021.652593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
280 Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012;2:a006346. [PMID: 22315714 DOI: 10.1101/cshperspect.a006346] [Cited by in Crossref: 542] [Cited by in F6Publishing: 551] [Article Influence: 67.8] [Reference Citation Analysis]
281 Kam T, Gwon Y, Jung Y. Amyloid beta receptors responsible for neurotoxicity and cellular defects in Alzheimer’s disease. Cell Mol Life Sci 2014;71:4803-13. [DOI: 10.1007/s00018-014-1706-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
282 Zhang R, Miller RG, Madison C, Jin X, Honrada R, Harris W, Katz J, Forshew DA, McGrath MS. Systemic immune system alterations in early stages of Alzheimer's disease. J Neuroimmunol 2013;256:38-42. [PMID: 23380586 DOI: 10.1016/j.jneuroim.2013.01.002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 8.0] [Reference Citation Analysis]
283 Shi J, Wang Q, Johansson JU, Liang X, Woodling NS, Priyam P, Loui TM, Merchant M, Breyer RM, Montine TJ, Andreasson K. Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease. Ann Neurol 2012;72:788-98. [PMID: 22915243 DOI: 10.1002/ana.23677] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 6.6] [Reference Citation Analysis]
284 Shehzad A, Parveen S, Qureshi M, Subhan F, Lee YS. Decursin and decursinol angelate: molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm Res 2018;67:209-18. [PMID: 29134229 DOI: 10.1007/s00011-017-1114-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
285 DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139 Suppl 2:136-153. [PMID: 26990767 DOI: 10.1111/jnc.13607] [Cited by in Crossref: 322] [Cited by in F6Publishing: 302] [Article Influence: 64.4] [Reference Citation Analysis]
286 Patel AK, Hackam AS. Toll-like receptor 3 (TLR3) protects retinal pigmented epithelium (RPE) cells from oxidative stress through a STAT3-dependent mechanism. Mol Immunol 2013;54:122-31. [PMID: 23267850 DOI: 10.1016/j.molimm.2012.11.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
287 Dansokho C, Heneka MT. Neuroinflammatory responses in Alzheimer's disease. J Neural Transm (Vienna) 2018;125:771-9. [PMID: 29273951 DOI: 10.1007/s00702-017-1831-7] [Cited by in Crossref: 66] [Cited by in F6Publishing: 54] [Article Influence: 16.5] [Reference Citation Analysis]
288 Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer's disease. Exp Neurol 2020;324:113112. [PMID: 31730762 DOI: 10.1016/j.expneurol.2019.113112] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
289 Eikelenboom P, van Exel E, Veerhuis R, Rozemuller AJ, van Gool WA, Hoozemans JJ. Innate Immunity and the Etiology of Late-Onset Alzheimer’s Disease. Neurodegenerative Dis 2012;10:271-3. [DOI: 10.1159/000334287] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
290 González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014;274:1-13. [PMID: 25091432 DOI: 10.1016/j.jneuroim.2014.07.012] [Cited by in Crossref: 215] [Cited by in F6Publishing: 195] [Article Influence: 30.7] [Reference Citation Analysis]
291 Neniskyte U, Vilalta A, Brown GC. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett 2014;588:2952-6. [PMID: 24911209 DOI: 10.1016/j.febslet.2014.05.046] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 8.9] [Reference Citation Analysis]
292 Lee S, Cho HJ, Ryu JH. Innate Immunity and Cell Death in Alzheimer's Disease. ASN Neuro 2021;13:17590914211051908. [PMID: 34668411 DOI: 10.1177/17590914211051908] [Reference Citation Analysis]
293 Li K, Tan YH, Light AR, Fu KY. Different peripheral tissue injury induces differential phenotypic changes of spinal activated microglia. Clin Dev Immunol 2013;2013:901420. [PMID: 23818916 DOI: 10.1155/2013/901420] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
294 He Y, Ruganzu JB, Zheng Q, Wu X, Jin H, Peng X, Ding B, Lin C, Ji S, Ma Y, Yang W. Silencing of LRP1 Exacerbates Inflammatory Response Via TLR4/NF-κB/MAPKs Signaling Pathways in APP/PS1 Transgenic Mice. Mol Neurobiol 2020;57:3727-43. [PMID: 32572761 DOI: 10.1007/s12035-020-01982-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
295 Badshah H, Ikram M, Ali W, Ahmad S, Hahm JR, Kim MO. Caffeine May Abrogate LPS-Induced Oxidative Stress and Neuroinflammation by Regulating Nrf2/TLR4 in Adult Mouse Brains. Biomolecules 2019;9:E719. [PMID: 31717470 DOI: 10.3390/biom9110719] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
296 Murugan S, Jakka P, Namani S, Mujumdar V, Radhakrishnan G. The neurosteroid pregnenolone promotes degradation of key proteins in the innate immune signaling to suppress inflammation. J Biol Chem 2019;294:4596-607. [PMID: 30647133 DOI: 10.1074/jbc.RA118.005543] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
297 Morgese MG, Schiavone S, Maffione AB, Tucci P, Trabace L. Depressive-like phenotype evoked by lifelong nutritional omega-3 deficiency in female rats: Crosstalk among kynurenine, Toll-like receptors and amyloid beta oligomers. Brain Behav Immun 2020;87:444-54. [PMID: 31987923 DOI: 10.1016/j.bbi.2020.01.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
298 Kierdorf K, Wang Y, Neumann H. Immune-Mediated CNS Damage. In: Martin R, Lutterotti A, editors. Molecular Basis of Multiple Sclerosis. Berlin: Springer Berlin Heidelberg; 2010. pp. 173-96. [DOI: 10.1007/400_2008_15] [Cited by in F6Publishing: 20] [Reference Citation Analysis]
299 Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm. 2010;117:919-947. [PMID: 20632195 DOI: 10.1007/s00702-010-0438-z] [Cited by in Crossref: 273] [Cited by in F6Publishing: 262] [Article Influence: 24.8] [Reference Citation Analysis]
300 Eslami M, Nezafat N, Negahdaripour M, Ghasemi Y. Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics 2019;37:4825-39. [DOI: 10.1080/07391102.2018.1564701] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
301 Triantafilou M, Hughes TR, Morgan BP, Triantafilou K. Complementing the inflammasome. Immunology 2016;147:152-64. [PMID: 26572245 DOI: 10.1111/imm.12556] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
302 Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 2015;8:ra45. [PMID: 25969543 DOI: 10.1126/scisignal.2005965] [Cited by in Crossref: 132] [Cited by in F6Publishing: 125] [Article Influence: 22.0] [Reference Citation Analysis]
303 Zhou J, Yu W, Zhang M, Tian X, Li Y, Lü Y. Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 Transgenic Mice: A Potential Link Between Alzheimer's Disease and Systemic Inflammation. Neurochem Res 2019;44:1138-51. [PMID: 30756214 DOI: 10.1007/s11064-019-02748-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 17.5] [Reference Citation Analysis]
304 Srinivas Bharadhwaj V, Ali M, Birkenbihl C, Mubeen S, Lehmann J, Hofmann-Apitius M, Tapley Hoyt C, Domingo-Fernández D. CLEP: A Hybrid Data- and Knowledge- Driven Framework for Generating Patient Representations. Bioinformatics 2021:btab340. [PMID: 33964127 DOI: 10.1093/bioinformatics/btab340] [Reference Citation Analysis]
305 Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer’s disease. Brain, Behavior, and Immunity 2016;52:187-98. [DOI: 10.1016/j.bbi.2015.10.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 8.2] [Reference Citation Analysis]
306 Babazada H, Yamashita F, Yanamoto S, Hashida M. Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4-NF-κB signaling. J Control Release 2014;194:332-40. [PMID: 25234820 DOI: 10.1016/j.jconrel.2014.09.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
307 Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011;238:1-11. [PMID: 21820744 DOI: 10.1016/j.jneuroim.2011.07.002] [Cited by in Crossref: 135] [Cited by in F6Publishing: 131] [Article Influence: 13.5] [Reference Citation Analysis]
308 Doorn KJ, Drukarch B, van Dam AM, Lucassen PJ. Hippocampal proliferation is increased in presymptomatic Parkinson's disease and due to microglia. Neural Plast 2014;2014:959154. [PMID: 25197578 DOI: 10.1155/2014/959154] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]