BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cui Z, Zheng X, Shao X, Cui L. Automatic Sleep Stage Classification Based on Convolutional Neural Network and Fine-Grained Segments. Complexity 2018;2018:1-13. [DOI: 10.1155/2018/9248410] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Nagabushanam P, Thomas George S, Radha S. EEG signal classification using LSTM and improved neural network algorithms. Soft Comput 2020;24:9981-10003. [DOI: 10.1007/s00500-019-04515-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 6.3] [Reference Citation Analysis]
2 Loh HW, Ooi CP, Vicnesh J, Oh SL, Faust O, Gertych A, Acharya UR. Automated Detection of Sleep Stages Using Deep Learning Techniques: A Systematic Review of the Last Decade (2010–2020). Applied Sciences 2020;10:8963. [DOI: 10.3390/app10248963] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
3 Stuburić K, Gaiduk M, Seepold R. A deep learning approach to detect sleep stages. Procedia Computer Science 2020;176:2764-72. [DOI: 10.1016/j.procs.2020.09.280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
4 Cai Q, Gao Z, An J, Gao S, Grebogi C. A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals. IEEE Trans Circuits Syst II 2021;68:777-81. [DOI: 10.1109/tcsii.2020.3014514] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
5 Satapathy SK, Loganathan D. Automated classification of multi-class sleep stages classification using polysomnography signals: a nine- layer 1D-convolution neural network approach. Multimed Tools Appl. [DOI: 10.1007/s11042-022-13195-2] [Reference Citation Analysis]
6 Fiorillo L, Puiatti A, Papandrea M, Ratti P, Favaro P, Roth C, Bargiotas P, Bassetti CL, Faraci FD. Automated sleep scoring: A review of the latest approaches. Sleep Medicine Reviews 2019;48:101204. [DOI: 10.1016/j.smrv.2019.07.007] [Cited by in Crossref: 44] [Cited by in F6Publishing: 28] [Article Influence: 14.7] [Reference Citation Analysis]
7 Liu M, Tao W, Zhang X, Chen Y, Li J, Own C. GO Loss: A Gaussian Distribution-Based Orthogonal Decomposition Loss for Classification. Complexity 2019;2019:1-10. [DOI: 10.1155/2019/9206053] [Reference Citation Analysis]