BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee C. Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. Oxid Med Cell Longev 2018;2018:6208067. [PMID: 30515256 DOI: 10.1155/2018/6208067] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020;12:E984. [PMID: 32899736 DOI: 10.3390/v12090984] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
2 Rani I, Goyal A, Bhatnagar M, Manhas S, Goel P, Pal A, Prasad R. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res 2021;92:109-28. [PMID: 34284268 DOI: 10.1016/j.nutres.2021.05.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG. Reactive oxygen species as potential antiviral targets. Rev Med Virol 2021. [PMID: 33949029 DOI: 10.1002/rmv.2240] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020;9:E980. [PMID: 33066023 DOI: 10.3390/antiox9100980] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
5 Polonikov A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients.ACS Infect Dis. 2020;6:1558-1562. [PMID: 32463221 DOI: 10.1021/acsinfecdis.0c00288] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 35.0] [Reference Citation Analysis]
6 Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020;11:552925. [PMID: 33072093 DOI: 10.3389/fimmu.2020.552925] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
7 Nadhan R, Patra D, Krishnan N, Rajan A, Gopala S, Ravi D, Srinivas P. Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur J Pharmacol 2021;890:173621. [PMID: 33068588 DOI: 10.1016/j.ejphar.2020.173621] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Almeida LT, Ferraz AC, da Silva Caetano CC, da Silva Menegatto MB, dos Santos Pereira Andrade AC, Lima RLS, Camini FC, Pereira SH, da Silva Pereira KY, de Mello Silva B, Perucci LO, Talvani A, de Magalhães JC, de Brito Magalhães CL. Zika virus induces oxidative stress and decreases antioxidant enzyme activities in vitro and in vivo. Virus Research 2020;286:198084. [DOI: 10.1016/j.virusres.2020.198084] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
9 Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020;4:185-215. [PMID: 32715279 DOI: 10.3233/ADR-200191] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
10 Sestili P, Fimognari C. Paracetamol-Induced Glutathione Consumption: Is There a Link With Severe COVID-19 Illness? Front Pharmacol 2020;11:579944. [PMID: 33117175 DOI: 10.3389/fphar.2020.579944] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
11 Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021;9:638. [PMID: 33808578 DOI: 10.3390/microorganisms9030638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2021;:120111. [PMID: 34732330 DOI: 10.1016/j.lfs.2021.120111] [Reference Citation Analysis]
13 Slominski AT, Slominski RM, Goepfert PA, Kim TK, Holick MF, Jetten AM, Raman C. Reply to Jakovac and to Rocha et al.: Can vitamin D prevent or manage COVID-19 illness? Am J Physiol Endocrinol Metab 2020;319:E455-7. [PMID: 32787704 DOI: 10.1152/ajpendo.00348.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Pereira SH, Almeida LT, Ferraz AC, Ladeira MS, Ladeira LO, Magalhães CLB, Silva BM. Antioxidant and antiviral activity of fullerol against Zika virus. Acta Trop 2021;224:106135. [PMID: 34536367 DOI: 10.1016/j.actatropica.2021.106135] [Reference Citation Analysis]
15 Su M, Tang R, Wang H, Lu L. Suppression effect of plant-derived berberine on cyprinid herpesvirus 2 proliferation and its pharmacokinetics in Crucian carp (Carassius auratus gibelio). Antiviral Res 2021;186:105000. [PMID: 33359191 DOI: 10.1016/j.antiviral.2020.105000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Augusti PR, Conterato GMM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem 2021;97:108787. [PMID: 34089819 DOI: 10.1016/j.jnutbio.2021.108787] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
17 Guloyan V, Oganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford F, Ting YS, Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants (Basel) 2020;9:E914. [PMID: 32992775 DOI: 10.3390/antiox9100914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
18 Fu X, Chen D, Ma Y, Yuan W, Zhu L. Bovine Herpesvirus 1 Productive Infection Led to Inactivation of Nrf2 Signaling through Diverse Approaches. Oxid Med Cell Longev 2019;2019:4957878. [PMID: 31687081 DOI: 10.1155/2019/4957878] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
19 An TQ, Li JN, Su CM, Yoo D. Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020;286:197980. [PMID: 32311386 DOI: 10.1016/j.virusres.2020.197980] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
20 Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021;11:1126. [PMID: 34439792 DOI: 10.3390/biom11081126] [Reference Citation Analysis]
21 Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020;20:214. [PMID: 32689931 DOI: 10.1186/s12866-020-01890-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020;9:E659. [PMID: 32722164 DOI: 10.3390/antiox9080659] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
23 Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020;9:E1228. [PMID: 33291560 DOI: 10.3390/antiox9121228] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Bastin G, Galmiche A, Talfournier F, Mazon H, Challant J, Robin M, Majou D, Boudaud N, Gantzer C. Aerobic Conditions and Endogenous Reactive Oxygen Species Reduce the Production of Infectious MS2 Phage by Escherichia coli. Viruses 2021;13:1376. [PMID: 34372580 DOI: 10.3390/v13071376] [Reference Citation Analysis]
25 Fraternale A, Zara C, De Angelis M, Nencioni L, Palamara AT, Retini M, Di Mambro T, Magnani M, Crinelli R. Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Int J Mol Sci 2021;22:3603. [PMID: 33808471 DOI: 10.3390/ijms22073603] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021;10:302. [PMID: 33540625 DOI: 10.3390/cells10020302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Impact of Diabetes Mellitus in COVID-19: A Mechanistic Review of Molecular Interactions. J Diabetes Res. 2020;2020:5436832. [PMID: 33294461 DOI: 10.1155/2020/5436832] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021;12:1022-62. [PMID: 33818275 DOI: 10.1080/21505594.2021.1903198] [Reference Citation Analysis]
29 McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 Activator PB125® as a Potential Therapeutic Agent Against COVID-19. bioRxiv 2020:2020. [PMID: 32511372 DOI: 10.1101/2020.05.16.099788] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
30 Choi Y, Jiang Z, Shin WJ, Jung JU. Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway. J Virol 2020;94:e01684-19. [PMID: 31852783 DOI: 10.1128/JVI.01684-19] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
31 More GK, Makola RT, Prinsloo G. In Vitro Evaluation of Anti-Rift Valley Fever Virus, Antioxidant and Anti-Inflammatory Activity of South African Medicinal Plant Extracts. Viruses 2021;13:221. [PMID: 33572659 DOI: 10.3390/v13020221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Faber E, Tshilwane SI, Van Kleef M, Pretorius A. Apoptosis versus survival of African horse sickness virus serotype 4-infected horse peripheral blood mononuclear cells. Virus Res 2022;307:198609. [PMID: 34688785 DOI: 10.1016/j.virusres.2021.198609] [Reference Citation Analysis]
33 Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 2020;28:1153-61. [PMID: 32803479 DOI: 10.1007/s10787-020-00744-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
34 Emanuele S, Celesia A, D'Anneo A, Lauricella M, Carlisi D, De Blasio A, Giuliano M. The Good and Bad of Nrf2: An Update in Cancer and New Perspectives in COVID-19. Int J Mol Sci 2021;22:7963. [PMID: 34360732 DOI: 10.3390/ijms22157963] [Reference Citation Analysis]
35 Patra U, Mukhopadhyay U, Mukherjee A, Sarkar R, Chawla-Sarkar M. Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. Oxid Med Cell Longev 2020;2020:7289120. [PMID: 32322337 DOI: 10.1155/2020/7289120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
36 Hu Y, Yang Z, Wang S, Sun D, Zhong M, Wen M, Song J, Zhang Y. Comprehensive analysis of differential expression profiles via transcriptome sequencing in SH-SY5Y cells infected with CV-A16. PLoS One 2020;15:e0241174. [PMID: 33156879 DOI: 10.1371/journal.pone.0241174] [Reference Citation Analysis]
37 McCord JM, Hybertson BM, Cota-Gomez A, Geraci KP, Gao B. Nrf2 Activator PB125® as a Potential Therapeutic Agent against COVID-19. Antioxidants (Basel) 2020;9:E518. [PMID: 32545518 DOI: 10.3390/antiox9060518] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 15.5] [Reference Citation Analysis]
38 Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, Dinkova-Kostova AT. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci 2020;41:598-610. [PMID: 32711925 DOI: 10.1016/j.tips.2020.07.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 27.0] [Reference Citation Analysis]
39 Zhong LLD, Lam WC, Yang W, Chan KW, Sze SCW, Miao J, Yung KKL, Bian Z, Wong VT. Potential Targets for Treatment of Coronavirus Disease 2019 (COVID-19): A Review of Qing-Fei-Pai-Du-Tang and Its Major Herbs. Am J Chin Med 2020;48:1051-71. [PMID: 32668969 DOI: 10.1142/S0192415X20500512] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
40 Fan L. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Genes 2019;55:433-9. [PMID: 31004277 DOI: 10.1007/s11262-019-01665-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Faber E, Tshilwane SI, Kleef MV, Pretorius A. Virulent African horse sickness virus serotype 4 interferes with the innate immune response in horse peripheral blood mononuclear cells in vitro. Infect Genet Evol 2021;91:104836. [PMID: 33798756 DOI: 10.1016/j.meegid.2021.104836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021;114:11-24. [PMID: 34054222 DOI: 10.1016/j.tifs.2021.05.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]