1
|
Morcillo-Martín-Romo P, Valverde-Pozo J, Ortiz-Bueno M, Arnone M, Espinar-Barranco L, Espinar-Barranco C, García-Rubiño ME. The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances. Biomedicines 2025; 13:857. [PMID: 40299429 PMCID: PMC12024875 DOI: 10.3390/biomedicines13040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Natural killer (NK) cells play a crucial role in tumor surveillance by exerting cytotoxic activity and modulating immune responses. However, tumors employ diverse evasion strategies that limit NK cell effectiveness. This review aims to explore the molecular mechanisms of NK cell activation and inhibition in cancer, the influence of the tumor microenvironment, and the latest advancements in NK cell-based immunotherapies, including adoptive NK cell transfer and Chimeric Antigen Receptor-Natural Killer (CAR-NK) cell therapies. Methods: A comprehensive literature review was conducted, prioritizing peer-reviewed studies from the last decade on NK cell biology, tumor immune evasion, and immunotherapeutic applications. The analysis includes data from preclinical models and clinical trials evaluating NK cell expansion strategies, cytokine-based stimulation, and CAR-NK cell therapy developments. Results: NK cells eliminate tumors through cytotoxic granule release, death receptor pathways, and cytokine secretion. However, tumor cells evade NK-mediated immunity by downregulating activating ligands, secreting immunosuppressive molecules, and altering the tumor microenvironment. Novel NK cell-based therapies, such as CAR-NK cells and combination approaches with immune checkpoint inhibitors, enhance NK cell persistence and therapeutic efficacy against both hematologic and solid malignancies. Clinical trials suggest improved safety profiles compared to CAR-T therapies, with reduced cytokine release syndrome and graft-versus-host disease. Conclusions: While NK cell-based immunotherapies hold great promise, challenges remain, including limited persistence and tumor-induced immunosuppression. Addressing these hurdles will be critical for optimizing NK cell therapies and advancing next-generation, off-the-shelf immunotherapeutics for broader clinical applications.
Collapse
Affiliation(s)
- Paula Morcillo-Martín-Romo
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Javier Valverde-Pozo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - María Ortiz-Bueno
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
| | - Maurizio Arnone
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Laura Espinar-Barranco
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celia Espinar-Barranco
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain;
| | - María Eugenia García-Rubiño
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
| |
Collapse
|
2
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025; 70:919-942. [PMID: 39869166 PMCID: PMC11919954 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Jiao J, Wu Y, Wu S, Jiang J. Enhancing Colorectal Cancer Treatment Through VEGF/VEGFR Inhibitors and Immunotherapy. Curr Treat Options Oncol 2025; 26:213-225. [PMID: 40045029 DOI: 10.1007/s11864-025-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
OPINION STATEMENT Colorectal cancer, ranking as the third most prevalent malignancy globally, substantially benefits from both immunotherapy and VEGF/VEGFR inhibitors. Nevertheless, the use of monotherapy proves inadequate in effectively tackling the heterogeneity of tumors and the intricacies of their microenvironment, frequently leading to drug resistance and immune evasion. This situation underscores the pressing need for innovative strategies aimed at augmenting the effectiveness and durability of treatments. Clinical research demonstrates that the combination of VEGF/VEGFR inhibitors (primarily including VEGF/VEGFR-targeted drugs and multi-kinase inhibitors) with immune checkpoint inhibitors creates a synergistic effect in the treatment of colorectal cancer. Our analysis explores how VEGF/VEGFR inhibitors recalibrate the tumor microenvironment, modulate immune cell functions, and influence the expression of immune checkpoints and cytokines. Furthermore, we critically evaluate the preclinical and clinical feasibility of these combined therapeutic approaches. Despite the potential for toxicity, the significant benefits and prospective applications of these strategies warrant thorough exploration. Exploring the synergistic mechanisms of these combined treatments has the potential to inaugurate a new paradigm in oncology, enabling more personalized and efficacious treatment modalities. Additionally, the synergy between VEGF/VEGFR inhibitors and nascent immunotherapies emerges as a promising field of inquiry.
Collapse
Affiliation(s)
- Jing Jiao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - You Wu
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jingting Jiang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
4
|
Ren Y, Xue M, Hui X, Liu X, Farooq MA, Chen Y, Ji Y, Duan Y, Ajmal I, Yao J, Jiang W. Chimeric cytokine receptor TGF-β RⅡ/IL-21R improves CAR-NK cell function by reversing the immunosuppressive tumor microenvironment of gastric cancer. Pharmacol Res 2025; 212:107637. [PMID: 39884449 DOI: 10.1016/j.phrs.2025.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body's anti-cancer defense, and chimeric antigen receptor (CAR)-NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21 R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21 R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway. We successfully constructed NKG2D-CAR-NK cells expressing TRII/21 R and demonstrated strong anti-tumor activity against cancer cells both in vitro and in vivo. The co-expression of TRII/21 R in CAR-NK cells enhanced the cytotoxicity, promoted proliferation and survival capabilities, and reduced the expression of exhaustion markers. In the xenograft mouse model, TRII/21R-CAR-NK cells significantly inhibited tumor growth and improved the survival rate of tumor-bearing mice compared to the mice receiving control CAR-NK cells. Additionally, TRII/21 R co-expression enhanced NK cells' infiltration, activation, and persistence within the tumor, indicating a robust anti-tumor response mediated by the JAK-STAT3 signaling pathway. This study underscores the therapeutic potential of TRII/21R-modified CAR-NK cells as a breakthrough strategy for combating cancer.
Collapse
MESH Headings
- Stomach Neoplasms/immunology
- Stomach Neoplasms/therapy
- Stomach Neoplasms/pathology
- Stomach Neoplasms/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Killer Cells, Natural/metabolism
- Animals
- Tumor Microenvironment/immunology
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Cell Line, Tumor
- STAT3 Transcription Factor/metabolism
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptors, Interleukin-21/genetics
- Receptors, Interleukin-21/immunology
- Receptors, Interleukin-21/metabolism
- Immunotherapy, Adoptive/methods
- Mice, Inbred BALB C
- Mice
- Signal Transduction
- Mice, Nude
- Female
Collapse
Affiliation(s)
- Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Min Xue
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiuyu Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhou Ji
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Guo Y, Wang H, Liu S, Zhang X, Zhu X, Huang L, Zhong W, Guan L, Chen Y, Xiao M, Ou L, Yang J, Chen X, Huang AC, Mitchell T, Amaravadi R, Karakousis G, Miura J, Schuchter L, Flowers A, Zheng Q, Mou H, Gimotty P, Herlyn M, Guo W, Xu X. Engineered extracellular vesicles with DR5 agonistic scFvs simultaneously target tumor and immunosuppressive stromal cells. SCIENCE ADVANCES 2025; 11:eadp9009. [PMID: 39813334 PMCID: PMC11734719 DOI: 10.1126/sciadv.adp9009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells. PDGFR transmembrane domain delivers DR5-scFvs to the surface of sEVs. DR5-scFv sEVs rapidly induce apoptosis of different types of DR5+ cancer cells, myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs). DR5-scFv sEVs migrate specifically to DR5+ tumors in vitro and in vivo. Systemic delivery of DR5-scFv sEVs significantly inhibits the growth of DR5+ melanoma, liver cancer, and breast cancer and prolongs mouse life span without significant toxicity. DR5-scFv sEVs are significantly more efficacious than DR5 antibodies in vivo. In organotypic patient-derived melanoma slice cultures, DR5-scFv sEVs effectively inhibit melanoma cells and MDSCs and activate CD8+ T cells. Our studies demonstrate that DR5-scFv sEVs can inhibit tumor growth by targeting tumor cells and immunosuppressive stromal cells in the TME.
Collapse
Affiliation(s)
- Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 41000, China
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaogang Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyue Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lei Guan
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yeqing Chen
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingbo Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 41000, China
| | - Alexander C. Huang
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara Mitchell
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Miura
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn Schuchter
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahron Flowers
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiuxian Zheng
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haiwei Mou
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Phyllis Gimotty
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Xu D, Zhang Y, Huang W, Pan X, An S, Wang C, Huang G, Liu J, Wei W. ImmunoPET imaging of EpCAM in solid tumours with nanobody tracers: a preclinical study. Eur J Nucl Med Mol Imaging 2025; 52:388-400. [PMID: 39249490 DOI: 10.1007/s00259-024-06910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Epithelial cell adhesion molecule (EpCAM) is a potential therapeutic target and anchoring molecule for circulating and disseminated tumour cells (CTC/DTC) in liquid biopsy. In this study, we aimed to construct EpCAM-specific immuno-positron emission tomography (immunoPET) imaging probes and assess the diagnostic abilities in preclinical cancer models. METHODS By engineering six single-domain antibodies (e.g., EPCD1 - 6) targeting EpCAM of different binding properties and labelling with 68Ga (T1/2 = 1.1 h) and 18F (T1/2 = 110 min), we developed a series of EpCAM-targeted immunoPET imaging probes. The probes' pharmacokinetics and diagnostic accuracies were investigated in cell-derived human colorectal (LS174T) and esophageal cancer (OE19) tumour models. RESULTS Based on in vitro binding affinities and in vivo pharmacokinetics of the first three tracers ([68Ga]Ga-NOTA-EPCD1, [68Ga]Ga-NOTA-EPCD2, and [68Ga]Ga-NOTA-EPCD3), we selected [68Ga]Ga-NOTA-EPCD3 for tumour imaging which showed an average tumour uptake of 2.06 ± 0.124%ID/g (n = 3) in LS174T cell-derived tumour model. Development and characterisation of [18F]AIF-RESCA-EPCD3 showed comparable tumour uptake of 1.73 ± 0.0471%ID/g (n = 3) in the same tumour model. Further validation of [68Ga]Ga-NOTA-EPCD3 in OE19 cell-derived tumour model showed an average tumour uptake of 4.27 ± 1.16%ID/g and liver uptake of 13.5 ± 1.30%ID/g (n = 3). Near-infrared fluorescence imaging with Cy7-EPCD3 confirmed the in vivo pharmacokinetics and relatively high liver accumulation. We further synthesized another three 18F-labeled nanobody tracers ([18F]AIF-RESCA-EPCD4, [18F]AIF-RESCA-EPCD5, and [18F]AIF-RESCA-EPCD6) and found that [18F]AIF-RESCA-EPCD6 had the best pharmacokinetics with low background. [18F]AIF-RESCA-EPCD6 showed explicit uptake in the subcutaneously inoculated OE19 tumour model with an average uptake of 4.70 ± 0.26%ID/g (n = 3). In comparison, the corresponding tumour uptake (0.17 ± 0.25%ID/g, n = 3) in the EPCD6 blocking group was substantially lower (P < 0.001), indicating the targeting specificity of the tracer. CONCLUSIONS We developed a series of 68Ga/18F-labeled nanobody tracers targeting human EpCAM. ImmunoPET imaging with [18F]AIF-RESCA-EPCD6 may facilitate better use of EpCAM-targeted therapeutics by noninvasively displaying the target's expression dynamics.
Collapse
Affiliation(s)
- Dongsheng Xu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinbing Pan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
7
|
Karamivandishi A, Hatami A, Eslami MM, Soleimani M, Izadi N. Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Hum Immunol 2025; 86:111207. [PMID: 39667204 DOI: 10.1016/j.humimm.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Advancements in the field of CAR-T therapy have brought about a revolution in the treatment of numerous types of cancer in the past ten years. However, despite the remarkable success achieved thus far, certain barriers impede the widespread implementation of this therapy such as intricate manufacturing processes and treatment-associated toxicities. As an alternative, chimeric antigen receptor-engineered natural killer cell (CAR-NK) therapy presents a viable opportunity for a simpler and more cost-effective "off-the-shelf" treatment option, which is likely to result in fewer adverse reactions. A total of 71 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science and Scopus. Based on data extracted from articles, we concluded that CAR-NK cell efficiency can vary considerably depending on factors such as tumor model, dosage, CAR generation and expansion method. Furthermore, investigating consequences of utilizing various constructs and generations of CAR-NK cells on their anti-tumor activity examined in this review.
Collapse
Affiliation(s)
- Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Hatami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Masoud Eslami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Neda Izadi
- Research Center for Social Determinants of Health,Research institute for metabolic and obesity disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
9
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Shen J, Qian N, Xu G, Dou X, An Y, Yang C, Liu Y, Liu Y, Pan X, Wang J, Bai G, Chen H, Zhu X, Gao X, Zhou G, Xu Q. IMT030122, A novel engineered EpCAM/CD3/4-1BB tri-specific antibody, enhances T-cell recruitment and demonstrates anti-tumor activity in mouse models of colorectal cancer. Int Immunopharmacol 2024; 137:112424. [PMID: 38878486 DOI: 10.1016/j.intimp.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer is a major global health burden, with limited efficacy of traditional treatment modalities in improving survival rates. However, recently advances in immunotherapy has improved treatment outcomes for patients with this cancer. To address the continuing need for improved treatment efficacy, this study introduced a novel tri-specific antibody, IMT030122, that targets EpCAM, 4-1BB, and CD3. We evaluated the pharmacological efficacy and mechanism of action of IMT030122 in vitro and in vivo. In in vitro studies, IMT030122 exhibited differential binding to antigens and cells expressing EpCAM, 4-1BB, and CD3. Moreover, IMT030122 relied on EpCAM-targeted activation of intracellular CD3 and 4-1BB signaling and mediated T cell cytotoxicity specific to HCT116 colorectal cancer cells. In vivo, IMT030122 demonstrated potent anti-tumor activity, significantly inhibiting the growth of colon cancer HCT116 and MC38-hEpCAM subcutaneous grafts. Further pharmacological analysis revealed that IMT030122 recruited lymphocytes from peripheral blood into colorectal cancer tissue and exerted durable anti-tumor activity, predominantly by promoting the activation, proliferation, and differentiation of CD8T cells. Notably, IMT030122 still exhibited anti-tumor efficacy even in the presence of significantly depleted lymphocytes in colorectal cancer tissue. The potent pharmacological activity and anti-tumor effects of IMT030122 suggest it may enhance treatment efficacy and substantially extend the survival of patients with colorectal cancer in the future.
Collapse
Affiliation(s)
- Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Niliang Qian
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guili Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiaoqian Dou
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Ying An
- Department of Preventive Treatment of Disease, Chengde Traditional Medicine Hospital, Hebei 067000, China
| | - Cuima Yang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yujie Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yunhui Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiujie Pan
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Jingjing Wang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guijun Bai
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xin Gao
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Qinzhi Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China.
| |
Collapse
|
11
|
Tsiverioti CA, Gottschlich A, Trefny M, Theurich S, Anders HJ, Kroiss M, Kobold S. Beyond CAR T cells: exploring alternative cell sources for CAR-like cellular therapies. Biol Chem 2024; 405:485-515. [PMID: 38766710 DOI: 10.1515/hsz-2023-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Marchioninstr. 15, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | - Marcel Trefny
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, Marchioninstr. 15, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
- 74939 German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University Hospital of the LMU , Marchioninstr. 15, 81377 Munich, Germany
- Cancer and Immunometabolism Research Group, 74939 Gene Center LMU , Feodor-Lynen Str. 25, 81377 Munich, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstr. 5, 80336 Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstr. 5, 80336 Munich, Germany
- Division of Endocrinology and Diabetes, Department of Medicine, University Hospital, University of Würzburg, Josef-Schneider-Str, 9780 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 9780 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
- 74939 German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University Hospital of the LMU , Marchioninstr. 15, 81377 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
12
|
Jasim SA, Farber IM, Noraldeen SAM, Bansal P, Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Hamzah HF, Mohammed BA. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment. Microvasc Res 2024; 154:104691. [PMID: 38703993 DOI: 10.1016/j.mvr.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.
Collapse
Affiliation(s)
| | - Irina M Farber
- Department of children's diseases of the F. Filatov clinical institute of children's health, I. M. Sechenov First Moscow State Medical University of Health of Russian Federation (Sechenov University), Moscow, Russia
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan..
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Qadisiyyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
13
|
Soroush A, Shahhosseini R, Ghavamikia N, Hjazi A, Roudaki S, KhalatbariLimaki M, Mirbolouk M, Pakmehr S, Karimi P. Improvement of current immunotherapies with engineered oncolytic viruses that target cancer stem cells. Cell Biochem Funct 2024; 42:e4055. [PMID: 38856033 DOI: 10.1002/cbf.4055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
The heterogeneity of the solid tumor microenvironment (TME) impairs the therapeutic efficacy of standard therapies and also reduces the infiltration of antitumor immune cells, all of which lead to tumor progression and invasion. In addition, self-renewing cancer stem cells (CSCs) support tumor dormancy, drug resistance, and recurrence, all of which might pose challenges to the eradication of malignant tumor masses with current therapies. Natural forms of oncolytic viruses (OVs) or engineered OVs are known for their potential to directly target and kill tumor cells or indirectly eradicate tumor cells by involving antitumor immune responses, including enhancement of infiltrating antitumor immune cells, induction of immunogenic cell death, and reprogramming of cold TME to an immune-sensitive hot state. More importantly, OVs can target stemness factors that promote tumor progression, which subsequently enhances the efficacy of immunotherapies targeting solid tumors, particularly the CSC subpopulation. Herein, we describe the role of CSCs in tumor heterogeneity and resistance and then highlight the potential and remaining challenges of immunotherapies targeting CSCs. We then review the potential of OVs to improve tumor immunogenicity and target CSCs and finally summarize the challenges within the therapeutic application of OVs in preclinical and clinical trials.
Collapse
Affiliation(s)
| | | | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin AbdulAziz University, Al-Kharj, Saudi Arabia
| | - Shahrzad Roudaki
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahtab Mirbolouk
- School of Pharmacy, Cyprus International University, Nicosia, North Cyprus
| | | | - Parvin Karimi
- Fars Population-Based Cancer Registry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Xiao D, Xiong M, Wang X, Lyu M, Sun H, Cui Y, Chen C, Jiang Z, Sun F. Regulation of the Function and Expression of EpCAM. Biomedicines 2024; 12:1129. [PMID: 38791091 PMCID: PMC11117676 DOI: 10.3390/biomedicines12051129] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a single transmembrane protein on the cell surface. Given its strong expression on epithelial cells and epithelial cell-derived tumors, EpCAM has been identified as a biomarker for circulating tumor cells (CTCs) and exosomes and a target for cancer therapy. As a cell adhesion molecule, EpCAM has a crystal structure that indicates that it forms a cis-dimer first and then probably a trans-tetramer to mediate intercellular adhesion. Through regulated intramembrane proteolysis (RIP), EpCAM and its proteolytic fragments are also able to regulate multiple signaling pathways, Wnt signaling in particular. Although great progress has been made, increasingly more findings have revealed the context-specific expression and function patterns of EpCAM and their regulation processes, which necessitates further studies to determine the structure, function, and expression of EpCAM under both physiological and pathological conditions, broadening its application in basic and translational cancer research.
Collapse
Affiliation(s)
- Di Xiao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingrui Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xin Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengqing Lyu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hanxiang Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yeting Cui
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chen Chen
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Fan Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
15
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
16
|
Dash CP, Sonowal D, Dhaka P, Yadav R, Chettri D, Satapathy BP, Sheoran P, Uttam V, Jain M, Jain A. Antitumor activity of genetically engineered NK-cells in non-hematological solid tumor: a comprehensive review. Front Immunol 2024; 15:1390498. [PMID: 38694508 PMCID: PMC11061440 DOI: 10.3389/fimmu.2024.1390498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.
Collapse
Affiliation(s)
- Chinmayee Priyadarsini Dash
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibhu Prasad Satapathy
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
17
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
18
|
Li J, Hu H, Lian K, Zhang D, Hu P, He Z, Zhang Z, Wang Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024; 10:e27196. [PMID: 38486782 PMCID: PMC10937699 DOI: 10.1016/j.heliyon.2024.e27196] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Various preclinical and a limited number of clinical studies of CAR-NK cells have shown promising results: efficient elimination of target cells without side effects similar to CAR-T therapy. However, the homing and infiltration abilities of CAR-NK cells are poor due to the inhibitory tumor microenvironment. From the perspective of clinical treatment strategies, combined with the biological and tumor microenvironment characteristics of NK cells, CAR-NK combination therapy strategies with anti-PD-1/PD-L1, radiotherapy and chemotherapy, kinase inhibitors, proteasome inhibitors, STING agonist, oncolytic virus, photothermal therapy, can greatly promote the proliferation, migration and cytotoxicity of the NK cells. In this review, we will summarize the targets selection, structure constructions and combinational therapies of CAR-NK cells for tumors to provide feasible combination strategies for overcoming the inhibitory tumor microenvironment and improving the efficacy of CAR-NK cells.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Hong Hu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhibing He
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong Wang
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| |
Collapse
|
19
|
Guo F, Zhang Y, Cui J. Manufacturing CAR-NK against tumors: Who is the ideal supplier? Chin J Cancer Res 2024; 36:1-16. [PMID: 38455373 PMCID: PMC10915637 DOI: 10.21147/j.issn.1000-9604.2024.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cells have emerged as another prominent player in the realm of tumor immunotherapy following CAR-T cells. The unique features of CAR-NK cells make it possible to compensate for deficiencies in CAR-T therapy, such as the complexity of the manufacturing process, clinical adverse events, and solid tumor challenges. To date, CAR-NK products from different allogeneic sources have exhibited remarkable anti-tumor effects on preclinical studies and have gradually been applied in clinical practice. However, each source has advantages and disadvantages. Selecting a suitable source may help maximize CAR-NK cell efficacy and increase the feasibility of clinical transformation. Therefore, this review discusses the development and challenges of CAR-NK cells from different sources to provide a reference for future exploration.
Collapse
Affiliation(s)
- Feifei Guo
- The First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Yi Zhang
- The First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| |
Collapse
|
20
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
23
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
24
|
Wang Y, Jin S, Zhuang Q, Liu N, Chen R, Adam SA, Jin J, Sun J. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm (Beijing) 2023; 4:e422. [PMID: 38045827 PMCID: PMC10691297 DOI: 10.1002/mco2.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in adoptive cell therapy for malignancies. However, some obstacles, including side effects such as graft-versus-host disease and cytokine release syndrome, therapy resistance, limited sources, as well as high cost, limited the application of CAR T cells. Recently, CAR natural killer (NK) cells have been pursued as the effector cells for adoptive immunotherapy for their attractive merits of strong intrinsic antitumor activity and relatively mild side effects. Additionally, CAR NK cells can be available from various sources and do not require strict human leukocyte antigen matching, which suggests them as promising "off-the-shelf" products for clinical application. Although the use of CAR NK cells is restrained by the limited proliferation and impaired efficiency within the immunosuppressive tumor microenvironment, further investigation in optimizing CAR structure and combination therapies will overcome these challenges. This review will summarize the advancement of CAR NK cells, CAR NK cell manufacture, the clinical outcomes of CAR NK therapy, the challenges in the field, and prospective solutions. Besides, we will discuss the emerging application of other immune cells for CAR engineering. Collectively, this comprehensive review will provide a valuable and informative summary of current progress and evaluate challenges and future opportunities of CAR NK cells in tumor treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Shengjie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Qiqi Zhuang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Na Liu
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Department of OncologyAffiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Ruyi Chen
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| |
Collapse
|
25
|
Giraudo L, Cattaneo G, Gammaitoni L, Iaia I, Donini C, Massa A, Centomo ML, Basiricò M, Vigna E, Pisacane A, Picciotto F, Berrino E, Marchiò C, Merlini A, Paruzzo L, Poletto S, Caravelli D, Biolato AM, Bortolot V, Landoni E, Ventin M, Ferrone CR, Aglietta M, Dotti G, Leuci V, Carnevale-Schianca F, Sangiolo D. CSPG4 CAR-redirected Cytokine Induced Killer lymphocytes (CIK) as effective cellular immunotherapy for HLA class I defective melanoma. J Exp Clin Cancer Res 2023; 42:310. [PMID: 37993874 PMCID: PMC10664597 DOI: 10.1186/s13046-023-02884-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lidia Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Giulia Cattaneo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Loretta Gammaitoni
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Ilenia Iaia
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Chiara Donini
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Annamaria Massa
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Marco Basiricò
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Elisa Vigna
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Alberto Pisacane
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Franco Picciotto
- Dermatologic Surgery Section, Department of Surgery, Azienda Ospedaliera Universitaria (AOU) Città Della Salute E Della Scienza, Turin, TO, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, TO, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Luca Paruzzo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Stefano Poletto
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Daniela Caravelli
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Andrea Michela Biolato
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Valentina Bortolot
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Elisa Landoni
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Marco Ventin
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Valeria Leuci
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | | | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
| |
Collapse
|
26
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
27
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
28
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593%' and 2*3*8=6*8 and 'eho8'!='eho8%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
29
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593' and 2*3*8=6*8 and 'x7c8'='x7c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
30
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
31
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593" and 2*3*8=6*8 and "d5lf"="d5lf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
32
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 DOI: 10.3748/wjg.v29.i40.5593j4dtuwxg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China.
| |
Collapse
|
33
|
Li YN, Xie B, Zhang Y, He MH, Xing Y, Mu DM, Wang H, Guo R. Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023). World J Gastroenterol 2023; 29:5593-5617. [PMID: 37970478 PMCID: PMC10642438 DOI: 10.3748/wjg.v29.i40.5593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. Current treatments mainly rely on surgery- and chemotherapy-based systemic; however, the prognosis remains poor for advanced disease. Recent studies have suggested that immunotherapy has significant potential in cancer therapy; thus, GC immunotherapy may improve quality of life and survival for patients with this disease. AIM To provide a comprehensive overview of the knowledge structure and research hotspots of GC immunotherapy. METHODS We conducted a bibliometric analysis of publications on immunotherapy related to GC in the Web of Science Core Collection database. We analyzed 2013 pub-lications from 1999 to February 1, 2023, using the VOSviewer and CiteSpace software. We assessed publication and citation distributions using the WoS platform and explored research countries, institutions, journals, authors, references, and keywords (co-occurrence, timeline view, and burst analysis). In addition, we examined 228 trials on immunotherapy, 137 on adoptive cell therapy, 274 on immune checkpoint inhibitors (ICIs), and 23 on vaccines from ClinicalTrials.gov and the International Clinical Trials Registry Platform. The Impact Index Per Article for the top ten high-cited papers collected from Reference Citation Analysis (RCA) are presented. RESULTS Our bibliometric analysis revealed that the study of immunotherapy in GC has developed rapidly in recent years. China accounted for almost half the publications, followed by the United States. The number of publications in recent years has been growing continuously, and most institutions and authors with the most publications are from China. The main keywords or clusters identified were "tumor microenvironment", "adoptive immunotherapy", "dendritic therapy", and "microsatellite instability". CONCLUSION Our analysis of 2013 publications indicated that immunotherapy for GC has led to several new developments in recent years. Considerable progress has been made in vaccinations, immune checkpoint therapy, and adoptive cellular therapy. In particular, ICIs and chimeric antigen receptor T-cells are novel options for the treatment of GC. We suggest that the combination of ICIs, chemotherapy, targeted therapy, and other immunotherapies should be the primary research direction in the future.
Collapse
Affiliation(s)
- Yao-Nan Li
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Bin Xie
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Ming-Hua He
- College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin Province, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Dong-Mei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| |
Collapse
|
34
|
Izadpanah A, Mohammadkhani N, Masoudnia M, Ghasemzad M, Saeedian A, Mehdizadeh H, Poorebrahim M, Ebrahimi M. Update on immune-based therapy strategies targeting cancer stem cells. Cancer Med 2023; 12:18960-18980. [PMID: 37698048 PMCID: PMC10557910 DOI: 10.1002/cam4.6520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Accumulating data reveals that tumors possess a specialized subset of cancer cells named cancer stem cells (CSCs), responsible for metastasis and recurrence of malignancies, with various properties such as self-renewal, heterogenicity, and capacity for drug resistance. Some signaling pathways or processes like Notch, epithelial to mesenchymal transition (EMT), Hedgehog (Hh), and Wnt, as well as CSCs' surface markers such as CD44, CD123, CD133, and epithelial cell adhesion molecule (EpCAM) have pivotal roles in acquiring CSCs properties. Therefore, targeting CSC-related signaling pathways and surface markers might effectively eradicate tumors and pave the way for cancer survival. Since current treatments such as chemotherapy and radiation therapy cannot eradicate all of the CSCs and tumor relapse may happen following temporary recovery, improving novel and more efficient therapeutic options to combine with current treatments is required. Immunotherapy strategies are the new therapeutic modalities with promising results in targeting CSCs. Here, we review the targeting of CSCs by immunotherapy strategies such as dendritic cell (DC) vaccines, chimeric antigen receptors (CAR)-engineered immune cells, natural killer-cell (NK-cell) therapy, monoclonal antibodies (mAbs), checkpoint inhibitors, and the use of oncolytic viruses (OVs) in pre-clinical and clinical studies. This review will mainly focus on blood malignancies but also describe solid cancers.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Niloufar Mohammadkhani
- Department of Clinical BiochemistrySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mina Masoudnia
- Department of ImmunologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Ghasemzad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Molecular Cell Biology‐Genetics, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Arefeh Saeedian
- Radiation Oncology Research CenterCancer Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical SciencesTehranIran
| | - Hamid Mehdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Research Institute, University of CalgaryAlbertaCalgaryCanada
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of regenerative medicineCell Science research Center, Royan Institute for stem cell biology and technology, ACECRTehranIran
| |
Collapse
|
35
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
36
|
Merino A, Maakaron J, Bachanova V. Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev 2023; 60:101073. [PMID: 36959057 PMCID: PMC10979648 DOI: 10.1016/j.blre.2023.101073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Natural Killer (NK) cells yield promise in therapy of hematologic malignancies. The clinical experience with adoptively transferred allogeneic NK cells over past two decades has revealed safety and minimal risk of CRS or ICANS. Unlike T cells which have to be genetically altered to avoid graft vs host disease (GVHD), HLA mismatched NK cells can be infused without GVHD risk. This makes them ideal for the development of off-the-shelf products. In this review we focus on NK biology relevant to the cancer therapy, the trajectory of NK therapeutics for leukemia, lymphoma, and myeloma; and advantages of the NK cell platform. We will also discuss novel methods to enhance NK cell targeting, persistence, and function in the tumor microenvironment. The future of NK cell therapy depends on novel strategies to realize these qualities.
Collapse
Affiliation(s)
- Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America.
| |
Collapse
|
37
|
Garza Treviño EN, Quiroz Reyes AG, Rojas Murillo JA, de la Garza Kalife DA, Delgado Gonzalez P, Islas JF, Estrada Rodriguez AE, Gonzalez Villarreal CA. Cell Therapy as Target Therapy against Colon Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24098163. [PMID: 37175871 PMCID: PMC10179203 DOI: 10.3390/ijms24098163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with properties, such as self-renewal, differentiation, and tumorigenicity. CSCs have been proposed as a plausible therapeutic target as they are responsible for tumor recurrence, metastasis, and conventional therapy resistance. Selectively targeting CSCs is a promising strategy to eliminate the propagation of tumor cells and impair overall tumor development. Recent research shows that several immune cells play a crucial role in regulating tumor cell proliferation by regulating different CSC maintenance or proliferation pathways. There have been great advances in cellular immunotherapy using T cells, natural killer (NK) cells, macrophages, or stem cells for the selective targeting of tumor cells or CSCs in colorectal cancer (CRC). This review summarizes the CRC molecular profiles that may benefit from said therapy and the main vehicles used in cell therapy against CSCs. We also discuss the challenges, limitations, and advantages of combining conventional and/or current targeted treatments in the late stages of CRC.
Collapse
Affiliation(s)
- Elsa N Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Adriana G Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - David A de la Garza Kalife
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Jose F Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Ana Esther Estrada Rodriguez
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500. Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500. Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
38
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
39
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
40
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|
41
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
42
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
An J, Hu X, Liu F. Current understanding of cancer stem cells: Immune evasion and targeted immunotherapy in gastrointestinal malignancies. Front Oncol 2023; 13:1114621. [PMID: 36910604 PMCID: PMC9996315 DOI: 10.3389/fonc.2023.1114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
As a relatively rare population of cancer cells existing in the tumor microenvironment, cancer stem cells (CSCs) possess properties of immune privilege to evade the attack of immune system, regulated by the microenvironment of CSCs, the so-called CSCs niche. The bidirectional interaction of CSCs with tumor microenvironment (TME) components favors an immunosuppressive shelter for CSCs' survival and maintenance. Gastrointestinal cancer stem cells (GCSCs) are broadly regarded to be intimately involved in tumor initiation, progression, metastasis and recurrence, with elevated tumor resistance to conventional therapies, which pose a major hindrance to the clinical efficacy for treated patients with gastrointestinal malignancies. Thus, a multitude of efforts have been made to combat and eradicate GCSCs within the tumor mass. Among diverse methods of targeting CSCs in gastrointestinal malignancies, immunotherapy represents a promising strategy. And the better understanding of GCSCs immunomodulation and immunoresistance mechanisms is beneficial to guide and design novel GCSCs-specific immunotherapies with enhanced immune response and clinical efficacy. In this review, we have gathered available and updated information to present an overview of the immunoevasion features harbored by cancer stem cells, and we focus on the description of immune escape strategies utilized by CSCs and microenvironmental regulations underlying CSCs immuno-suppression in the context of gastrointestinal malignancies. Importantly, this review offers deep insights into recent advances of CSC-targeting immunotherapeutic approaches in gastrointestinal cancers.
Collapse
Affiliation(s)
- Junyi An
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Hu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
45
|
Wang L, Chen X, Zhang L, Niu B, Li L, Sun Y, Yuan X. CAR cell design strategies in solid tumors. Int Immunopharmacol 2022; 113:109345. [DOI: 10.1016/j.intimp.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
46
|
Bahmanyar M, Vakil MK, Al-Awsi GRL, Kouhpayeh SA, Mansoori Y, Mansoori B, Moravej A, Mazarzaei A, Ghasemian A. Anticancer traits of chimeric antigen receptors (CARs)-Natural Killer (NK) cells as novel approaches for melanoma treatment. BMC Cancer 2022; 22:1220. [PMID: 36434591 PMCID: PMC9701052 DOI: 10.1186/s12885-022-10320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Owing to non-responsiveness of a high number of patients to the common melanoma therapies, seeking novel approaches seem as an unmet requirement. Chimeric antigen receptor (CAR) T cells were initially employed against recurrent or refractory B cell malignancies. However, advanced stages or pretreated patients have insufficient T cells (lymphopenia) amount for collection and clinical application. Additionally, this process is time-consuming and logistically cumbersome. Another limitation of this approach is toxicity and cytokine release syndrome (CRS) progress and neurotoxicity syndrome (NS). Natural killer (NK) cells are a versatile component of the innate immunity and have several advantages over T cells in the application for therapies such as availability, unique biological features, safety profile, cost effectiveness and higher tissue residence. Additionally, CAR NK cells do not develop Graft-versus-host disease (GvHD) and are independent of host HLA genotype. Notably, the NK cells number and activity is affected in the tumor microenvironment (TME), paving the way for developing novel approaches by enhancing their maturation and functionality. The CAR NK cells short lifespan is a double edge sword declining toxicity and reducing their persistence. Bispecific and Trispecific Killer Cell Engagers (BiKE and Trike, respectively) are emerging and promising immunotherapies for efficient antibody dependent cell cytotoxicity (ADCC). CAR NK cells have some limitations in terms of expanding and transducing NK cells from donors to achieve clinical response. Clinical trials are in scarcity regarding the CAR NK cell-based cancer therapies. The CAR NK cells short life span following irradiation before infusion limits their efficiency inhibiting their in vivo expansion. The CAR NK cells efficacy enhancement in terms of lifespan TME preparation and stability is a goal for melanoma treatment. Combination therapies using CAR NK cells and chemotherapy can also overcome therapy limitations.
Collapse
Affiliation(s)
- Maryam Bahmanyar
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyed Amin Kouhpayeh
- grid.411135.30000 0004 0415 3047Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- grid.512728.b0000 0004 5907 6819Department of Immunology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
47
|
Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022; 13:978195. [PMID: 36458008 PMCID: PMC9705989 DOI: 10.3389/fimmu.2022.978195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/14/2022] [Indexed: 08/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil El Ghanmi
- Mohammed VI International University Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
48
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
49
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
50
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|