BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu S, Goldstein RH, Scepansky EM, Rosenblatt M. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res. 2009;69:8742-8751. [PMID: 19887617 DOI: 10.1158/0008-5472.can-09-1541] [Cited by in Crossref: 183] [Cited by in F6Publishing: 95] [Article Influence: 14.1] [Reference Citation Analysis]
Number Citing Articles
1 Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA, Park YY, Lee JS, Safe S. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene 2012;31:1034-44. [PMID: 21765466 DOI: 10.1038/onc.2011.296] [Cited by in Crossref: 122] [Cited by in F6Publishing: 113] [Article Influence: 11.1] [Reference Citation Analysis]
2 Nahorski MS, Seabra L, Straatman-Iwanowska A, Wingenfeld A, Reiman A, Lu X, Klomp JA, Teh BT, Hatzfeld M, Gissen P, Maher ER. Folliculin interacts with p0071 (plakophilin-4) and deficiency is associated with disordered RhoA signalling, epithelial polarization and cytokinesis. Hum Mol Genet 2012;21:5268-79. [PMID: 22965878 DOI: 10.1093/hmg/dds378] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
3 Voon YC, Omar IS, Wu MH, Said NABM, Chung I. Cancer-associated fibroblasts as cellular vehicles in endometrial cancer cell migration. Oncol Lett 2022;23:3. [PMID: 34820002 DOI: 10.3892/ol.2021.13121] [Reference Citation Analysis]
4 Urooj T, Wasim B, Mushtaq S, Shah SNN, Shah M. Cancer Cell-derived Secretory Factors in Breast Cancer-associated Lung Metastasis: Their Mechanism and Future Prospects. Curr Cancer Drug Targets 2020;20:168-86. [PMID: 31858911 DOI: 10.2174/1568009620666191220151856] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
5 Montalvo J, Spencer C, Hackathorn A, Masterjohn K, Perkins A, Doty C, Arumugam A, Ongusaha PP, Lakshmanaswamy R, Liao JK, Mitchell DC, Bryan BA. ROCK1 & 2 perform overlapping and unique roles in angiogenesis and angiosarcoma tumor progression. Curr Mol Med 2013;13:205-19. [PMID: 22934846 DOI: 10.2174/1566524011307010205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 21] [Article Influence: 0.1] [Reference Citation Analysis]
6 Qu G, Wang X, Wang Z, Liu S, Jiang G. Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages. Nanoscale Res Lett 2013;8:198. [PMID: 23631472 DOI: 10.1186/1556-276X-8-198] [Cited by in Crossref: 39] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
7 Kalpana G, Figy C, Yeung M, Yeung KC. Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Sci Rep 2019;9:16351. [PMID: 31705019 DOI: 10.1038/s41598-019-52746-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
8 Li X, Gao L, Cui Q, Gary BD, Dyess DL, Taylor W, Shevde LA, Samant RS, Dean-Colomb W, Piazza GA, Xi Y. Sulindac inhibits tumor cell invasion by suppressing NF-κB-mediated transcription of microRNAs. Oncogene 2012;31:4979-86. [PMID: 22286762 DOI: 10.1038/onc.2011.655] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 4.6] [Reference Citation Analysis]
9 Liu S, Li S, Du Y. Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating Rho-associated kinase (ROCK). PLoS One 2010;5:e11272. [PMID: 20585605 DOI: 10.1371/journal.pone.0011272] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
10 Le Quesne J, Caldas C. Micro-RNAs and breast cancer. Mol Oncol 2010;4:230-41. [PMID: 20537965 DOI: 10.1016/j.molonc.2010.04.009] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 6.9] [Reference Citation Analysis]
11 Vimalraj S, Miranda PJ, Ramyakrishna B, Selvamurugan N. Regulation of breast cancer and bone metastasis by microRNAs. Dis Markers. 2013;35:369-387. [PMID: 24191129 DOI: 10.1155/2013/451248] [Cited by in Crossref: 76] [Cited by in F6Publishing: 74] [Article Influence: 8.4] [Reference Citation Analysis]
12 Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN, Tjoe JA, Marx J, Parvin B, Tlsty TD. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 2013;15:249-62. [PMID: 23479504 DOI: 10.1593/neo.121950] [Cited by in Crossref: 102] [Cited by in F6Publishing: 99] [Article Influence: 11.3] [Reference Citation Analysis]
13 Hsu CY, Chang ZF, Lee HH. Immunohistochemical evaluation of ROCK activation in invasive breast cancer. BMC Cancer 2015;15:943. [PMID: 26626121 DOI: 10.1186/s12885-015-1948-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
14 Liu F, Wang X, Cao A. Screening and functional analysis of a differential protein profile of human breast cancer. Oncology Letters 2014;7:1851-6. [DOI: 10.3892/ol.2014.1978] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
15 Nguyen AV, Trompetto B, Tan XHM, Scott MB, Hu KH, Deeds E, Butte MJ, Chiou PY, Rowat AC. Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cell Mol Bioeng 2020;13:27-44. [PMID: 32030106 DOI: 10.1007/s12195-019-00603-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zhang SP, Wang Z, Wang LX, Liu SJ. AG490: An inhibitor of hepcidin expression in vivoWorld J Gastroenterol 2011; 17(45): 5032-5034 [PMID: 22174555 DOI: 10.3748/wjg.v17.i45.5032] [Cited by in CrossRef: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
17 Jerrell RJ, Parekh A. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials 2016;84:119-29. [PMID: 26826790 DOI: 10.1016/j.biomaterials.2016.01.028] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
18 Kim S, Kim SA, Han J, Kim IS. Rho-Kinase as a Target for Cancer Therapy and Its Immunotherapeutic Potential. Int J Mol Sci 2021;22:12916. [PMID: 34884721 DOI: 10.3390/ijms222312916] [Reference Citation Analysis]
19 Riehl BD, Kim E, Bouzid T, Lim JY. The Role of Microenvironmental Cues and Mechanical Loading Milieus in Breast Cancer Cell Progression and Metastasis. Front Bioeng Biotechnol 2020;8:608526. [PMID: 33585411 DOI: 10.3389/fbioe.2020.608526] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015;17:e17. [PMID: 26507949 DOI: 10.1017/erm.2015.17] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
21 McHenry PR, Vargo-Gogola T. Pleiotropic functions of Rho GTPase signaling: a Trojan horse or Achilles' heel for breast cancer treatment? Curr Drug Targets 2010;11:1043-58. [PMID: 20545614 DOI: 10.2174/138945010792006852] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
22 Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AK, Welch HC, Timpson P. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015;6:123-33. [PMID: 26103062 DOI: 10.4161/21541248.2014.973749] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
23 Golla U, Ehudin MA, Annageldiyev C, Zeng Z, Bastihalli Tukaramrao D, Tarren A, Date AA, Elcheva I, Berg A, Amin S, Loughran TP Jr, Kester M, Desai D, Dovat S, Claxton D, Sharma A. DJ4 Targets the Rho-Associated Protein Kinase Pathway and Attenuates Disease Progression in Preclinical Murine Models of Acute Myeloid Leukemia. Cancers (Basel) 2021;13:4889. [PMID: 34638385 DOI: 10.3390/cancers13194889] [Reference Citation Analysis]
24 Prudnikova TY, Villamar-Cruz O, Rawat SJ, Cai KQ, Chernoff J. Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 2016;35:2178-85. [PMID: 26257058 DOI: 10.1038/onc.2015.278] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
25 Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021;44:751-75. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Chang F, Zhang Y, Mi J, Zhou Q, Bai F, Xu X, Fisher DE, Sun Q, Wu X. ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Sci 2018;109:3428-37. [PMID: 30168234 DOI: 10.1111/cas.13786] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
27 Srinivasan S, Das S, Surve V, Srivastava A, Kumar S, Jain N, Sawant A, Nayak C, Purwar R. Blockade of ROCK inhibits migration of human primary keratinocytes and malignant epithelial skin cells by regulating actomyosin contractility. Sci Rep 2019;9:19930. [PMID: 31882703 DOI: 10.1038/s41598-019-56447-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Greene SB, Herschkowitz JI, Rosen JM. Small players with big roles: microRNAs as targets to inhibit breast cancer progression. Curr Drug Targets 2010;11:1059-73. [PMID: 20545613 DOI: 10.2174/138945010792006762] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
29 Patel RA, Forinash KD, Pireddu R, Sun Y, Sun N, Martin MP, Schönbrunn E, Lawrence NJ, Sebti SM. RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer Res 2012;72:5025-34. [PMID: 22846914 DOI: 10.1158/0008-5472.CAN-12-0954] [Cited by in Crossref: 83] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
30 Wang L, Zhang D, Zhang C, Zhang S, Wang Z, Qu C, Liu S. A microRNA expression signature characterizing the properties of tumor-initiating cells for breast cancer. Oncol Lett 2012;3:119-24. [PMID: 22740866 DOI: 10.3892/ol.2011.431] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
31 Golubkov VS, Chekanov AV, Cieplak P, Aleshin AE, Chernov AV, Zhu W, Radichev IA, Zhang D, Dong PD, Strongin AY. The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis. J Biol Chem 2010;285:35740-9. [PMID: 20837484 DOI: 10.1074/jbc.M110.165159] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 4.5] [Reference Citation Analysis]
32 Yang J, Wang WG, Zhang KQ. LINC00452 promotes ovarian carcinogenesis through increasing ROCK1 by sponging miR-501-3p and suppressing ubiquitin-mediated degradation. Aging (Albany NY) 2020;12:21129-46. [PMID: 33168781 DOI: 10.18632/aging.103758] [Reference Citation Analysis]
33 Pireddu R, Forinash KD, Sun NN, Martin MP, Sung SS, Alexander B, Zhu JY, Guida WC, Schönbrunn E, Sebti SM, Lawrence NJ. Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2). Medchemcomm 2012;3:699-709. [PMID: 23275831 DOI: 10.1039/C2MD00320A] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
34 Smit MA, Maddalo G, Greig K, Raaijmakers LM, Possik PA, van Breukelen B, Cappadona S, Heck AJ, Altelaar AF, Peeper DS. ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma. Mol Syst Biol 2014;10:772. [PMID: 25538140 DOI: 10.15252/msb.20145450] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
35 Tarnoki-Zach J, Stockhammer P, Isai DG, Mehes E, Szeder B, Kovacs I, Bugyik E, Paku S, Berger W, Thomas SM, Neufeld Z, Dome B, Hegedus B, Czirok A. Multicellular contractility contributes to the emergence of mesothelioma nodules. Sci Rep 2020;10:20114. [PMID: 33208866 DOI: 10.1038/s41598-020-76641-x] [Reference Citation Analysis]
36 Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev 2012;31:653-62. [PMID: 22684369 DOI: 10.1007/s10555-012-9368-6] [Cited by in Crossref: 166] [Cited by in F6Publishing: 164] [Article Influence: 18.4] [Reference Citation Analysis]
37 Jagiełło A, Lim M, Botvinick E. Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioeng 2020;4:046105. [PMID: 33305163 DOI: 10.1063/5.0021030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Yang B, Zang J, Yuan W, Jiang X, Zhang F. The miR-136-5p/ROCK1 axis suppresses invasion and migration, and enhances cisplatin sensitivity in head and neck cancer cells. Exp Ther Med 2021;21:317. [PMID: 33717260 DOI: 10.3892/etm.2021.9748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Steurer S, Hager B, Büscheck F, Höflmayer D, Tsourlakis MC, Minner S, Clauditz TS, Hube-Magg C, Luebke AM, Simon R, Izbicki JR, Burandt E, Sauter G, Fraune C, Weidemann S, Schlomm T, Heinzer H, Haese A, Graefen M, Huland H, Heumann A. Up regulation of Rho-associated coiled-coil containing kinase1 (ROCK1) is associated with genetic instability and poor prognosis in prostate cancer. Aging (Albany NY) 2019;11:7859-79. [PMID: 31557128 DOI: 10.18632/aging.102294] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
40 Matsubara M, Bissell MJ. Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget 2016;7:31602-22. [PMID: 27203208 DOI: 10.18632/oncotarget.9395] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
41 Huang S, Zhu L, Cao Y, Li L, Xie Y, Deng J, Xiong J. Significant association of YAP1 and HSPC111 proteins with poor prognosis in Chinese gastric cancer patients. Oncotarget 2017;8:80303-14. [PMID: 29113304 DOI: 10.18632/oncotarget.17932] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
42 van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PA, Vergote I, Vermeulen PB, Dirix LY, VanLaere SJ. Expression profiling of cancerous and normal breast tissues identifies micrornas that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res. 2012;14:R34. [PMID: 22353773 DOI: 10.1186/bcr3127] [Cited by in Crossref: 134] [Cited by in F6Publishing: 123] [Article Influence: 13.4] [Reference Citation Analysis]
43 Xue J, Niu J, Wu J, Wu ZH. MicroRNAs in cancer therapeutic response: Friend and foe. World J Clin Oncol 2014; 5(4): 730-743 [PMID: 25302173 DOI: 10.5306/wjco.v5.i4.730] [Cited by in CrossRef: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
44 Matsuoka T, Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol 2014; 20(38): 13756-13766 [PMID: 25320513 DOI: 10.3748/wjg.v20.i38.13756] [Cited by in CrossRef: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
45 Thompson JM, Nguyen QH, Singh M, Pavesic MW, Nesterenko I, Nelson LJ, Liao AC, Razorenova OV. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 2017;36:1080-9. [PMID: 27841867 DOI: 10.1038/onc.2016.272] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
46 Chuang HH, Liang SW, Chang ZF, Lee HH. Ser1333 phosphorylation indicates ROCKI activation. J Biomed Sci 2013;20:83. [PMID: 24168723 DOI: 10.1186/1423-0127-20-83] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
47 Anfossi S, Giordano A, Gao H, Cohen EN, Tin S, Wu Q, Garza RJ, Debeb BG, Alvarez RH, Valero V, Hortobagyi GN, Calin GA, Ueno NT, Woodward WA, Reuben JM. High serum miR-19a levels are associated with inflammatory breast cancer and are predictive of favorable clinical outcome in patients with metastatic HER2+ inflammatory breast cancer. PLoS One 2014;9:e83113. [PMID: 24416156 DOI: 10.1371/journal.pone.0083113] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 7.5] [Reference Citation Analysis]
48 Amaya CN, Mitchell DC, Bryan BA. Rho kinase proteins display aberrant upregulation in vascular tumors and contribute to vascular tumor growth. BMC Cancer 2017;17:485. [PMID: 28709411 DOI: 10.1186/s12885-017-3470-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
49 Zuo Y, Oh W, Ulu A, Frost JA. Minireview: Mouse Models of Rho GTPase Function in Mammary Gland Development, Tumorigenesis, and Metastasis. Mol Endocrinol 2016;30:278-89. [PMID: 26677753 DOI: 10.1210/me.2015-1294] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
50 Muñoz EN, Rivera HM, Gómez LA. Changes in cytoarchitecture and mobility in B16F1 melanoma cells induced by 5-Br-2'-dU coincide with Rock2, miRNAs 138-5p and 455-3p reciprocal expressions. Biochem Biophys Rep 2021;27:101027. [PMID: 34159262 DOI: 10.1016/j.bbrep.2021.101027] [Reference Citation Analysis]
51 Vishnubhotla R, Bharadwaj S, Sun S, Metlushko V, Glover SC. Treatment with Y-27632, a ROCK Inhibitor, Increases the Proinvasive Nature of SW620 Cells on 3D Collagen Type 1 Matrix. Int J Cell Biol 2012;2012:259142. [PMID: 22690219 DOI: 10.1155/2012/259142] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
52 Liu S. The ROCK signaling and breast cancer metastasis. Mol Biol Rep 2011;38:1363-6. [PMID: 20602258 DOI: 10.1007/s11033-010-0238-4] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.7] [Reference Citation Analysis]
53 Kale VP, Hengst JA, Desai DH, Dick TE, Choe KN, Colledge AL, Takahashi Y, Sung SS, Amin SG, Yun JK. A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer Lett 2014;354:299-310. [PMID: 25172415 DOI: 10.1016/j.canlet.2014.08.032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
54 Saito Y, Murata-Kamiya N, Hirayama T, Ohba Y, Hatakeyama M. Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J Exp Med 2010;207:2157-74. [PMID: 20855497 DOI: 10.1084/jem.20100602] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 5.8] [Reference Citation Analysis]
55 Stowers RS, Allen SC, Sanchez K, Davis CL, Ebelt ND, Van Den Berg C, Suggs LJ. Extracellular Matrix Stiffening Induces a Malignant Phenotypic Transition in Breast Epithelial Cells. Cell Mol Bioeng 2017;10:114-23. [PMID: 31719853 DOI: 10.1007/s12195-016-0468-1] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
56 Boyle ST, Poltavets V, Samuel MS. Mechanical Signaling in the Mammary Microenvironment: From Homeostasis to Cancer. Adv Exp Med Biol 2021;1329:399-417. [PMID: 34664249 DOI: 10.1007/978-3-030-73119-9_19] [Reference Citation Analysis]
57 Daubriac J, Han S, Grahovac J, Smith E, Hosein A, Buchanan M, Basik M, Boucher Y. The crosstalk between breast carcinoma-associated fibroblasts and cancer cells promotes RhoA-dependent invasion via IGF-1 and PAI-1. Oncotarget 2018;9:10375-87. [PMID: 29535813 DOI: 10.18632/oncotarget.23735] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
58 Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu DX, Feng J, Hou P, Yao R, Zhang Y. CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression. Sci Rep. 2013;3:2932. [PMID: 24121667 DOI: 10.1038/srep02932] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 9.4] [Reference Citation Analysis]
59 Lotz-Jenne C, Lüthi U, Ackerknecht S, Lehembre F, Fink T, Stritt M, Wirth M, Pavan S, Bill R, Regenass U, Christofori G, Meyer-Schaller N. A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFβ receptor. Oncotarget 2016;7:25983-6002. [PMID: 27036020 DOI: 10.18632/oncotarget.8418] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
60 Ell B, Kang Y. MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep 2014;3:549. [PMID: 25120906 DOI: 10.1038/bonekey.2014.44] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 6.9] [Reference Citation Analysis]
61 Nobis M, Herrmann D, Warren SC, Strathdee D, Cox TR, Anderson KI, Timpson P. Shedding new light on RhoA signalling as a drug target in vivo using a novel RhoA-FRET biosensor mouse. Small GTPases 2020;11:240-7. [PMID: 29457531 DOI: 10.1080/21541248.2018.1438024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
62 Gong H, Zhou L, Khelfat L, Qiu G, Wang Y, Mao K, Chen W. Rho-Associated Protein Kinase (ROCK) Promotes Proliferation and Migration of PC-3 and DU145 Prostate Cancer Cells by Targeting LIM Kinase 1 (LIMK1) and Matrix Metalloproteinase-2 (MMP-2). Med Sci Monit 2019;25:3090-9. [PMID: 31026254 DOI: 10.12659/MSM.912098] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
63 Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res 2016;5:F1000 Faculty Rev-783. [PMID: 27158478 DOI: 10.12688/f1000research.7909.1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
64 Liu C, Shi X, Wang L, Wu Y, Jin F, Bai C, Song Y. SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 2014;35:6073-82. [PMID: 24633887 DOI: 10.1007/s13277-014-1804-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
65 Tharmalingam S, Daulat AM, Antflick JE, Ahmed SM, Nemeth EF, Angers S, Conigrave AD, Hampson DR. Calcium-sensing receptor modulates cell adhesion and migration via integrins. J Biol Chem 2011;286:40922-33. [PMID: 21969374 DOI: 10.1074/jbc.M111.265454] [Cited by in Crossref: 43] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
66 Croset M, Kan C, Clézardin P. Tumour-derived miRNAs and bone metastasis. Bonekey Rep 2015;4:688. [PMID: 25987987 DOI: 10.1038/bonekey.2015.56] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
67 Huang L, Li X, Gao W. Long non-coding RNA linc-ITGB1 promotes cell proliferation, migration, and invasion in human hepatoma carcinoma by up-regulating ROCK1. Biosci Rep 2018;38:BSR20181289. [PMID: 30279202 DOI: 10.1042/BSR20181289] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
68 Chen CH, Thai P, Yoneda K, Adler KB, Yang PC, Wu R. A peptide that inhibits function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) reduces lung cancer metastasis. Oncogene. 2014;33:3696-3706. [PMID: 23955080 DOI: 10.1038/onc.2013.336] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 4.9] [Reference Citation Analysis]
69 Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab 2014;25:320-7. [PMID: 24811921 DOI: 10.1016/j.tem.2014.03.014] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
70 Ren L, Feng W, Shao J, Ma J, Xu M, Zhu BZ, Zheng N, Liu S. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics 2020;10:6384-98. [PMID: 32483459 DOI: 10.7150/thno.45558] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
71 Li X, Zhou Q, Wang S, Wang P, Li J, Xie Z, Liu C, Wen J, Wu X. Prolonged treatment with Y-27632 promotes the senescence of primary human dermal fibroblasts by increasing the expression of IGFBP-5 and transforming them into a CAF-like phenotype. Aging (Albany NY) 2020;12:16621-46. [PMID: 32843583 DOI: 10.18632/aging.103910] [Reference Citation Analysis]
72 Zhang C, Liu F, Chen H, Li N, Luo Z, Guo W, Huang D, Tang S, Wang H, Cheng S, Li Z, Wang H. Bif-1 promotes tumor cell migration and metastasis via Cdc42 expression and activity. Clin Exp Metastasis 2017;34:11-23. [PMID: 27730394 DOI: 10.1007/s10585-016-9825-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
73 Xu X, Li S, Lin Y, Chen H, Hu Z, Mao Y, Xu X, Wu J, Zhu Y, Zheng X, Luo J, Xie L. MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. J Transl Med 2013;11:276. [PMID: 24180482 DOI: 10.1186/1479-5876-11-276] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 8.9] [Reference Citation Analysis]
74 Gopal U, Gonzalez-Gronow M, Pizzo SV. Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein. J Biol Chem 2016;291:10904-15. [PMID: 27002159 DOI: 10.1074/jbc.M115.708131] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
75 Wang Y, Lei R, Zhuang X, Zhang N, Pan H, Li G, Hu J, Pan X, Tao Q, Fu D, Xiao J, Chin YE, Kang Y, Yang Q, Hu G. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis. J Clin Invest 2014;124:1646-59. [PMID: 24590291 DOI: 10.1172/JCI71812] [Cited by in Crossref: 53] [Cited by in F6Publishing: 26] [Article Influence: 6.6] [Reference Citation Analysis]
76 Page JM, Merkel AR, Ruppender NS, Guo R, Dadwal UC, Cannonier S, Basu S, Guelcher SA, Sterling JA. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin β3 and TGF-β receptor type II. Biomaterials 2015;64:33-44. [PMID: 26115412 DOI: 10.1016/j.biomaterials.2015.06.026] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 7.1] [Reference Citation Analysis]
77 Thibaudeau L, Taubenberger AV, Holzapfel BM, Quent VM, Fuehrmann T, Hesami P, Brown TD, Dalton PD, Power CA, Hollier BG, Hutmacher DW. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis Model Mech 2014;7:299-309. [PMID: 24713276 DOI: 10.1242/dmm.014076] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 10.4] [Reference Citation Analysis]
78 Ishikawa T, Kramer RH. Sdc1 negatively modulates carcinoma cell motility and invasion. Exp Cell Res 2010;316:951-65. [PMID: 20036233 DOI: 10.1016/j.yexcr.2009.12.013] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
79 Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S, Cai Y. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis 2019;10:720. [PMID: 31558699 DOI: 10.1038/s41419-019-1947-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
80 Ma J, Liu R, Wang X, Liu Q, Chen Y, Valle RP, Zuo YY, Xia T, Liu S. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano 2015;9:10498-515. [PMID: 26389709 DOI: 10.1021/acsnano.5b04751] [Cited by in Crossref: 232] [Cited by in F6Publishing: 205] [Article Influence: 33.1] [Reference Citation Analysis]
81 Gilkes DM, Xiang L, Lee SJ, Chaturvedi P, Hubbi ME, Wirtz D, Semenza GL. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci U S A 2014;111:E384-93. [PMID: 24324133 DOI: 10.1073/pnas.1321510111] [Cited by in Crossref: 124] [Cited by in F6Publishing: 118] [Article Influence: 13.8] [Reference Citation Analysis]
82 Morgan-Fisher M, Wewer UM, Yoneda A. Regulation of ROCK activity in cancer. J Histochem Cytochem. 2013;61:185-198. [PMID: 23204112 DOI: 10.1369/0022155412470834] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 7.3] [Reference Citation Analysis]
83 Mertsch S, Oellers P, Wendling M, Stracke W, Thanos S. Dissecting the inter-substrate navigation of migrating glioblastoma cells with the stripe assay reveals a causative role of ROCK. Mol Neurobiol 2013;48:169-79. [PMID: 23436115 DOI: 10.1007/s12035-013-8429-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
84 Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016;64:259-78. [PMID: 26725045 DOI: 10.1007/s00005-015-0382-6] [Cited by in Crossref: 104] [Cited by in F6Publishing: 95] [Article Influence: 17.3] [Reference Citation Analysis]
85 Ruppender NS, Merkel AR, Martin TJ, Mundy GR, Sterling JA, Guelcher SA. Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One 2010;5:e15451. [PMID: 21085597 DOI: 10.1371/journal.pone.0015451] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 5.3] [Reference Citation Analysis]
86 Kim JE, Reynolds DS, Zaman MH, Mak M. Characterization of the mechanical properties of cancer cells in 3D matrices in response to collagen concentration and cytoskeletal inhibitors. Integr Biol (Camb) 2018;10:232-41. [PMID: 29620778 DOI: 10.1039/c8ib00044a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 5.7] [Reference Citation Analysis]
87 Watnick RS, Rodriguez RK, Wang S, Blois AL, Rangarajan A, Ince T, Weinberg RA. Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 2015;34:2823-35. [PMID: 25109329 DOI: 10.1038/onc.2014.228] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
88 Prudnikova TY, Chernoff J. The Group I Pak inhibitor Frax-1036 sensitizes 11q13-amplified ovarian cancer cells to the cytotoxic effects of Rottlerin. Small GTPases 2017;8:193-8. [PMID: 27427770 DOI: 10.1080/21541248.2016.1213089] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
89 Patel RA, Liu Y, Wang B, Li R, Sebti SM. Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities. Oncogene. 2014;33:550-555. [PMID: 23396364 DOI: 10.1038/onc.2012.634] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
90 Regev M, Sabanay H, Kartvelishvily E, Kam Z, Bershadsky AD. Involvement of Rho GAP GRAF1 in maintenance of epithelial phenotype. Cell Adh Migr 2017;11:367-83. [PMID: 27588930 DOI: 10.1080/19336918.2016.1227910] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
91 Sterling JA, Guelcher SA. Bone structural components regulating sites of tumor metastasis. Curr Osteoporos Rep 2011;9:89-95. [PMID: 21424744 DOI: 10.1007/s11914-011-0052-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
92 Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015;8:1495-515. [PMID: 26542704 DOI: 10.1242/dmm.022103] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 11.0] [Reference Citation Analysis]
93 Liu Y, Qi Y, Yin C, Wang S, Zhang S, Xu A, Chen W, Liu S. Bio-transformation of Graphene Oxide in Lung Fluids Significantly Enhances Its Photothermal Efficacy. Nanotheranostics 2018;2:222-32. [PMID: 29868347 DOI: 10.7150/ntno.25719] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
94 Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta. 2014;1845:255-265. [PMID: 24569228 DOI: 10.1016/j.bbcan.2014.02.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 96] [Article Influence: 4.8] [Reference Citation Analysis]
95 Chen L, Qu G, Sun X, Zhang S, Wang L, Sang N, Du Y, Liu J, Liu S. Characterization of the interaction between cadmium and chlorpyrifos with integrative techniques in incurring synergistic hepatoxicity. PLoS One 2013;8:e59553. [PMID: 23516638 DOI: 10.1371/journal.pone.0059553] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
96 Mali RS, Kapur R. Targeting Rho associated kinases in leukemia and myeloproliferative neoplasms. Oncotarget 2012;3:909-10. [PMID: 23006984 DOI: 10.18632/oncotarget.664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
97 Borin TF, Arbab AS, Gelaleti GB, Ferreira LC, Moschetta MG, Jardim-Perassi BV, Iskander AS, Varma NR, Shankar A, Coimbra VB, Fabri VA, de Oliveira JG, Zuccari DA. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res 2016;60:3-15. [PMID: 26292662 DOI: 10.1111/jpi.12270] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 11.4] [Reference Citation Analysis]
98 Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs. J Mol Med (Berl) 2011;89:445-57. [PMID: 21234533 DOI: 10.1007/s00109-010-0716-0] [Cited by in Crossref: 100] [Cited by in F6Publishing: 80] [Article Influence: 9.1] [Reference Citation Analysis]