BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shojaei F, Ferrara N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res. 2008;68:5501-5504. [PMID: 18632597 DOI: 10.1158/0008-5472.can-08-0925] [Cited by in Crossref: 123] [Cited by in F6Publishing: 60] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Lee JW, Shahzad MM, Lin YG, Armaiz-Pena G, Mangala LS, Han HD, Kim HS, Nam EJ, Jennings NB, Halder J, Nick AM, Stone RL, Lu C, Lutgendorf SK, Cole SW, Lokshin AE, Sood AK. Surgical stress promotes tumor growth in ovarian carcinoma. Clin Cancer Res. 2009;15:2695-2702. [PMID: 19351748 DOI: 10.1158/1078-0432.ccr-08-2966] [Cited by in Crossref: 129] [Cited by in F6Publishing: 80] [Article Influence: 10.8] [Reference Citation Analysis]
2 Novillo A, Gaibar M, Romero-Lorca A, Gilsanz MF, Beltrán L, Galán M, Antón B, Malón D, Moreno A, Fernández-Santander A. Efficacy of bevacizumab-containing chemotherapy in metastatic colorectal cancer and CXCL5 expression: Six case reports. World J Gastroenterol 2020;26:1979-86. [PMID: 32390708 DOI: 10.3748/wjg.v26.i16.1979] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
3 Gaibar M, Galán M, Romero-Lorca A, Antón B, Malón D, Moreno A, Fernández-Santander A, Novillo A. Genetic Variants of ANGPT1, CD39, FGF2 and MMP9 Linked to Clinical Outcome of Bevacizumab Plus Chemotherapy for Metastatic Colorectal Cancer. Int J Mol Sci 2021;22:1381. [PMID: 33573134 DOI: 10.3390/ijms22031381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Penn CA, Yang K, Zong H, Lim JY, Cole A, Yang D, Baker J, Goonewardena SN, Buckanovich RJ. Therapeutic Impact of Nanoparticle Therapy Targeting Tumor-Associated Macrophages. Mol Cancer Ther 2018;17:96-106. [PMID: 29133618 DOI: 10.1158/1535-7163.MCT-17-0688] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
5 Rosa R, Monteleone F, Zambrano N, Bianco R. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr Med Chem 2014;21:1595-606. [PMID: 23992330 DOI: 10.2174/09298673113209990226] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
6 Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA. 2009;106:6742-6747. [PMID: 19346489 DOI: 10.1073/pnas.0902280106] [Cited by in Crossref: 334] [Cited by in F6Publishing: 289] [Article Influence: 27.8] [Reference Citation Analysis]
7 Curtis VF, Wang H, Yang P, McLendon RE, Li X, Zhou QY, Wang XF. A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer. PLoS One 2013;8:e54916. [PMID: 23372791 DOI: 10.1371/journal.pone.0054916] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
8 Jászai J, Schmidt MHH. Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells 2019;8:E1102. [PMID: 31540455 DOI: 10.3390/cells8091102] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 28.0] [Reference Citation Analysis]
9 Lu R, Kujawski M, Pan H, Shively JE. Tumor angiogenesis mediated by myeloid cells is negatively regulated by CEACAM1. Cancer Res 2012;72:2239-50. [PMID: 22406619 DOI: 10.1158/0008-5472.CAN-11-3016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
10 Carbone C, Moccia T, Zhu C, Paradiso G, Budillon A, Chiao PJ, Abbruzzese JL, Melisi D. Anti-VEGF treatment-resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin Cancer Res 2011;17:5822-32. [PMID: 21737511 DOI: 10.1158/1078-0432.CCR-11-1185] [Cited by in Crossref: 60] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
11 He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP, Snaar-Jagalska BE. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 2012;227:431-45. [PMID: 22374800 DOI: 10.1002/path.4013] [Cited by in Crossref: 124] [Cited by in F6Publishing: 120] [Article Influence: 13.8] [Reference Citation Analysis]
12 Tavakkoli M, Wilkins CR, Mones JV, Mauro MJ. A Novel Paradigm Between Leukocytosis, G-CSF Secretion, Neutrophil-to-Lymphocyte Ratio, Myeloid-Derived Suppressor Cells, and Prognosis in Non-small Cell Lung Cancer. Front Oncol 2019;9:295. [PMID: 31080780 DOI: 10.3389/fonc.2019.00295] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
13 Reardon DA, Desjardins A, Peters K, Gururangan S, Sampson J, Rich JN, McLendon R, Herndon JE, Marcello J, Threatt S. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J Neurooncol. 2011;103:371-379. [PMID: 20853132 DOI: 10.1007/s11060-010-0403-6] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 6.0] [Reference Citation Analysis]
14 Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH. Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 2011;77:12-9. [PMID: 20304669 DOI: 10.1016/j.critrevonc.2010.02.004] [Cited by in Crossref: 99] [Cited by in F6Publishing: 95] [Article Influence: 9.0] [Reference Citation Analysis]
15 Schreiber TH, Deyev VV, Rosenblatt JD, Podack ER. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res 2009;69:2026-33. [PMID: 19223534 DOI: 10.1158/0008-5472.CAN-08-3706] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
16 He C, Carter AB. The Metabolic Prospective and Redox Regulation of Macrophage Polarization. J Clin Cell Immunol 2015;6:371. [PMID: 26962470 DOI: 10.4172/2155-9899.1000371] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
17 Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020;10:221. [PMID: 32175278 DOI: 10.3389/fonc.2020.00221] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 57.0] [Reference Citation Analysis]
18 Hasnis E, Alishekevitz D, Gingis-Veltski S, Bril R, Fremder E, Voloshin T, Raviv Z, Karban A, Shaked Y. Anti-Bv8 antibody and metronomic gemcitabine improve pancreatic adenocarcinoma treatment outcome following weekly gemcitabine therapy. Neoplasia 2014;16:501-10. [PMID: 24957319 DOI: 10.1016/j.neo.2014.05.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
19 Bosiljcic M, Cederberg RA, Hamilton MJ, LePard NE, Harbourne BT, Collier JL, Halvorsen EC, Shi R, Franks SE, Kim AY, Banáth JP, Hamer M, Rossi FM, Bennewith KL. Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Res 2019;21:103. [PMID: 31488209 DOI: 10.1186/s13058-019-1189-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
20 Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 2018;17:34. [PMID: 29455658 DOI: 10.1186/s12943-018-0797-x] [Cited by in Crossref: 71] [Cited by in F6Publishing: 59] [Article Influence: 23.7] [Reference Citation Analysis]
21 Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162-174. [PMID: 19197294 DOI: 10.1038/nri2506] [Cited by in Crossref: 3959] [Cited by in F6Publishing: 3637] [Article Influence: 329.9] [Reference Citation Analysis]
22 Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35-44. [PMID: 19111879 DOI: 10.1016/j.ccr.2008.11.012] [Cited by in Crossref: 792] [Cited by in F6Publishing: 706] [Article Influence: 66.0] [Reference Citation Analysis]
23 Jing Y, Lu H, Wu K, Subramanian IV, Ramakrishnan S. Inhibition of ovarian cancer by RGD-P125A-endostatin-Fc fusion proteins. Int J Cancer 2011;129:751-61. [PMID: 21225621 DOI: 10.1002/ijc.25932] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
24 Wilcox RA. Cancer-associated myeloproliferation: old association, new therapeutic target. Mayo Clin Proc. 2010;85:656-663. [PMID: 20592171 DOI: 10.4065/mcp.2010.0077] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 4.9] [Reference Citation Analysis]
25 Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 2010;103:1139-43. [PMID: 20877357 DOI: 10.1038/sj.bjc.6605912] [Cited by in Crossref: 293] [Cited by in F6Publishing: 245] [Article Influence: 26.6] [Reference Citation Analysis]
26 Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, Batchelor TT, di Tomaso E, Duda DG, Munn LL. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27:2542-2552. [PMID: 19332720 DOI: 10.1200/jco.2008.19.9356] [Cited by in Crossref: 224] [Cited by in F6Publishing: 129] [Article Influence: 18.7] [Reference Citation Analysis]
27 Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY. The role of tumor-associated macrophages in tumor vascularization. Vasc Cell 2013;5:20. [PMID: 24314323 DOI: 10.1186/2045-824X-5-20] [Cited by in Crossref: 63] [Cited by in F6Publishing: 29] [Article Influence: 7.9] [Reference Citation Analysis]
28 Roodhart JM, He H, Daenen LG, Monvoisin A, Barber CL, van Amersfoort M, Hofmann JJ, Radtke F, Lane TF, Voest EE, Iruela-Arispe ML. Notch1 regulates angio-supportive bone marrow-derived cells in mice: relevance to chemoresistance. Blood 2013;122:143-53. [PMID: 23690447 DOI: 10.1182/blood-2012-11-459347] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
29 Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020;11:1685. [PMID: 32922387 DOI: 10.3389/fimmu.2020.01685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
30 Ma C, Zhang Q, Greten TF. MDSCs in liver cancer: A critical tumor-promoting player and a potential therapeutic target. Cell Immunol 2021;361:104295. [PMID: 33508529 DOI: 10.1016/j.cellimm.2021.104295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167:195-205. [PMID: 22235995 DOI: 10.1111/j.1365-2249.2011.04515.x] [Cited by in Crossref: 253] [Cited by in F6Publishing: 224] [Article Influence: 28.1] [Reference Citation Analysis]
32 Cui C, Chen X, Liu Y, Cao B, Xing Y, Liu C, Yang F, Li Y, Yang T, Hua L, Tian M, Wei Y, Gong Y, Jiang J. β1,4-Galactosyltransferase V activates Notch1 signaling in glioma stem-like cells and promotes their transdifferentiation into endothelial cells. J Biol Chem 2018;293:2219-30. [PMID: 29269413 DOI: 10.1074/jbc.RA117.000682] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
33 Shaked Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Oncol 2016;13:611-26. [PMID: 27118493 DOI: 10.1038/nrclinonc.2016.57] [Cited by in Crossref: 71] [Cited by in F6Publishing: 58] [Article Influence: 14.2] [Reference Citation Analysis]
34 Boutté AM, McDonald WH, Shyr Y, Yang L, Lin PC. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS One 2011;6:e22446. [PMID: 21853032 DOI: 10.1371/journal.pone.0022446] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
35 Banerjee S, Rustin G, Paul J, Williams C, Pledge S, Gabra H, Skailes G, Lamont A, Hindley A, Goss G, Gilby E, Hogg M, Harper P, Kipps E, Lewsley LA, Hall M, Vasey P, Kaye SB. A multicenter, randomized trial of flat dosing versus intrapatient dose escalation of single-agent carboplatin as first-line chemotherapy for advanced ovarian cancer: an SGCTG (SCOTROC 4) and ANZGOG study on behalf of GCIG. Ann Oncol 2013;24:679-87. [PMID: 23041585 DOI: 10.1093/annonc/mds494] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
36 Bottos A, Bardelli A. Oncogenes and angiogenesis: a way to personalize anti-angiogenic therapy? Cell Mol Life Sci 2013;70:4131-40. [PMID: 23685900 DOI: 10.1007/s00018-013-1331-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
37 Biswas S, Eisen T. Immunotherapeutic strategies in kidney cancer--when TKIs are not enough. Nat Rev Clin Oncol 2009;6:478-87. [PMID: 19546865 DOI: 10.1038/nrclinonc.2009.91] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
38 Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19:1114-1123. [PMID: 23913124 DOI: 10.1038/nm.3291] [Cited by in Crossref: 290] [Cited by in F6Publishing: 251] [Article Influence: 36.3] [Reference Citation Analysis]
39 Hirz T, Dumontet C. Neutrophil Isolation and Analysis to Determine their Role in Lymphoma Cell Sensitivity to Therapeutic Agents. J Vis Exp 2016;:e53846. [PMID: 27078837 DOI: 10.3791/53846] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
40 Ward C, Kuehn D, Burden RE, Gormley JA, Jaquin TJ, Gazdoiu M, Small D, Bicknell R, Johnston JA, Scott CJ, Olwill SA. Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. PLoS One 2010;5:e12543. [PMID: 20824056 DOI: 10.1371/journal.pone.0012543] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
41 Zhou Z, French DL, Ma G, Eisenstein S, Chen Y, Divino CM, Keller G, Chen SH, Pan PY. Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells 2010;28:620-32. [PMID: 20073041 DOI: 10.1002/stem.301] [Cited by in Crossref: 18] [Cited by in F6Publishing: 68] [Article Influence: 1.6] [Reference Citation Analysis]
42 Chang AJ, Sohn R, Lu ZH, Arbeit JM, Lapi SE. Detection of rapalog-mediated therapeutic response in renal cancer xenografts using ⁶⁴Cu-bevacizumab immunoPET. PLoS One 2013;8:e58949. [PMID: 23516584 DOI: 10.1371/journal.pone.0058949] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
43 Mittal K, Koon H, Elson P, Triozzi P, Dowlati A, Chen H, Borden EC, Rini BI. Dual VEGF/VEGFR inhibition in advanced solid malignancies: clinical effects and pharmacodynamic biomarkers. Cancer Biol Ther 2014;15:975-81. [PMID: 24842548 DOI: 10.4161/cbt.29187] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
44 Shaked Y, Tang T, Woloszynek J, Daenen LG, Man S, Xu P, Cai SR, Arbeit JM, Voest EE, Chaplin DJ, Smythe J, Harris A, Nathan P, Judson I, Rustin G, Bertolini F, Link DC, Kerbel RS. Contribution of granulocyte colony-stimulating factor to the acute mobilization of endothelial precursor cells by vascular disrupting agents. Cancer Res 2009;69:7524-8. [PMID: 19738066 DOI: 10.1158/0008-5472.CAN-09-0381] [Cited by in Crossref: 67] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
45 Iwai T, Harada Y, Saeki H, Oki E, Maehara Y, Yonemitsu Y. Capecitabine reverses tumor escape from anti-VEGF through the eliminating CD11bhigh/Gr1high myeloid cells. Oncotarget 2018;9:17620-30. [PMID: 29707135 DOI: 10.18632/oncotarget.24811] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
46 Incorvaia L, Bronte G, Bazan V, Badalamenti G, Rizzo S, Pantuso G, Natoli C, Russo A. Beyond evidence-based data: scientific rationale and tumor behavior to drive sequential and personalized therapeutic strategies for the treatment of metastatic renal cell carcinoma. Oncotarget 2016;7:21259-71. [PMID: 26872372 DOI: 10.18632/oncotarget.7267] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
47 Kurosaka D, Noda K, Yoshida K, Furuya K, Ukichi T, Takahashi E, Yanagimachi M, Kingetsu I, Saito S, Yamada A. Elevation of Bombina variegata peptide 8 in mice with collagen-induced arthritis. BMC Musculoskelet Disord 2009;10:45. [PMID: 19405944 DOI: 10.1186/1471-2474-10-45] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
48 Monu NR, Frey AB. Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol Invest 2012;41:595-613. [PMID: 23017137 DOI: 10.3109/08820139.2012.673191] [Cited by in Crossref: 74] [Cited by in F6Publishing: 56] [Article Influence: 9.3] [Reference Citation Analysis]
49 Ahluwalia MS, Gladson CL. Progress on antiangiogenic therapy for patients with malignant glioma. J Oncol 2010;2010:689018. [PMID: 20379377 DOI: 10.1155/2010/689018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
50 Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. 2014; Jun 4. [Epub ahead of print]. [PMID: 24895166 DOI: 10.1007/s12307-014-0147-5] [Cited by in Crossref: 172] [Cited by in F6Publishing: 161] [Article Influence: 24.6] [Reference Citation Analysis]
51 Fueyo J, Gomez-Manzano C, Yung WK. Advances in translational research in neuro-oncology. Arch Neurol 2011;68:303-8. [PMID: 21059986 DOI: 10.1001/archneurol.2010.293] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
52 Welti JC, Powles T, Foo S, Gourlaouen M, Preece N, Foster J, Frentzas S, Bird D, Sharpe K, van Weverwijk A, Robertson D, Soffe J, Erler JT, Pili R, Springer CJ, Mather SJ, Reynolds AR. Contrasting effects of sunitinib within in vivo models of metastasis. Angiogenesis 2012;15:623-41. [PMID: 22843200 DOI: 10.1007/s10456-012-9291-z] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 5.1] [Reference Citation Analysis]
53 Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 2011;108:4274-80. [PMID: 21262804 DOI: 10.1073/pnas.1016030108] [Cited by in Crossref: 344] [Cited by in F6Publishing: 298] [Article Influence: 34.4] [Reference Citation Analysis]
54 Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 2010;10:505-14. [PMID: 20574450 DOI: 10.1038/nrc2868] [Cited by in Crossref: 465] [Cited by in F6Publishing: 422] [Article Influence: 42.3] [Reference Citation Analysis]
55 Contarelli S, Fedele V, Melisi D. HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020;12:E3299. [PMID: 33171691 DOI: 10.3390/cancers12113299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Montemagno C, Pagès G. Resistance to Anti-angiogenic Therapies: A Mechanism Depending on the Time of Exposure to the Drugs. Front Cell Dev Biol 2020;8:584. [PMID: 32775327 DOI: 10.3389/fcell.2020.00584] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
57 Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat. 2009;12:74-80. [PMID: 19394890 DOI: 10.1016/j.drup.2009.03.002] [Cited by in Crossref: 101] [Cited by in F6Publishing: 89] [Article Influence: 8.4] [Reference Citation Analysis]
58 Russell JS, Brown JM. The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front Physiol 2013;4:157. [PMID: 23882218 DOI: 10.3389/fphys.2013.00157] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 9.4] [Reference Citation Analysis]
59 Hormigo A, Ding BS, Rafii S. A target for antiangiogenic therapy: vascular endothelium derived from glioblastoma. Proc Natl Acad Sci U S A 2011;108:4271-2. [PMID: 21383166 DOI: 10.1073/pnas.1019656108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
60 Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020;10:165. [PMID: 32133298 DOI: 10.3389/fonc.2020.00165] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]