BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shrishrimal S, Kosmacek EA, Oberley-Deegan RE. Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. Oxid Med Cell Longev 2019;2019:4278658. [PMID: 30881591 DOI: 10.1155/2019/4278658] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang H, Wang B, Wei J, Zheng Z, Su J, Bian C, Xin Y, Jiang X. Sulforaphane regulates Nrf2-mediated antioxidant activity and downregulates TGF-β1/Smad pathways to prevent radiation-induced muscle fibrosis. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.121197] [Reference Citation Analysis]
2 de Almeida AJPO, de Oliveira JCPL, da Silva Pontes LV, de Souza Júnior JF, Gonçalves TAF, Dantas SH, de Almeida Feitosa MS, Silva AO, de Medeiros IA, Giustarini D. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative Medicine and Cellular Longevity 2022;2022:1-23. [DOI: 10.1155/2022/1225578] [Reference Citation Analysis]
3 Kapuganti RS, Mohanty PP, Alone DP. Quantitative analysis of circulating levels of vimentin, clusterin and fibulin-5 in patients with pseudoexfoliation syndrome and glaucoma. Experimental Eye Research 2022. [DOI: 10.1016/j.exer.2022.109236] [Reference Citation Analysis]
4 Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022;157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Reference Citation Analysis]
5 Mohammed MR, El-Bahkery AM, Shedid SM. The Influence of Different γ-Irradiation Patterns on Factors that May Affect Cell Cycle Progression in Male Rats. Dose Response 2022;20:15593258221117898. [PMID: 35982824 DOI: 10.1177/15593258221117898] [Reference Citation Analysis]
6 Nogueira RMP, Vital FMR, Bernabé DG, de Carvalho MB. Interventions for Radiation-Induced Fibrosis in Patients with Breast Cancer: Systematic Review and Meta-analyses. Advances in Radiation Oncology 2022. [DOI: 10.1016/j.adro.2022.100912] [Reference Citation Analysis]
7 Gupta A, Chakraborty S, Das P, Chowdhury A, Desai KV. Redox State and Gene Regulation in Breast Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2022. [DOI: 10.1007/978-981-15-9411-3_98] [Reference Citation Analysis]
8 Flor S, Oliva CR, Ali MY, Coleman KL, Greenlee JD, Jones KA, Monga V, Griguer CE. Catalase Overexpression Drives an Aggressive Phenotype in Glioblastoma. Antioxidants (Basel) 2021;10:1988. [PMID: 34943091 DOI: 10.3390/antiox10121988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Xiao W, Zhou Q, Wen X, Wang R, Liu R, Wang T, Shi J, Hu Y, Hou J. Small-Molecule Inhibitors Overcome Epigenetic Reprogramming for Cancer Therapy. Front Pharmacol 2021;12:702360. [PMID: 34603017 DOI: 10.3389/fphar.2021.702360] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Wang J, Xu Z, Wang Z, Du G, Lun L. TGF-beta signaling in cancer radiotherapy. Cytokine 2021;148:155709. [PMID: 34597918 DOI: 10.1016/j.cyto.2021.155709] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
11 Liao YC, Wu SY, Huang YF, Lo PC, Chan TY, Chen CA, Wu CH, Hsu CC, Yen CL, Chen PC, Shieh CC. NOX2-Deficient Neutrophils Facilitate Joint Inflammation Through Higher Pro-Inflammatory and Weakened Immune Checkpoint Activities. Front Immunol 2021;12:743030. [PMID: 34557202 DOI: 10.3389/fimmu.2021.743030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, Hicks S, Li G, Moore KMS, Bergom C, Rogers BE, Robinson CG, Cuculich PS, Schwarz JK, Rentschler SL. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun 2021;12:5558. [PMID: 34561429 DOI: 10.1038/s41467-021-25730-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
13 Zhang DM, Szymanski J, Bergom C, Cuculich PS, Robinson CG, Schwarz JK, Rentschler SL. Leveraging Radiobiology for Arrhythmia Management: A New Treatment Paradigm? Clin Oncol (R Coll Radiol) 2021;33:723-34. [PMID: 34535357 DOI: 10.1016/j.clon.2021.09.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
15 Hsu WL, Hsieh YC, Yu HS, Yoshioka T, Wu CY. 2-Aminoethyl diphenylborinate inhibits bleomycin-induced skin and pulmonary fibrosis via interrupting intracellular Ca2+ regulation. J Dermatol Sci 2021:S0923-1811(21)00171-7. [PMID: 34315630 DOI: 10.1016/j.jdermsci.2021.07.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Elkiki SM, Mansour HH, Anis LM, Gabr HM, Kamal MM. Evaluation of aromatase inhibitor on radiation induced pulmonary fibrosis via TGF- β/Smad 3 and TGF- β/PDGF pathways in rats. Toxicol Mech Methods 2021;31:538-45. [PMID: 34036875 DOI: 10.1080/15376516.2021.1934765] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021;29:650-66. [PMID: 34077595 DOI: 10.1111/wrr.12943] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Liu CS, Toth R, Bakr A, Goyal A, Islam MS, Breuer K, Mayakonda A, Lin YY, Stepper P, Jurkowski TP, Veldwijk MR, Sperk E, Herskind C, Lutsik P, Weichenhan D, Plass C, Schmezer P, Popanda O. Epigenetic Modulation of Radiation-Induced Diacylglycerol Kinase Alpha Expression Prevents Pro-Fibrotic Fibroblast Response. Cancers (Basel) 2021;13:2455. [PMID: 34070078 DOI: 10.3390/cancers13102455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Coleman CN, Buchsbaum JC, Prasanna PGS, Capala J, Obcemea C, Espey MG, Ahmed MM, Hong JA, Vikram B. Moving Forward in the Next Decade: Radiation Oncology Sciences for Patient-Centered Cancer Care. JNCI Cancer Spectr 2021;5:pkab046. [PMID: 34350377 DOI: 10.1093/jncics/pkab046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zhang Y, Ji H, Qiao O, Li Z, Pecoraro L, Zhang X, Han X, Wang W, Zhang X, Man S, Wang J, Li X, Liu C, Huang L, Gao W. Nanoparticle conjugation of ginsenoside Rb3 inhibits myocardial fibrosis by regulating PPARα pathway. Biomed Pharmacother 2021;139:111630. [PMID: 33945912 DOI: 10.1016/j.biopha.2021.111630] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
21 Lozoya OA, Xu F, Grenet D, Wang T, Grimm SA, Godfrey V, Waidyanatha S, Woychik RP, Santos JH. Single Nucleotide Resolution Analysis Reveals Pervasive, Long-Lasting DNA Methylation Changes by Developmental Exposure to a Mitochondrial Toxicant. Cell Rep 2020;32:108131. [PMID: 32937126 DOI: 10.1016/j.celrep.2020.108131] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
22 Papazoglou P, Peng L, Sachinidis A. Epigenetic Mechanisms Involved in the Cardiovascular Toxicity of Anticancer Drugs. Front Cardiovasc Med 2021;8:658900. [PMID: 33987212 DOI: 10.3389/fcvm.2021.658900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
23 Wang R, Han ZJ, Song G, Cui Y, Xia HF, Ma X. Homocysteine-induced neural tube defects in chick embryos via oxidative stress and DNA methylation associated transcriptional down-regulation of miR-124. Toxicol Res (Camb) 2021;10:425-35. [PMID: 34141156 DOI: 10.1093/toxres/tfab020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Katsuyama E, Suarez-Fueyo A, Bradley SJ, Mizui M, Marin AV, Mulki L, Krishfield S, Malavasi F, Yoon J, Sui SJH, Kyttaris VC, Tsokos GC. The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections. Cell Rep 2020;30:112-123.e4. [PMID: 31914379 DOI: 10.1016/j.celrep.2019.12.014] [Cited by in Crossref: 71] [Cited by in F6Publishing: 56] [Article Influence: 71.0] [Reference Citation Analysis]
25 Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N. Gene regulation by H2S in plants. Hydrogen Sulfide in Plant Biology 2021. [DOI: 10.1016/b978-0-323-85862-5.00014-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Gupta A, Chakraborty S, Das P, Chowdhury A, Desai KV. Redox State and Gene Regulation in Breast Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2021. [DOI: 10.1007/978-981-15-4501-6_98-1] [Reference Citation Analysis]
27 Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020;26:423-49. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
28 Abdel-Wahab BA, Salem SY, Mohammed HM, Mohammed NA, Hetta HF. The role of vimentin, Connexin-43 proteins, and oxidative stress in the protective effect of propranolol against clozapine-induced myocarditis and apoptosis in rats. Eur J Pharmacol 2021;890:173645. [PMID: 33098837 DOI: 10.1016/j.ejphar.2020.173645] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Sunnaghatta Nagaraja S, Raviraj R, Selvakumar I, Dharmalingam D, Ramadas N, Chellappan DR, Ponnachipudhur Chinnaswamy P, Nagarajan D. Radiation-induced H3K9 tri-methylation in E-cadherin promoter during lung EMT: in vitro and in vivo approaches using vanillin. Free Radic Res 2020;54:540-55. [PMID: 32842802 DOI: 10.1080/10715762.2020.1814274] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Belli M, Tabocchini MA. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020;21:E5993. [PMID: 32825382 DOI: 10.3390/ijms21175993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
31 Shen AH, Borrelli MR, Adem S, Deleon NMD, Patel RA, Mascharak S, Yen SJ, Sun BY, Taylor WL 4th, Januszyk M, Nguyen DH, Momeni A, Gurtner GC, Longaker MT, Wan DC. Prophylactic treatment with transdermal deferoxamine mitigates radiation-induced skin fibrosis. Sci Rep 2020;10:12346. [PMID: 32704071 DOI: 10.1038/s41598-020-69293-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
32 Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020;127:427-47. [PMID: 32673537 DOI: 10.1161/CIRCRESAHA.120.316958] [Cited by in Crossref: 72] [Cited by in F6Publishing: 79] [Article Influence: 36.0] [Reference Citation Analysis]
33 El kiki SM, Omran MM, Mansour HH, Hasan HF. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol Biol Rep 2020;47:5115-26. [DOI: 10.1007/s11033-020-05582-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
34 Yang Y, Wang Q, Luo J, Jiang Y, Zhou R, Tong S, Wang Z, Tong Q. Superoxide Dismutase Mimic, MnTE-2-PyP Enhances Rectal Anastomotic Strength in Rats after Preoperative Chemoradiotherapy. Oxid Med Cell Longev 2020;2020:3509859. [PMID: 32351671 DOI: 10.1155/2020/3509859] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Shrishrimal S, Chatterjee A, Kosmacek EA, Davis PJ, McDonald JT, Oberley-Deegan RE. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic Biol Med 2020;152:255-70. [PMID: 32222469 DOI: 10.1016/j.freeradbiomed.2020.03.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
36 Liu CH, Huang ZH, Dong XY, Zhang XQ, Li YH, Zhao G, Sun BS, Shen YN. Inhibition of Uncoupling Protein 2 Enhances the Radiosensitivity of Cervical Cancer Cells by Promoting the Production of Reactive Oxygen Species. Oxid Med Cell Longev 2020;2020:5135893. [PMID: 32190174 DOI: 10.1155/2020/5135893] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Luan Y, Cui K, Tang Z, Ruan Y, Liu K, Wang T, Chen Z, Wang S, Liu J. Human Tissue Kallikrein 1 Improves Erectile Dysfunction of Streptozotocin-Induced Diabetic Rats by Inhibition of Excessive Oxidative Stress and Activation of the PI3K/AKT/eNOS Pathway. Oxid Med Cell Longev 2020;2020:6834236. [PMID: 32190176 DOI: 10.1155/2020/6834236] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
38 Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020;77:3129-59. [PMID: 32072238 DOI: 10.1007/s00018-020-03479-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
39 LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB J. 2020;34:3519-3536. [PMID: 32037627 DOI: 10.1096/fj.201903188r] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 37.5] [Reference Citation Analysis]
40 Wang B, Wei J, Meng L, Wang H, Qu C, Chen X, Xin Y, Jiang X. Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomedicine & Pharmacotherapy 2020;121:109560. [DOI: 10.1016/j.biopha.2019.109560] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
41 Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacology & Therapeutics 2019;204:107399. [DOI: 10.1016/j.pharmthera.2019.107399] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
42 Li Y, Song Q, Yao Y, Dong Y, Gao Y, Wu B. [Progression of Anti-oxygen Therapy in Radiation-Induced Lung Injury]. Zhongguo Fei Ai Za Zhi 2019;22:579-82. [PMID: 31526462 DOI: 10.3779/j.issn.1009-3419.2019.09.05] [Reference Citation Analysis]
43 Ponnusamy L, Mahalingaiah PKS, Singh KP. Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance. Adv Clin Chem 2020;94:219-59. [PMID: 31952572 DOI: 10.1016/bs.acc.2019.07.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]